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Direct design of complex functional materials would revolutionize technologies ranging
from printable organs to novel clean energy devices. However, even incremental steps
toward designing functional materials have proven challenging. If the material is
constructed from highly complex components, the design space of materials properties
rapidly becomes too computationally expensive to search. On the other hand, very
simple components such as uniform spherical particles are not powerful enough to
capture rich functional behavior. Here, we introduce a differentiable materials design
model with components that are simple enough to design yet powerful enough to
capture complex materials properties: rigid bodies composed of spherical particles
with directional interactions (patchy particles). We showcase the method with self-
assembly designs ranging from open lattices to self-limiting clusters, all of which are
notoriously challenging design goals to achieve using purely isotropic particles. By
directly optimizing over the location and interaction of the patches on patchy particles
using gradient descent, we dramatically reduce the computation time for finding the
optimal building blocks.

programmable assembly | automatic differentiation | self-assembly

Significant efforts have been made toward designing synthetic materials that rival the
complexity we observe in biological systems (1–7). However, many of the synthetic
systems studied suffer from one of two fatal flaws: Either the system is too simple
to be able to replicate complex behaviors or the system is too complex to be easily
designable. By combining the principles that enable machine learning methods to
efficiently navigate large parameter spaces with physics- and materials science–informed
models, we introduce a system that both complex enough to capture desirable functional
behavior and is amenable to inverse design.

One major line of inquiry toward designing complex functional materials focuses on
materials with uniform spherical particles as components. While this approach has led
to promising advances (8–12), the absence of directional interactions significantly limits
the design space. In materials with spherical components, designed interactions either
are too complicated to be experimentally realizable (8) or necessitate that every particle
interact uniquely with every other particle in the system, which cannot be physically
instantiated at scale (13). Conversely, a rich literature of work (13–16) has been conducted
by running forward simulations of systems with highly complex components, such as
proteins. The complexity of the components means individual simulations are extremely
computationally intensive, making inverse design approaches untenable. Moreover, the
design space for these systems is too vast to search effectively.

Breaking rotational symmetry of the component particles vastly increases the potential
for materials’ designability without relying on having a large number of particle types.
Extensive research has been done on anisotropic particles, ranging from mapping out
phase diagrams for hard particles with nontrivial shapes (17) to designing patchy particles
to self-assemble open lattices such as cubic diamond structures (18, 19). The design space
for anisotropic particles is immense (20), making brute force approaches to searching for
desirable properties unsustainable for modern materials design. However, the dramatic
advances brought about by the machine learning community have recently made it
possible to search vast design landscapes for regions with desirable behavior.

We introduce an inverse design method for anisotropic particles that is both physics-
based and fully differentiable. Our work has parallels to previous work in that we design
interactions that lead to target self-assembled structures (8–12, 21). However, many of
these approaches lead to highly complex interactions (8, 13, 21) which are inaccessible
experimentally. In contrast, we move the complexity from the interactions to the
component particle geometries, which may lead to more experimentally realizable designs.
There have been encouraging initial efforts to inverse-design materials with anisotropic
components, but existing methods are either highly system-dependent (22, 23), require
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HI 96822.
3To whom correspondence may be addressed. Email:
brenner@seas.harvard.edu.

This article contains supporting information online
at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2311891121/-/DCSupplemental.

Published June 24, 2024.

PNAS 2024 Vol. 121 No. 27 e2311891121 https://doi.org/10.1073/pnas.2311891121 1 of 6

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2311891121&domain=pdf&date_stamp=2024-06-21
https://orcid.org/0000-0002-6374-3819
https://orcid.org/0000-0002-1881-7102
https://orcid.org/0000-0003-1909-9226
https://orcid.org/0000-0002-5673-7947
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:brenner@seas.harvard.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2311891121/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2311891121/-/DCSupplemental


large training datasets for each system of interest (24, 25), or
necessitate that the complex system can be captured by a much
simpler, lower-dimensional representation (26, 27). Our method
is system independent, does not rely on large amounts of training
data, and can capture complex systems that do not exhibit lower
dimensional representations.

Here, we introduce a framework that capitalizes on the ad-
vances wrought by machine learning to broadly enable inverse de-
sign of complex, anisotropic systems. This framework end-to end
differentiable and is system-independent within JAX-MD (28),
a Molecular Dynamics (MD) engine with automatic differen-
tiation (AD) (29) enabled. AD is the workhorse underlying the
explosion in productivity in the machine learning community in
recent decades. We introduce the ability to directly optimize over
particle geometry and anisotropic interactions. We demonstrate
the method specifically on patchy particles, a model system that
is simple enough to design, yet rich enough to capture features
such as directional interactions. In this paper, we first discuss
the implementation of the method, and then, we demonstrate
the versatility of the platform by showcasing three examples:
i) stabilization of a Kagome lattice, ii) self-limiting 2D ring
assembly, and iii) stabilization of 3D finite clusters. We include a
python notebook (30) that demonstrates how to perform the op-
timization for the 3D finite cluster case. Direct gradient descent
of building block properties will enable researchers to efficiently
design novel materials with targeted properties and functions.

Method
MD simulations are a powerful tool for understanding micro- and
nanoscale systems. When combined with inverse design methods,
MD simulations can be used to design highly complex structures
and materials properties, ranging from intricate crystal structures
(11, 22, 31), finite clusters (24), phase transitions (32), and
kinetics (33) in self-assembled systems.

Existing methods that combine MD with automatic dif-
ferentiation are limited to simulations of isotropic particles
(33), which significantly limits the design space of complex
materials functions. However, many standard MD libraries, such
as Highly Optimized Object-oriented Many-particle Dynamics
(HOOMD)-blue (34) and Large-scale Atomic/Molecular Mas-
sively Parallel Simulator (LAMMPS) (35), offer support for simu-
lations of nonisotropic objects called rigid bodies. Rigid bodies in
MD are generally defined as a system of spheres with no internal
degrees of freedom, which can be used to simulate building blocks
that have arbitrary shape and directional interactions.

Here, we build on an existing software package, JAX-MD (28),
that enables fully differentiable MD simulations. The original
release of JAX-MD did not support building blocks or integrators
with rotational degrees of freedom. Here, we enable both simu-
lation and differentiation of systems with anisotropic particles.

To simulate and optimize over anisotropic particles, we
extended all the available integrators in JAX-MD to account
for rotational degrees of freedom, following the algorithm
introduced in ref. 36. The technical details of threading the
gradients through simulations of anisotropic particles, in addition
to a detailed discussion of other features of the implementation,
can be found in SI Appendix.

Our prototypical optimization procedure for inverse design
with MD begins with specifying all the variables needed for a
standard forward simulation. These variables include the system
information, such as the number of particles, pair potential,
and box size, as well as the integrator information, such as
the integrator type, temperature, and step size. While any of
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Fig. 1. (A) Optimizing patchy particle interactions. The optimization param-
eters (shown on the Top) are the patch locations and the interaction matrix of
patch strengths. These parameters are used to run a forward simulation, and
a loss function is computed. We then take the gradient of the loss function
with respect to the optimization parameters and update the parameters
accordingly. The loss functions vary for different optimization targets. (B)
Gradient of loss function respect to parameters for optimization. The pseudo-
code demonstrates how the gradient is computed based on the parameters
for optimization. (C) Extrapolation to more performant MD engines. We test
optimal parameters in HOOMD-blue, showing both that optimal parameters
are valid across different MD engines and enabling rapid testing for longer
simulations with more particles.

these variables can be optimized, we focus on examples where we
optimize over only the pair potentials and the particle geometries.
We parameterize the pair potential by a matrix of interaction
strengths, and we parameterize the particle geometries by the
locations of patches on central particles (Fig. 1A).

To compute gradients of patch locations (�i,�i) and inter-
action strengths (Eij), we first define a forward MD simulation
function (Fig. 1B) that takes (�i,�i, Eij) as input parameters and
returns the position data of every particle in the simulation. We
then use the position data as input for our loss function, where we
define criteria to evaluate whether the system is close to our tar-
geted behavior. Finally, we take the gradient of the loss function
with respect to (�i,�i, Eij), and update (�i,�i, Eij) based on the
gradient values for the next iteration. We use the Adam optimizer
to update our parameters based on the gradient computation.

As a final step, shown in Fig. 1C, we use our optimal
parameters to run forward simulations in a more performant MD
engine. These forward simulations are run for longer timescales
and with more particles, demonstrating validity of our optimal
parameters across different MD engines and beyond the time- and
length-scale of the simulations we optimize over. This iterative
procedure shows one possible means of bringing inverse-design
into traditional MD simulation.

We note that this optimization procedure does not rely on
any black-box methods: All the functions we differentiate are
physics-based simulations. Because every step of the optimization
function, from MD simulation to loss function evaluation, is
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fully differentiable, we are able to compute gradients of arbitrary
parameters.

Results
We demonstrate the optimization and design of patchy particles.
These particles consist of a central particle plus a set of patches
rigidly attached to the central particle (Fig. 1A). The central
particle describes the general shape of the patchy particle, and the
set of patches governs the directional interaction of the patchy
particle. Because we have enabled end-to-end differentiable
simulations of anisotropic particles, we can directly optimize
over the locations of the patches and the interaction matrices
between patches. As a result, the rich design space available to
patchy particles becomes feasible to search.

Here, we showcase three examples: i) stabilization of a Kagome
lattice, ii) self-limiting 2D ring assembly, and iii) stabilization
of 3D finite clusters. Designing parameters for any of these
three examples using isotropic particles is highly challenging and
requires complex pair potentials. By introducing anisotropy, we
demonstrate robust design of each of these systems with simple
interaction potentials.

In each example discussed, the patches interact via a Morse
potential, and the central particles interact via a soft sphere
potential or Weeks-Chandler-Andersen (WCA) potential.

The three potentials are as follows:

Morse Potential:

U (r) = "(1− e−�(r−r0))2, [1]

Soft Sphere Potential:

U (r) = "
(�
r

)�
, [2]

WCA Potential:

U (r) = "
[(�

r

)12
−

(�
r

)6
]

+ ". [3]

These interaction potentials are convenient for our use case
but can be readily changed for different applications. In each
optimization example, we specify a loss function describing our
targeted materials properties. This loss function must itself be
fully differentiable and thus cannot rely on discrete calculations.

Stabilizing a Kagome Lattice. The Kagome lattice (37) is an
open lattice structure (Figs. 1 and 2B) with a broad array
of potential materials applications (38, 39). Self-assembling a
Kagome lattice from isotropic potentials requires complicated
potential landscapes with both attractive and repulsive wells (40),
which are rarely possible to instantiate experimentally. One way
to simplify the assembly is to introduce anisotropy. Inspired by
the experimental realization of a Kagome lattice using Triblock
Janus spheres (41), we propose a general patchy particle model
to optimize patch locations that stabilize a Kagome lattice, using
a simple Morse potential.

Each component in the model consists of a central particle
and six patches that are rigidly attached to the central particle
(Fig. 2B). The central particles interact with one another via a
soft sphere potential, and the patches each interact via a Morse
potential. We keep the Morse interactions fixed and optimize
over the locations of the patches on the central particle.

A

B

Fig. 2. Stabilizing a kagome lattice. (A) Stability of a system initialized in a
kagome lattice configuration as a function of time. The purple (Top) results
use our optimized parameters, while the navy (Bottom) results use random
initial parameters. The optimization is initialized with random parameters. (B)
Simulations run in HOOMD-blue demonstrating that the optimal parameters
(Left) stabilize the kagome lattice, while random parameters (Right) cause the
lattice to melt.

The optimization procedure follows the structure outlined in
the Method section. We initialize the system in a Kagome lattice
configuration with the orientations of the particles randomized.
We then run 200 replicate MD simulations. The simulations
are run with for 40,000 steps with a timestep (dt) of 1e−3 and
100 particles, at a temperature (kT ) of 0.1 and an area fraction
of 0.3 with periodic boundary conditions. We then measure the
average loss function across the replicates. Because we initialize
in the lattice configuration, the loss function for the optimization
is simply the distance of the particles from their initial position:
If the Kagome lattice is stable, the lattice will not melt, and the
positions of the particles will remain constant, up to vibrational
motion. We compute the gradient of the average loss function
with respect to the positions of the patches on the central particle.
Finally, we update the positions of the patches based on the value
of the gradient using the Adam optimizer available in Autograd
and XLA (Accelerated Linear Algebra) (JAX). We repeat this
procedure for 100 optimization steps with a learning rate of 0.1,
and then starting from the optimal value, we run another 100
optimization steps with a learning rate of 0.05 and finally another
100 steps with a learning rate of 0.01.

At the end of the JAX-based optimization procedure, we take
the optimal parameters to run a longer simulation testing their
stability using HOOMD-blue (34, 42, 43). Fig. 2A shows the 6
order parameter measured using Freud (44) for designed building
blocks and randomly generated ones. We can see clearly that the
designed building blocks stabilize the Kagome lattice and the
parameters are transferable across different MD engines.

Self-Limiting Rings. Despite the fact that natural systems rely
on self-limited assembly, synthetically developing self-limiting
structures remains a significant challenge (5). Using our model,
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Fig. 3. Assembly of self-limiting rings. (A) Optimization results for formation
of square rings. The x-axis shows the optimization steps. The y-axis shows
the patch opening angle on the Left (navy), and the loss function on the Right
(purple). Over the course of the optimization, the patch opening angle tends
toward a value slightly greater than 100◦. (B) Assembly yields computed from
forward MD simulations run in HOOMD-blue for the patchy particles designed
to yield triangles (green) and squares (orange). The yield of each ring design
peaks at the desired ring size, demonstrating that the design procedure was
successful. (C) One example end result of assembling squares in a bath of
particles. While some incorrect products (primarily larger rings) are observed,
most of the particles are in square configurations.

we design self-limited rings of varying sizes that self-assemble in
a bath of components.

To design self-limiting rings, we use a patchy particle model
that consists of a central particle and two patches. The central
particles interact via a soft sphere potential Eq. 2, and the patches
interact via a Morse potential Eq. 1. We optimize over both the
location of the patches and the strength of the patch interactions.
Each patch is allowed to vary independently. We initialize the
patch positions and strengths randomly.

The optimization procedure again follows the structure listed
in Method. Here, however, because we are interested in self-
assembly rather than stabilization, we initialize the simulation
with particles with random initial positions and orientations.

To compute the loss for this calculation, we take the distance
between each particle and its M nearest neighbors (M = 3 for
square rings because squares consist of four particles, etc), and
compare those distances to a reference structure. The reference
structure is a perfectly assembled ring. We optimize over both
the positions and the strengths of interactions of the patches.
We compute the average loss over 128 replicate simulations that
each run for 40,000 steps with a dt of 1e−3, at a temperature
(kT ) of 1.0 and an area fraction of 0.2. To reduce computational
cost, we optimize over only the last 1,000 steps of the simulation.
Despite this approximation, the gradients are meaningful enough
to converge to optimal parameters.

Our model rapidly converges to a set of parameters that con-
sistently forms independent rings of the specified size (Fig. 3A).
Evolution of interactions between patches during optimization
is included in SI Appendix. While we do observe occasional

malformed structures, we do not observe the formation of
any extended structures in our system. We have thus success-
fully captured self-limiting behavior with differentiable patchy
particles.

While one would naively assume that the optimal patch
opening angle to form 4-component square rings would be 90◦,
we find that the optimal opening angle is significantly wider, as
shown in Fig. 3. Our optimal results demonstrate a higher yield
of square rings than the naive guess, as can be seen in Fig. 3, as
well as in SI Appendix.

We hypothesized that the yield of squares is higher for a wider
opening angle because it prevents the formation of triangles.
To test this hypothesis, we performed two measurements. First,
we measured the yield of triangles, squares, and pentagons in
the system of particles designed to form squares. The results are
given in Fig. 3 and in SI Appendix. We indeed observe that the
formation of triangles is significantly suppressed for the designed
parameters relative to the naive 90-degree guess.

Self-Limiting 3D Clusters. While our 2D examples were suc-
cessful, working with three-dimensional structures often poses
different challenges. Inspired by virus shells, we demonstrate
the stabilization of the simplest nontrivial platonic solid: the
octahedron (Fig. 4 A, ii). We leverage the nonisotropic inter-
actions offered by patchy particles to find the patch positions
and interaction strengths that consistently stabilize octahedral
structures.

We begin with the model proposed by Long and Ferguson
(24), consisting of two layers of patches in concentric circles
(Fig. 4 A, i). We optimize over the positions of these circles of
patches while fixing the interaction strength to be consistent with
ref. 24. Critically, though ref. 24 required mapping out regions
of the free energy landscape to achieve assembly of clusters, we
are able to recover features similar to their results with no explicit
measurement of the free energies.

Based on the simulation details in ref. 24, we adapted the
model to the JAX-MD simulation environment. We use a WCA
potential Eq. 3 for the center particle with � = 5.0 and
" = 1.0 and a Morse potential for the patches with " = 4.0 and
r0 = 0.0. We simulate using a Langevin integrator with  = 5.0,
dt = 1e− 4, kT = 0.8, and a number density of 0.05. Despite
the modifications to the simulation parameters, the energy scale
and dynamics of our system closely follow those described in
ref. 24.

Our optimization procedure for stabilizing 3D clusters closely
mirrors our method in two dimensions, with minor modifica-
tions. We note that the self-assembly process for finite 3D clusters
is considerably more complex from both thermodynamic and
simulation perspectives. There are far more competing structures,
and the system takes much longer to equilibrate. We mitigate
these challenges by initializing our systems with six patchy
particles, each consisting of one center particle and 20 patches,
in a perfect octahedron.

We again use a loss function that consists of computing nearest
neighbor distances relative to those of a reference structure.
In this case, the reference structure is the correctly formed
octahedron. For every optimization step, we run one simulation
for 200,000 steps and compute the gradient of the loss function
to update patch locations. The length of the simulation is
determined by analyzing the time needed for to self-assemble
a partial cluster (see SI Appendix for details) and the number of
replicates per optimization step is decided by gradient magnitude.
We unexpectedly observed that using Langevin dynamics over
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Fig. 4. Stabilization of octahedral cluster. (A) (i) patchy particle model used
to optimize for octahedral cluster. �1 and �2 determine the locations of
the two rings of patches, where each ring has A-A type attractions. (ii)
sample octahedral cluster (iii) patchy particle evolution from the beginning
to the end of an optimization run. (B) Ensemble of optimization results for
stabilization of an octahedral cluster. The x-axis shows the optimization steps.
The y-axis shows the patch opening angle on the Bottom plot (navy), and the
loss function on the Top plot (purple). The dotted lines show the optimized
parameters from ref. 24. Over the course of the optimization, the two patch
angles converge to the same value and fall into the range of the literature
optimized values. The set of independent optimization runs all converge to
the same optimal patch angles. 3D particles and trajectories are rendered by
INJAVIS (48).

Nosé-Hoover significantly reduces variation in the gradients. The
whole optimization procedure consists of 300 optimization steps
with three learning rates [0.1, 0.05, 0.01] respectively using the
Adam optimizer.

We initialize the optimization with randomly generated patch
angle parameters (see Fig. 4 A, iii as an example). With these
random parameter values, the octahedron is not stable. This can
be seen in the early values of the loss function: The loss at the
outset of the optimization is both large and highly variable. As the
optimization proceeds, the patch positions converge and the loss
decreases. Ultimately, the optimization converges to parameters
that reliably stabilize the three-dimensional cluster, as shown
in Fig 4B. We performed four independent optimizations for
cluster stabilization, and for all the runs where the loss function
converged, the patch locations converged to the same value also
(see SI Appendix for details).

Because we optimize for stabilization rather than assembly,
our results deviate slightly from ref. 24. In ref. 24, the optimal
parameters for octahedra assembly is [42.0◦, 53.7◦], while our
optimal parameters for octahedra stabilization is [45.3◦, 46.0◦]
(see ref. 51 for simulation data). We conclude that having
two rings at similar locations is more favorable than having
separated rings for the case of stabilization and validate this
conclusion with forward simulations of systems with each set
of parameters. Indeed, our optimal parameters yielded a lower
loss for stabilization than those in ref. 24 (see SI Appendix for

details). This may be alternatively explained by a difference in
the two models: Our patches have no volume of their own.

Despite these differences, our optimal ring positions fall
between the two found in ref. 24. The optimal location we find
is closer to the inner ring in ref. 24, which may indicate that the
inner ring is a more vital feature in stabilization. Additionally,
we ran forward self-assembly simulations using the two sets of
parameters using HOOMD-blue to test their ability to self-
assemble, and the JAX-MD optimized parameters lead to a
faster decrease of our loss function (see SI Appendix for more
details).

Critically, we were able to achieve these results without
mapping the free energy landscape. This method not only
provides a straightforward way to search the design space of
anisotropic particles for properties of interest but also showcase
how a small difference in model choice could lead to different
optimal final results. This fast feedback loop for particle design
could be instrumental in mapping to experimental systems.

Discussion
We have introduced an end-to-end differentiable model system
capable of capturing rich functional behavior in materials
while still being simple enough to directly design. We have
demonstrated the model by designing stabilization of an open
lattice structure, self-limiting assembly in 2D, and stabilization
of 3D finite clusters.

In each case, we have made use of only one particle type.
Previous efforts to, e.g., stabilize or assemble octahedral structures
have relied on having N different particle types to assemble
a structure of N particles (33, 45). Though our individual
components are more complex, the need to construct only one
particle type renders our model system possible to manufacture
at scale.

Though we believe our model offers significant potential for
design of novel functional materials, its design potential is limited
by requiring differentiable loss functions and computational
expense. To compute meaningful gradients based on the loss
function, we can only use loss functions that do not rely
on a sharp radial or nearest-neighbor cutoff. This limitation
makes using traditional well-performed loss functions (order
parameters), such as the local bond order parameter (46), less
feasible and increases the difficulty of designing self-limiting
structures, where one of the most straightforward loss functions
is to count the number of particles in a cluster. The limitation
on loss functions is both a challenge and an opportunity.
With more machine learning techniques being incorporated
in materials design, we need to rethink how we describe
materials structures and properties and come up with new
robust and accurate descriptors that fit the inverse-design method
at hand.

On the side of computational expense, our method is limited
mostly by Graphics Processing Unit (GPU) memory. Large
systems of particles yield highly memory-intensive gradient
computations, so smaller systems or behaviors that are well
described by local structure are better suited to the model. The
memory usage for a particular optimization run is decided by the
combination of system size (N ), run timesteps (rs), and batch
size (b). For a GPU with 32 Gb of memory, we can run a
simulation of N × rs×b ≤ 108. The limitation can be mitigated
in a few ways: run on a GPU with higher memory, distribute
batch sizes on multiple GPUs, and distribute a single big system
on multiple GPUs. Currently, there are GPUs that have higher
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memory capacity, and JAX-MD already allows distributing batch
sizes on multiple GPUs. We are actively working on parallelizing
a single system on multiple GPUs to reduce the memory
limitation.

We have only begun to explore the range of behaviors available
to this model. One possible extension of our work on self-
limited structures is to learn the rules of assembly for larger,
multi-component virus-like particles, biomimetic shells that have
the potential to be used for drug delivery. Additionally, while
we made use of zero-width patches, if we instead considered
patches that were physical particles, we could explore the realm
of colloidal molecules. These structures have been instantiated
experimentally, but the design space of colloidal molecules is vast
and underexplored (6, 20, 47).

This model is the right paradigm to reach the longstanding
goal of directly designing for functional behavior by optimizing
small, simple components.

Data, Materials, and Software Availability. Simulation output data have
been deposited in https://github.com/brennergroup/patchy_particle_data (51)
(https://doi.org/10.5281/zenodo.10051842) (52). All other data are included in
the manuscript and/or SI Appendix.
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