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Proactive esophageal cooling for the purpose of reducing the likelihood
ofablation-relatedesophageal injuryresultingfromradiofrequency(RF)
cardiac ablation procedures is increasingly being used and has been
Food and Drug Administration cleared as a protective strategy during
left atrial RF ablation for the treatment of atrial fibrillation. In this re-
view, we examine the evidence supporting the use of proactive esopha-
geal cooling and the potential mechanisms of action that reduce the
likelihood of atrioesophageal fistula (AEF) formation. Although the
pathophysiologybehindAEFformationafterthermal injuryfromRFabla-
tion is not well studied, a robust literature on fistula formation in other
conditions (eg, Crohn disease, cancer, and trauma) exists and the rela-
tionship to AEF formation is investigated in this review. Likewise, we
examinetheabundantdatainthesurgical literatureonburnandthermal
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injury progression as well as the acute and chronicmitigating effects of
cooling.Wediscuss the relationshipof thesedataandmaladaptiveheal-
ingmechanismstothewell-recognizedpostablationpathophysiological
effectsafterRFablation. Finally,we reviewadditional important consid-
erations such as patient selection, clinical workflow, and implementa-
tion strategies for proactive esophageal cooling.
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KEY FINDINGS

- Atrioesophageal fistula (AEF) is the most feared
complication of left atrial ablation.

- Proactive esophageal cooling reduces visible esopha-
geal injury and is associated with a significant reduc-
tion in AEF rate.

- Tissue injury (from thermal, mechanical, or electrical
sources) triggers an inflammatory response that in-
duces epithelial cells to become migratory, resulting in
fistula formation.

- Cooling mitigates or blocks the activity of most of the
mediators of fistula formation.
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Introduction
Radiofrequency (RF) catheter ablation is a thermally mediated
method for delivering pulmonary vein isolation (PVI), a
cornerstone of treatment of paroxysmal and persistent atrial
fibrillation,1 whereby a contiguous path of transmural thermal
ablation is created surrounding each of the pulmonary veins in
the left atrium. Although most risks associated with PVI are
manageable, the risk of collateral esophageal thermal injury,
and the progression of that injury to atrioesophageal fistula
(AEF) over subsequent days and weeks remains challenging
to prevent, diagnose, and treat.2,3 Traditional strategies used
to prevent esophageal injury during PVI, such as reducing
RF energy duration or power and contact force, single- and
multiple-point monitoring of luminal esophageal temperature
(LET),4–6 and mechanically displacing the esophagus,7 have
not been shown to prevent AEF. LET monitoring is the oldest
and most widely used approach aimed at preventing esopha-
geal thermal lesions; however, an increasing number of studies
question the efficacy and inherent technical feasibility of this
method.4–6,8–15 A recent study has shown that esophageal
injury can be predicted with reasonable accuracy using a
postprocedure analysis of spatial and temporal LET
gradients; however, this method is predictive, not
preventive.16 Importantly, over the last 20 years, reports of
AEF have not decreased, and while most other complications
diminish with operator expertise, AEF does not appear to do
so.17,18 Pulsed field ablation (PFA) is an emerging alternative
cardiac ablation energy source; however, growing data from
cardiac as well as oncologic applications have identified
measurable and dose-dependent thermal effects with pulsed
field energy.19–24 In some cases, measured LETs during
PFA have exceeded the thresholds typically used for
cessation of RF delivery.19 In the field of oncology, where
PFA has been in commercial use for over a decade, fistulas
(including pancreatic, enterocutaneous, arterio-enteric, vag-
ino-tumoral, rectovesical, and buccal) are commonly reported
after PFA applications.25–33 In some reports, fistula formation
occurs in as many as 10.6%–20% of patients.25,27

The concept of active esophageal cooling was first pro-
posed in 2005,34 shortly after the first case of AEF resulting
from RF catheter ablation was reported.35 Investigations into
this concept continued for the next decade,36–44 but a
practical device did not become available until 2014. Initial
use of this device—the ensoETM (Attune Medical, Chicago,
IL)—was in critical care, emergency medicine, and surgery
for patient systemic temperature management45–53 but
adoption for use during PVI has grown rapidly, with a
recent analysis of .25,000 patients finding a significant
reduction in AEF rate associated with its use.54 In September
2023, the US Food and Drug Administration (FDA) granted
de novo marketing authorization for the device to reduce the
likelihood of ablation-related esophageal injury resulting
from RF cardiac ablation procedures.55 Use of this technology
is now highlighted in the 2024 European Heart Rhythm Asso-
ciation/Heart Rhythm Society/Asia Pacific Heart Rhythm So-
ciety/Latin American Heart Rhythm Society expert consensus
statement on catheter and surgical ablation of atrial fibrilla-
tion.56 In contrast to reactive cooling, in which cold water is
administered through a nasogastric or orogastric tube into
the esophagus in response to an elevated local temperature
(and therefore after thermal damage has already occurred),
proactive esophageal cooling involves cooling of the esoph-
agus to 4�C before ablation lesion application.

The exact mechanism ofAEF formation after RF ablation is
uncertain, but the pathogenesis offistula is generally thought to
be triggered by conduction of excessive heat from a cardiac-
directedRFenergy application to the esophagealmucosa, often
only a fewmillimeters away.57,58 Abundant data frompostpro-
cedural endoscopic studies document the prevalence and extent
of transmural esophageal thermal injuries in patients after car-
diacRFablation.59–62Mucosal lesionsmaybe just the tip of the
iceberg, with periesophageal injury and the associated tissue
edema and neuropathic alterations being an important
component.63 Collateral esophageal thermal injury leads to
the subsequent development of cellular changes associated
with a significant inflammatory response that may lead, over
the subsequent 2–12 weeks, to fistula formation.3,64 Although
the mechanisms of AEF formation after esophageal thermal
injury are difficult to study in patients, abundant literature on
fistula formation exists in other conditions, particularly in
Crohn disease, where up to 50% of patients develop fistulas,65

as well as in cancer and trauma, where fistulas occur after
similar (localized) inflammatory insults. In this review, we
examine the evidence behind proactive esophageal cooling
and the potential mechanisms of action identified from burn,
gastrointestinal, and critical care literature that may contribute
to the observed reduction in AEF formation associated with
proactive cooling. We discuss the relationship of these estab-
lished maladaptive mechanisms to the well-recognized posta-
blation pathophysiological effects after RF ablation. Finally,
we review additional important considerations such as patient
selection andusage strategies for proactive esophageal cooling.
Acute effects
RF cardiac ablation occurs by applying RF energy to a series
of specific anatomic locations, resulting in a targeted heating
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of cardiac tissue above a threshold where irreversible injury
and necrotic cell death occur. This threshold is referred to as
the lethal isotherm, which is the minimal tissue temperature
(when exceeded for a minimum amount of time) necessary
to produce permanent tissue destruction around the site of ac-
tivity of the RF electrode. This tissue destruction includes
physiological changes consistent with cell death, such as
cellular depolarization, loss of excitability, contracture, or
loss of conduction, and the threshold is estimated to range as
low as 47.9�C–53.6�C and range as high as 58.1�C–64.2�C,
with an inverse relationship between the absolute temperature
and the time at or above the threshold.66–68 Importantly, there
is a well-established nonlinear time component such that the
greater the total heat energy deposited, the greater the injury.
Energy delivery and the resulting thermal conduction toward
adjacent tissues is difficult to spatially contain using only abla-
tion tools and energy parameters. Inherently, safety concerns
struggle against those of efficacy.69 Antenna effects may
also play a role, with both RF and PFA. Conflicting data
have been published in regard to this with RF ablation,4,13,70,71

but a recent study leveraging mathematical models suggests
that there may be effects on PFA from the presence of a metal
intracoronary stent near the ablation device from amplifying
the electric field distortion already caused by the presence of
the vessel.72 This spatial arrangement is different from a probe
in the esophagus, and a plastic coveringmay reduce this effect,
so more research is warranted. The heating profiles for RF and
PFA are quite similar in terms of their time course and
morphology, suggesting similar resistive and conductive heat-
ing profiles. This makes sense because the physical principles
involved in Joule heating and tissue conduction are preserved
regardless of the form of applied current. The biggest differ-
ences are the duration of energy application and the absolute
magnitude of temperature change.23 As such, proactive esoph-
ageal cooling may also be of benefit if PFA thermal effects
(particularly with increased energy deposition using newer
higher-energy systems or just with greater numbers of pulses
using current systems) are found to cause esophageal injury
in cardiac ablation.24

Proactive cooling of the esophageal mucosa has the direct
and immediate effect of increasing the amount of heat
required in the esophagus to reach a threshold sufficient to
cause clinically significant thermal damage of the esophagus.
Proactive cooling directly reduces esophageal lesion trans-
murality, exhibiting a dose-response relationship with
coolant temperature. A large animal model was developed
where ablation procedures were performed under a “worst-
case” condition by applying thermal energy directly on the
exposed esophagus.73 Lesion depth measured over a range
of temperatures via histopathological tissue staining showed
that the transmurality of lesions decreased as circulating wa-
ter temperature was decreased, with an absolute reduction in
lesion depth ranging from 5% with the use of 37�C water to
45% with the use of 5�C water (Figure 1, orange bars).

A mathematical model was developed using the geometry
as shown in Figure 2 to compare with the experimental
data.74 Figure 2A shows the proactive esophageal cooling de-
vice on the left panel, and Figure 2B shows the model geom-
etry, including all the relevant tissues and their dimensions
and proximity to the ablation target. The modeled tissues
include left atrial blood pool, atrial wall, epicardial fat, esoph-
agus, and connective tissue. A cylindrical structure was
assumed to be embedded into the connective tissue to model
the esophageal lumen occupied by the proactive cooling de-
vice, which was modeled as a hollow silicone tube (1.2 cm
diameter, 0.65mm wall thickness) circulating cold water.

Results of this model demonstrated close agreement with
preclinical data (Figure 1, blue bars).73 Further analysis of
lesion characteristics shows that proactive cooling protects
against esophageal thermal insults during cardiac ablation
by preventing esophageal tissues from reaching or exceeding
lethal hyperthermic temperatures and also by limiting the
time that esophageal tissues are hyperthermic.74 Notably,
although cooling shows significant protective effects in the
esophageal tissue adjacent to the cooling surface, the effect
on atrial myocardium is negligible, with the transmurality
of atrial ablation lesions remaining at 100% despite active
cooling (Figure 3). Steady-state conditions show the temper-
ature ranging from w12�C to 22�C across the esophagus.

The primary driver of this effect is the markedly lower
heat transfer due to the limited perfusion occurring in tissues
such as the visceral and parietal pericardium, serous fluid,
and pericardial fat.75 These layers form an effective thermal
insulation layer between the esophageal wall in contact
with the cooling device and the atrium in contact with the
RF ablation catheter. In addition, the flow of normal temper-
ature blood through the left atrium serves as a heat source
counteracting the effects of any cooling from the esophageal
side. The net effect is cooling of the esophagus with little
collateral cooling of the left atrium, along with heating of
the atrial tissue targeted by RF ablation with little collateral
warming of the surrounding esophageal tissues.76

Two randomized pilot studies and 1 large randomized
controlled trial using esophagogastroduodenoscopy to iden-
tify esophageal lesions after ablation have been completed.
Clark et al77 conducted the first small pilot study comparing
the use of proactive esophageal cooling with a dedicated de-
vice to the use of direct instillation of cold water in response
to temperature rises indicated by a single-sensor LET
monitor, finding that use in the electrophysiology laboratory
was feasible and that the extent of esophageal injury was less
severe when using proactive cooling than with reactive
manual instillation of ice cold water. Tschabrunn et al78 con-
ducted the Utility of Esophageal Cooling Therapy for the Pre-
vention of Thermal Injury During Atrial Fibrillation Ablation
(E Cool-AF) trial, in which 44 patients were randomized 1:1
to receive active esophageal cooling or LET monitoring with
a single-sensor probe. The investigators found a 67% reduc-
tion in severe lesions despite adjunctive posterior wall isola-
tion being performed more frequently in patients randomized
to active cooling.78 Leung et al79 conducted the Improving
Oesophageal Protection During AF Ablation Randomized
Controlled Trial (IMPACT), randomizing 120 patients 1:1
to active esophageal cooling or LET monitoring with a



Figure 1 Transmurality of lesions at varying ranges of power, duration, and cooling water temperature using a dedicated active esophageal cooling device in an
animal model with ablation procedures directly on the esophagus. Findings in the animal model (orange bars) are compared with results predicted from
mathematical modeling (blue bars) discussed further below. Reproduced from Montoya, et al.73
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single-sensor probe. Total esophageal lesions were reduced
83%.79
Delayed effects and mechanisms of fistula
formation
Although acute heat transfer effects are the predominant
contributor to the reduction in esophageal lesion formation
found clinicallywith esophageal cooling, the significant reduc-
tion in AEF formation seen with esophageal cooling likely in-
volves additional downstream effects. These effects have been
extensively studied and well documented in the literature of
burns and thermal injuries and their healing processes.80–87

As discussed above, attainment of lethal isotherm
temperatures from RF energy or other hyperthermic ablation
Figure 2 A: Physical situation modeled with a proactive cooling device located
near the ablation site, and proactive cooling device located in the esophageal lumen.
tissues, from the tip of the RF catheter to the edge of the active cooling device. Rep
methods results in physiological changes consistent with
tissue death, such as cellular depolarization, loss of
excitability, contracture, or loss of conduction.67,88 Thermal
injury subsequently progresses through known stages of burn
severity, and the damage leads to development of cellular
changes and, later, fistula formation.61,64,89 Actively cooling
epidermal, dermal, or subdermal tissues after thermal injury re-
duces the duration of exposure to lethal isotherm tempera-
tures,90 which in turn results in the formation of a less severe
burn, a markedly reduced time until complete healing, and a
reduction in scar area.91 Cooling for the treatment of thermal
injury has been advocated for at least a century,92 and this
recommendation stems from clinical experience from as far
back as the time of Galen.93,94 Cooling has been shown to
significantly reduce burn injury severity and the likelihood of
in the esophageal lumen. B: Model geometry including RF catheter, tissues
The evaluation line (black line) for postprocessing is shown across the ablated
roduced from Montoya, et al.74 3D5 3-dimensional; RF5 radiofrequency.



Figure 3 Lesion shapes for 50W/10 s and 90W/4 s ablation procedures, with (protection) and without (control) proactive esophageal cooling. Left-sided im-
ages show the case after the RF pulse and right-sided images show the case after 90 seconds, allowing for the effects of thermal latency. Thermal injury is not seen
in the fat layer since the fraction of damage incurred by fat is lower than that of myocardial or esophageal tissue, which is a consequence of tissue parameters
incorporated into the Arrhenius equation reflecting relative resistance of adipocytes to thermal insult. Reproduced from Montoya, et al.74 RF5 radiofrequency.
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progression (also referred to as conversion) of thermal injury in
the hours to days after an initial insult. Clinically, a dose-
responseeffecton thedurationofcoolingburnshasbeenshown
in a study of 2495 pediatric patients, with a threshold effect
occurring at 20 minutes of cool running water (Figure 4).95

Even delaying the start of cooling, and cooling to only moder-
ate (normothermic) temperature, has still shown benefit, sug-
gesting that acute heat removal is not solely responsible for
the beneficial effect of cooling a burn.86 Abundant evidence
suggests that this effect is due to more than just dissipation of
Figure 4 Dose-response relationship between the duration of cooling and the p
observed between the duration of cooling and the probability of full thickness dep
with running water for lengths of �5 minutes had a significantly reduced probabi
reductions in the 5- to 10-minute (OR 0.3; 95% CI 0.1–1.0; P 5 .04), 11- to 19-m
CI 0.1–0.4; P , .001) groups. Reproduced from Griffin, et al., with permission.95
heat and instead includes alterations of cellular behavior
through multiple mechanisms.95 These mechanisms include
(1) decreasing release of lactate and histamine, (2) stabilizing
thromboxane and prostaglandin levels, (3) slowing local meta-
bolism, (4) altering membrane permeability, (5) inhibiting
kallikrein activity, and (6) changing gene expression in burned
tissues.86,95–97

Burn conversion is the process of progressive damage
extending to initially uninjured tissue surrounding a burn
wound followed by the dynamic process of thermal wound
robability of a full thickness depth of burn. A significant inverse relation is
th. Relative to burns that failed to receive any first aid cooling, those cooled
lity of classification as full thickness, with progressively greater probability
inute (OR 0.3; 95% CI 0.1–0.9; P 5 .03), and �20-minute (OR 0.2; 95%
CI 5 confidence interval; OR 5 odds ratio.
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healing, which occurs over several days to many
weeks.98–100 Wound progression allows an initial partial
thickness injury to convert to a deep partial thickness or
full thickness burn wound because of an expanding
volume of tissue damage.101 Ischemia, inflammation, and
free oxygen radicals play a role, and novel mechanisms
such as autophagy have also been shown to contribute to
burn progression.99 Thermal ablation using high-intensity
focused ultrasound achieved lesion progression and further
evolution to AEF in 2 of 20 animals at w2 weeks (10–14
days). A chronic inflammatory response, triggered by ulcer-
ation caused by high transmural esophageal temperatures,
possibly exaggerated by reflux, was found. Histological
analysis of tissues showed acute injury, healed (fibrotic) in-
termediate recovery, chronic esophagitis, and inflammatory
cell infiltration to all esophageal tissue layers as well as
collateral damage to the nearby vagus nerve.88 Preexisting
esophageal vulnerability (eg, reflux-induced esophagitis)
may influence esophageal lesion formation.102,103 Studies
have found substantial impairment of the periesophageal
vagal plexus after RF ablation, with damage of the plexus
resulting in gastric stasis, impaired pyloric relaxation, and
incompetence of the lower esophageal sphincter, thus pro-
moting esophageal reflux.63
Delayed effects and the influence of cooling
Despite limited mechanistic understanding of the formation
of AEF from an initial thermal insult, understanding of fistula
formation in other conditions is quite advanced and fistula
Figure 5 Pathogenesis of Crohn disease–associated fistulae. After an epithelial barr
thermal injury) several PAMPs, for example, MDP, are able to enter the gut mucosa. B
PAMPs (B) induce the event of EMT. First, an increased expression of TNF is initiated
sionand secretionof IL-13 aswell asofmolecules associatedwithcell invasiveness, suc
of protein expression, favors the transformation of the IECs toward the invasive myofi
Scharl, et al.112EMT5 epithelial-to-mesenchymal transition; IEC5 intestinal epitheli
metalloproteinase; PAMP5 pathogen-associated molecular patterns; TGF-b5 tumo
formation shares factors with thermal injury, inflammation,
and wound repair. Fistulas occur in up to 50% of patients
with Crohn disease,65,104 and thermal, mechanical, or electri-
cal injury can induce a variety of fistulas, typically 1–8 weeks
after initial injury. Examples include gastrocutaneous fis-
tula,105 duodenocutaneous fistula,106 colovesicular fistula,107

colocutaneous fistula,108,109 and laryngeal fistula.110 Fistula
formation requires a transformation in which epithelial cells
develop phenotypic plasticity and lose their epithelial polar-
ization and organization to become characteristically mesen-
chymal.111 This transition involves epithelial cells losing
their characteristic properties (apicobasal polarity and
epithelial-specific cell contacts) and gaining the motility of
mesenchymal cells. Epithelial cells, characterized by strong
intercellular junctions and cell polarity, lose their epithelial
phenotype and acquire a mesenchymal differentiation
featuring reduced cell-cell contacts and a fibroblast-like
morphology and function, permitting these cells to become
migratory, in a process referred to as epithelial-to-
mesenchymal transition (EMT).111 Having undergone
EMT, intestinal epithelial cells penetrate into deeper layers
of the mucosa and the gut wall causing localized tissue dam-
age, formation of a tubelike structure, and finally a connec-
tion to other organs or the body surface (Figure 5).111

The primary factors contributing to EMT include tumor
necrosis factors (tumor necrosis factor a), transforming
growth factors (transforming growth factor b), interleukins
(interleukin 13), and matrix metalloproteinases (matrix met-
alloproteinase 3 [MMP-3] and MMP-9). EMT is triggered by
such events as thermal injury causing an epithelial defect and
ier defect in the gastrointestinal tract (such aswould occur in the esophagus after
oth the process of wound repair (A) and the inflammatory response caused by
(C), resulting in an upregulation of TGF-b production. This triggers the expres-
h asb6-integrin (D). Theenhanced activity ofMMPs, aswell as theupregulation
broblast forms, which finally results in fistula formation (E). Reproduced from
al cell; IL-135 interleukin 13;MDP5muramyl dipeptide;MMP5membrane
r growth factor b; TNF5 tumor necrosis factor.
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is then governed by the actions of these molecular mediators,
which enhance remodeling enzymes such as matrix metallo-
proteinases MMP-3 and MMP-9. EMT then induces gastro-
intestinal epithelial cells to penetrate into deeper tissue layers,
form a tubelike structure, and connect to other organs, with
nuclear expression of the transcription factors snail family
transcriptional repressor 1 (SNAI1, or SNAIL) and snail fam-
ily transcriptional repressor 2 (SNAI2, or SLUG)113 that are
involved in the downregulation of E-cadherin.112 This pro-
cess generally occurs over weeks, and bacterial wall compo-
nents (muramyl dipeptide) may synergize with tumor
necrosis factor to facilitate it.114 This process is also well
described in oncology, where it is implicated in cancer pro-
gression.115 Interestingly, many of these factors are also
implicated in burn wound conversion and fibrosis.116

Coolinghas been shown tomitigate the activityofmanysol-
uble factors, chemokines, enzymes, andmediators that are acti-
vated by tissue heating and are involved in inflammatory,
fibrotic, and fistula remodeling processes (Table 1).86,117–119

The pleiotropic effects of cooling that serve as protective
mechanisms against inflammation, oxidative stress,
apoptosis, and excitotoxicity have also been leveraged for
clinical benefit in numerous areas of medicine, including
neonatology, ophthalmology, and critical care.120–122

Cooling induces the upregulation of skin-protective genes
and downregulation of detrimental tissue remodeling genes,
and this can be seen even when cooling is delayed by 2
hours.85 Gene alterations result from burn injury, and the num-
ber of permutations that can occur are extensive, involving as
many as 2286 genes.97 A large number of inflammatory
markers have been shown to be inhibited by cool-
ing.80,86,93,117–119,123–129 Downregulatory effects are seen on
the expression of MMP-9 mRNA and upregulating effects
on the expression of chemokine (C-X-C motif) ligand
13 (CXCL13), lipopolysaccharide binding protein, and che-
mokine (C-C motif) ligand 6 (CCL6) and chemokine (C-C
motif) ligand 24 (CCL24). These molecules have important
functions in B-cell maturation, reduction in endotoxin load
and improved bacterial opsonization, keratinocyte prolifera-
tion, and collagen synthesis and deposition by fibroblasts.86

Increased vascular permeability is another proposed contrib-
utor to thermal injury progression. Reports from the 1940s
showed that the enhanced vascular permeability resulting
from burns could be reduced with local cooling.84,130,131

Improved burn healing or reduced wound progression has
been shown via inhibition of the increase in permeability of
capillaries in the burned area, limiting edema formation.81–83

Edema formation is inhibited even if cooling is undertaken
up to 30 minutes after burn injury,132 while improved healing
is seen with shorter delays to cooling.80 Biopsies show an
earlier and more rapid rate of growth of epithelial cells, less
tissue necrosis, and less final fibrosis in cooled tissues.93

The fact that even delayed cooling (when tissue temperatures
have long since returned to normal) results in improved out-
comes underscores that favorable effects of cooling are not ex-
plained by heat removal alone.80,86
Patient selection, clinical considerations, and
implementation strategies
Proactive esophageal cooling for the purpose of reducing the
likelihood of ablation-related esophageal injury resulting
from RF cardiac ablation procedures is the only FDA-
cleared protective strategy currently commercially available.
PFA has potential to replace RF ablation for many cardiac
ablation procedures, but while PFA was initially believed
to be inherently safe because of purported cardiac tissue
selectivity and a nonthermal mechanism of action, the
clinical evidence surrounding PFA is still emerging and un-
expected risks are still being identified.19–23,133–144

Proactive esophageal cooling has robust clinical evidence
documenting a reduction in esophageal injury and AEF
formation after RF ablation.54,79 The use of proactive esoph-
ageal cooling has also shown improved workflow as assessed
by reduced procedure time,145 reduced fluoroscopy require-
ments,146 and improved long-term efficacy, presumably
because of the ability to deliver RF energy in the intended
range while applying contiguous lesions.147–149 An
improvement in the continuity of lesions, quantified by the
continuity index defined in the TactiCath� Prospective
Effectiveness Pilot Study (EFFICAS-II), is associated with
improved long-term freedom from arrhythmia.150–152 The
FDA-cleared esophageal cooling device is a closed-loop,
multilumen medical grade silicone tube placed into the
esophagus in a manner analogous to a standard orogastric
tube. The device is connected to an external heat exchanger,
which circulates chilled water to provide heat transfer
(Figure 6). The connector tubing provides flexibility in place-
ment of the heat exchanger, and a central lumen in the device
allows gastric access for suctioning and decompression.
Patient selection
Adopters of proactive esophageal cooling generally use cool-
ing for any patient undergoing RF ablation that may include
the posterior wall of the left atrium, including standard PVI
procedures and ablation of left atrial tachycardias. Since
esophageal location can vary across the left atrium and can
move during the procedure, a priori determination of esoph-
ageal risk remains challenging.153 Some operators will also
include patients in whom ablation involving the coronary si-
nus (CS) is likely, as ablation in the CS is an independent risk
factor for esophageal lesions because of the epicardial loca-
tion close to the posterior left atrial wall. No formal contrain-
dications for esophageal cooling exist, but the device
instructions warn against use in patients with known esoph-
ageal deformity or evidence of esophageal trauma or in pa-
tients known to have ingested acidic or caustic poisons
within the prior 24 hours.
Implementation
The device is generally placed at the time of anesthesia induc-
tion. Centers in the United States typically use general anes-
thesia, whereas many in Europe use conscious or deep



Table 1 Molecular mediators are implicated in the pathophysiology of burn injury progression, fibrosis, and fistula development

Soluble factors,
mediators,
circulating
chemokines,
remodeling
enzymes Action in burns

Action in fistula
formation Action in fibrosis Temperature effects

Effect of
cooling on
activity or
expression

TNF- a Proinflammatory
cytokine

Triggers EMT, onset and
progression of fistula
formation

Induces apoptosis of
fibrotic progenitors

Cooling significantly
reduces activity

TGF-b Worsens scar formation Triggers EMT, onset and
progression of fistula
formation

Induces fibrosis Cooling reduces mRNA
expression

Angiotensin II Possible synergistic
signal to TGF-b in
burn scarring

Unclear actions Expression of genes
related to fibrosis

Lowers body
temperature when
administered
systemically

IL-1 Proinflammatory
cytokine (inhibited
by IL-1ra)

Inhibition alleviates
severe fistulae in
hidradenitis
suppurativa

Profibrotic cytokine
induces apoptosis of
fibrotic progenitors

Downregulated or
unchanged with
cooling

IL-4 Anti-inflammatory
cytokine

Implicated in oronasal
fistula formation

Facilitates muscle
regeneration

Expression levels of IL-
4 anti-inflammatory
cytokines increased

IL-6 Proinflammatory
cytokine associated
with mortality

Induced by TNF-a,
increases
permeability of the
endothelial layer

Triggers cardiac
fibrogenic signaling
cascade

Reduces IL-6
expression

IL-7 Proinflammatory
cytokine

Unclear actions May inhibit high
glucose-induced
renal proximal
tubular fibrosis

Uncertain

IL-8 Enhances neutrophil
transmigration;
proinflammatory
cytokine associated
with ARDS

Putative role in the
pathogenesis of
cryptoglandular anal
fistula

Dominates the
inflammatory profile
in cystic fibrosis

Higher levels may
determine severity
hypoxic ischemia

IL-10 Anti-inflammatory
cytokine, associated
with burn mortality

Impaired IL-10
signaling implicated
in inflammatory
bowel fistulas

Profibrotic cytokine Elevations delayed with
hypothermia

IL-12 Proinflammatory
cytokine stimulates
the production of
TNF-a

Elevated levels linked
to enterocutaneous
fistulas

Induces apoptosis of
fibrotic progenitors

Reduced expression
with hypothermia

IL-13 Anti-inflammatory
cytokine induces
metaplasia

Triggers EMT, onset and
progression of fistula
formation

Effects muscle
regeneration by
resident
mesenchymal
progenitor cells

Expression levels
increased with
hypothermia

IL-17 Proinflammatory
cytokine increased
during burn injuries

Proinflammatory
mediator; key role in
fistula formation in
hidradenitis
suppurativa

Mediator in foreign
body response and
fibrosis

Gene expression levels
significantly
downregulated with
local cryotherapy

Matrix metallo
proteinases
(MMPs): MMP-1,
MMP-3, MMP-9

Upregulated in vascular
inflammation

Activated by EMT,
causing further
tissue damage and
inflammation

Associated with fibrotic
processes underlying
right ventricular
remodeling

Downregulatory effects
on expression
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Table 1 (Continued )

Soluble factors,
mediators,
circulating
chemokines,
remodeling
enzymes Action in burns

Action in fistula
formation Action in fibrosis Temperature effects

Effect of
cooling on
activity or
expression

Histamine Increases wound
edema,
microvascular
permeability

Unclear actions Unclear actions Decreases or prevents
histamine release

Reactive oxygen
species

Induce burn
progression, edema
formation, and
microvascular
permeability

Implicated in
enterocutaneous
fistula development

Associated with
severity of cystic
fibrosis

Reduced with
hypothermia

Both fibrosis and epithelial-to-mesenchymal transition (EMT) are drivers of fistula development after an initial thermal injury, and the soluble mediators of
these processes are also implicated in burn wound conversion, which further facilitates the progression of thermal injury. The activity of many proinflammatory
markers is inhibited by cooling.

ARDS5 acute respiratory distress syndrome; IL-1 through IL-175 interleukin 1 through 17; MMP5matrix metalloproteinase; TGF-b5 tumor growth factor
beta; TNF-a 5 tumor necrosis factor alpha.
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sedation. In cases using esophageal cooling with sedation,
atropine may be given to reduce salivation. If transesopha-
geal echocardiography (TEE) is planned, then TEE is per-
formed and the TEE probe removed before placing the
cooling device. Placement after the creation of a 3-
dimensional (3D) map should be avoided because, as with
any esophageal manipulation, the geometry of the posterior
wall may be changed, especially in patients with low body
mass index. Since anesthesia induction precedes the mapping
and ablation procedure, this is not a common issue and, once
placed, there is generally no need for further adjustment or
manipulation of the cooling device during the procedure.
Cooling can begin immediately, but should begin at least
several minutes before beginning ablation, with the water
temperature set at 4�C. No data exist to specify a duration
for cooling after the completion of ablation, although data
extrapolated from the burn literature suggest additional
benefit of cooling for up to 20 minutes after the final ablation
on the posterior wall.95,154
Efficiency considerations
In most laboratories, the anesthesiologist or certified regis-
tered nurse anesthetist (CRNA) will place the cooling device
but further efficiency has been found with training of labora-
tory staff (such as the electrophysiology nurse) to place the
device, particularly when multiple anesthesia personnel staff
the electrophysiology laboratory. The device requires lubri-
cating before placement, and placement typically takes �3
minutes (similar to a standard orogastric tube).155 Gentle tor-
sion of the device can ease insertion, and observing for kink-
ing in the posterior oropharynx is recommended. Occluding
the outflow of the device to increase stiffness from the in-
crease in water pressure can further enhance the ease of place-
ment. Fluoroscopy or intracardiac echocardiography (ICE)
can be used to determine proper placement and ensure that
the cooling device contacts the entire left atrial posterior
wall. Additional radiopacity is provided by some operators
via instillation of 5 mL of oral contrast medium (eg, diatri-
zoate [Gastrografin]), or placement of a guidewire, into the
central (gastric) lumen of the device. In cases using no fluo-
roscopy and no ICE, visualization of the cooling device can
be obtained on the 3D electroanatomic map by passing an
SL-1 (0.032 in, 150 cm length) guidewire (Abbott, Chicago,
IL) through the central lumen of the cooling device.156 The
guidewire is then pinned via a pin block to the cardiac map-
ping system (EnSite, Abbott, St. Paul, MN), and a unipolar
configuration is used to visualize the guidewire tip on the
map passing below the CS. The minimal depth of the device
should be such that the radiopaque tip (Figure 7A) is just
below the diaphragm, but placing it 8 - 12 cm further below
the diaphragm affords additional safety against inadvertent
retraction. There is no depth limit, as the design is intended
for placement as far as the pyloric antrum. Some operators
use the diagnostic CS catheter as a landmark, confirming
tip placement below a properly placed CS catheter. On
ICE, the device can be seen clearly after clocking the ICE
catheter posteriorly to visualize the esophagus (Figure 7B).

The presence of active water flow through the device can
be confirmed by visualizing the on-screen, side-mounted, or
in-line flow indicators. Securement of the device should be
ensured, with the connecting hoses placed and secured in
such a manner (such as under the arm board) to prevent inad-
vertent tension on the device resulting in dislodgment.
Avoiding contact of cool surfaces with patient skin can
improve patient comfort. Patient temperature is typically
measured via axillary placement of a temperature probe,
but it is important to remember that this temperature is
commonly up to 2�C colder than the core temperature.157

As such, adding this difference is necessary to obtain the
actual core temperature when using an axillary measurement.
Because induction of general anesthesia typically reduces



Figure 6 Example heat exchanger, connector tubing, and esophageal cooling device.
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patient temperature by 0.5�C–1.5�C,157 forced-air warming
is often used for patients in the electrophysiology laboratory.
The addition of cooling for the duration of left atrial ablation
procedures does not typically result in significant decreases
in patient temperature, but for longer procedures, or for pa-
tients with low body mass index, ensuring properly placed
forced-air warming blankets or providing head covering
may be advantageous. Recent randomized controlled trial
data have found no detriment to cooler surgical patient tem-
peratures than traditionally targeted,158 and consequently,
operative patient temperature guidelines are expected to be
revised. Some operators will annotate the 3D map with the
esophageal cooling device location. Optimal practice is to
reconfirm proper cooling device location before ablation
application near the posterior wall. Cooling can be continued
after RF applications to further reduce inflammation while
the patient is prepared for awakening, sheath removal, and
extubation. Some operators prioritize posterior wall lesions
early in the case to shorten duration of cooling at the conclu-
sion of the case, which can further improve workflow effi-
ciency. Once ready for removal, attaching suction to the
device gastric lumen may help to evacuate any residual
gastric contents.
Figure 7 A: Visualization of the proactive esophageal cooling device (ensoETM
below the diaphragm. B: Visualization of the proactive esophageal cooling device (
rior and posterior borders of the device in the esophagus.
Troubleshooting
Difficulties in placement can generally be addressed by optimal
positioning of the patient and placing a generous amount of
lubrication on the distal 15–20 cm of the device. Extending
the neck to straighten the oropharyngeal axis will reduce the
angle of curvature required to pass through on initial entry
into the esophagus. A jaw thrust can further open this passage.
External flow obstruction (such as accidental kinking of the
connector hose anywhere along the path or the device at the
head of the bed) will trigger an audible alarm, which should
be investigated immediately. Likewise, inadequate water levels
in the heat exchanger will trigger audible alarms; however, a
low water level alarm during use should prompt investigation
to ensure the absence of any device leak. Water levels should
be checked routinely, and the heat exchanger should be filled
with sterile water at regular intervals.
Conclusion
Esophageal thermal injury caused by collateral spread of abla-
tion energy intended for the left atriummay trigger an evolving
cellular transition that can progress to AEF formation over the
course of days to weeks. Temperature monitoring and
, Attune Medical, Chicago, IL) on fluoroscopy, showing the radiopaque tip
ensoETM, Attune Medical) on intracardiac echocardiography, showing ante-
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