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Abstract

Segmentation of anatomical regions of interest such as vessels or small lesions in medical images 

is still a difficult problem that is often tackled with manual input by an expert. One of the major 

challenges for this task is that the appearance of foreground (positive) regions can be similar 

to background (negative) regions. As a result, many automatic segmentation algorithms tend to 

exhibit asymmetric errors, typically producing more false positives than false negatives. In this 

paper, we aim to leverage this asymmetry and train a diverse ensemble of models with very high 

recall, while sacrificing their precision. Our core idea is straightforward: A diverse ensemble of 

low precision and high recall models are likely to make different false positive errors (classifying 

background as foreground in different parts of the image), but the true positives will tend to be 

consistent. Thus, in aggregate the false positive errors will cancel out, yielding high performance 

for the ensemble. Our strategy is general and can be applied with any segmentation model. In 

three different applications (carotid artery segmentation in a neck CT angiography, myocardium 

segmentation in a cardiovascular MRI and multiple sclerosis lesion segmentation in a brain 

MRI), we show how the proposed approach can significantly boost the performance of a baseline 

segmentation method.
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1. Introduction

Deep learning techniques, such as the U-Net [20], produce most state-of-the-art biomedical 

image segmentation tools. However, delineating a relatively small region of interest in a 

biomedical image (such as a small vessel or lesion) is a challenging problem that current 

segmentation algorithms still struggle with. In these applications, one of the main problems 

is that there are different anatomic structures present in the images with similar shapes 

and intensity values to the foreground structure(s), making it difficult to distinguish them 

from each other [23]. Those intrinsically hard segmentation tasks are considered challenging 

even for human experts. One such task is the localization of the internal carotid artery in 

computed tomography angiography (CTA) scans of the neck. As shown in Figure 1, there 

are no features that separate the internal and external carotid arteries in the CTA appearance 

other than their relative position[18]. Learning these features, particularly with limited data, 

can be challenging for convolutional neural networks.

In this paper, we propose an easy-to-use novel ensemble learning strategy to deal with 

the challenges we mention above. Ensemble learning is an effective general-purpose 

machine learning technique that combines predictions of individual models to achieve better 

performance. In deep learning, it often involves ensembling of several neural networks 

trained separately with random initialization [19, 16]. It has also been used to calibrate 

the predictive confidence in classification models, particularly when the individual model 

is over-confident as in the case of modern deep learning models [12]. In problem settings 

where it is more likely to make low precision predictions such as nodule detection, ensemble 

learning has been used to reduce the false positive rate [24, 13, 4].

Ensemble learning has previously been used for binary segmentation, where multiple 

probabilistic models are combined, for example by weighted averaging, and the final binary 

output is computed by thresholding the weighted average at 0.5 [9, 26]. The performance 

of a regular ensemble model depends on both the accuracy of the individual segmenters and 

the diversity among them [11, 31]. Previous works using ensembling for image segmentation 

mainly focus on having diverse base segmenters while maintaining individual segmenter 

accuracy [8, 14]. In this conventional ensemble segmentation framework, the diverse errors 

are often distributed between foreground and background pixels.

In this paper, we present a different take on ensembling for binary image segmentation. Our 

approach is to create an ensemble of models that each exhibit low precision (specificity) but 

very high recall (sensitivity). These individual models are also likely to have relatively low 

accuracy due to over-segmentation. We achieve this by altering widely used loss functions in 

a manner that tolerates false positives (FP) while keeping the false negative (FN) rate very 

low. During training of models in an ensemble, the relative weights of FP vs. FN predictions 

in each model are also selected randomly to promote diversity among them. In this way, 

each model will produce segmentation results that largely cover the foreground pixels, while 

possibly making different mistakes in background regions. These weak segmenters have 

high agreement on foreground pixels and low agreement on the predictions for background 

pixels. Compared to other ensembling strategies, our method thus does not focus on getting 
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accurate base segmenters, but rather diverse models with high recall. We use two popular 

and easy-to-implement strategies to create the ensemble: bagging and random initialization. 

Each model is trained using a random subset of data and all parameters are randomly 

initialized to maximize the model diversity.

The proposed approach is general and can be used in a wide range of segmentation 

applications with a variety of models. We present three different experiments. In the 

first one, we consider the challenging problem of segmenting the internal carotid artery 

in a neck CTA scan. The second experiment deals with myocardium segmentation in a 

cardiovascular MRI. In the third experiment, we test our method on multiple sclerosis 

lesion segmentation in a brain MRI. Our results demonstrate that the proposed ensembling 

technique can substantially boost the performance of a baseline segmentation method in all 

of our experimental settings.

2. Methods

Our proposed method uses weak segmenters with low accuracy and specificity to 

collectively make predictions. Although individual models are prone to over segment the 

image, they are capable of capturing most of the true positive pixels. During the final 

prediction, an almost unanimous agreement is required to classify a pixel as the foreground 

in order to eliminate the false positive predictions made by each model. The key is for all 

models in the ensemble to have a high amount of overlap in the true positive parts and 

low overlap in the false positive predictions. We can achieve this by modifying the loss 

function to put more weight on false negative than false positive predictions, and use a 

random weight for each model in the ensemble. We will show in section 2.3 that this simple 

modification can encourage diverse false positive errors.

Our ensemble approach is different from existing ensemble methods, which usually combine 

several high accuracy models and use majority voting for the final prediction.

2.1. Supervised Learning Based Segmentation

For a binary image segmentation problem, conditioned on an observed (vectorized) image 

x ∈ ℝN with N pixels (or voxels), the objective is to learn the true posterior distribution 

p y ∣ x  where y ∈ {0, 1 N; and 0 and 1 stand for background or foreground, respectively.

Given some training data, xi, yi , supervised deep learning techniques attempt to capture 

p y ∣ x  with a neural network (e.g. a U-Net architecture) that is parameterized with θ and 

computes a pixel-wise probabilistic (e.g., softmax) output f x, θ , which can be considered 

to approximate the true posterior, of say, each pixel being foreground. So fj x, θ  models 

p yj = 1 ∣ x , where the superscript indicates the j’th pixel. Loss functions widely used to 

train these neural networks include Dice, cross-entropy, and their variants. The probabilistic 

Dice loss quantifies the overlap of foreground pixels:
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LDice(y, f(x, θ)) = 1 −
2 j = 1

N yjfj

j = 1
N yj + j = 1

N fj

(1)

Cross-entropy loss, on the other hand, is defined as:

LCE(y, f(x, θ)) = ∑
j = 1

N
− yj log(fj)

− (1 − yj)log((1 − fj))

(2)

Training a segmentation model, therefore, involves finding the model parameters θ that 

minimize the adopted loss function on the training data.

2.2. Ensemble of Segmentation Models

One can execute the aforementioned training K times using the loss functions defined above 

to obtain K different parameter solutions θ1, …, θK . Each of these training sessions can 

rely on slightly different training data as in the case of bagging [2] or different random 

initializations [12]. Given an ensemble of models, the classical approach is to average the 

individual predictive probabilities, which would be considered as a better approximation of 

the true posterior:

pensemble(yj = 1 ∣ x) = 1
K ∑

k = 1

K
fj(x, θk) .

(3)

The ensemble probabilistic prediction is usually thresholded with 0.5 to obtain a binary 

segmentation. In the remainder of the paper, we refer to this approach as the baseline 
ensembling method.

2.3. Ensembling Low Precision Models

In this paper, we propose an ensemble learning strategy that combines diverse models with 

low precision but high recall. Since each model will have a relatively high recall, each model 

will label the ground truth foreground pixels largely correctly. On the other hand, there will 

be many false positives due to the low precision of each model. If the models are diverse 

enough, these false positives will largely be very different and thus can cancel out when 

averaged.

To enforce all models within the ensemble to have high recall, we experimented with two 

different loss functions: Tversky [22] and balanced cross-entropy loss (BCE) [27], which 

are generalizations of the classical Dice and cross-entropy loss functions mentioned above. 
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These loss functions, defined below, have a hyper-parameter that gives the user the control to 

adopt a different operating point on the precision/recall trade-off.

LTv(y, f) = 1 − j = 1
N yjfj

j = 1
N yjfj + βyj 1 − fj + (1 − β) 1 − yj fj

(4)

LBCE(y, f) = ∑
j = 1

N
− βyj log(fj)

− (1 − β)(1 − yj)log((1 − fj))

(5)

Note β ∈ 0, 1) is a hyper-parameter and plays a similar role for both loss functions. When 

β = 0.5, Tversky loss becomes equivalent to Dice, and BCE is the same as regular cross-

entropy. For higher values of β, these loss functions will penalize false negatives (pixels 

with yj = 1 and fj < 0.5) more than false positives (pixels with yj = 0 and fj > 0.5). E.g., for 

β > 0.9, the false negative rates will be kept low (such that the recall rate is greater than 90%, 

for instance) while producing many false positives, yielding low precision. One can achieve 

the opposite effect of high precision but low recall with low values of β.

The idea we are promoting in this paper is to use the Tversky or BCE loss with a relatively 

high β in training individual models that make up an ensemble. We believe that other loss 

functions that can be tuned to control the precision/recall trade-off should also work for 

our purpose. The comparison between using different losses need to be further explored. 

In our experiments, when training each model, we randomly choose a value between [0.9, 

1) and use that to define the loss function for that training session in order to promote 

diversity among individual models. The exact range of β can be adjusted based on validation 

performance and desired level of recall. We then average these predictions in an ensemble, 

as in Equation 3. We threshold the ensemble prediction at the relatively high value of 

0.9, which we found is effective in removing residual false positives. We present results 

for alternative thresholds in our Supplemental Material. We note that the threshold is 

an important hyper-parameter that can be tuned for best ensembling performance during 

validation. In all of our three experiments presented below, however, we simply used 

a threshold of 0.9. In an ensemble of ten or fewer models, this strategy is similar to 

aggregating the individual model segmentation (e.g. obtained after thresholding with 0.5) 

with a logical AND operation.

The key of our method is to combine diverse high recall models to reduce the false positives 

in the final prediction. We empirically observe that a β value between [0.9, 1) is sufficient 

to make the model output to have a recall rate greater than 0.9. On the other hand, changing 

the β used in the loss function from 0.9 to 0.99 effectively changes the relative weights of 

false positive and false negative from 1 : 9 to 1 : 99. Models trained with different weights 
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of FP and FN have different sets of accessible hypotheses and optimization trajectories in 

the corresponding hypothesis space [3]. For example, a set of parameters that reduces the 

false negative rate by 1% at the cost of increasing the false positive rate by 20% might 

be rejected by models trained with β = 0.9, but considered as an acceptable hypothesis for 

models trained with β = 0.99. Thus, by randomizing over β during training, we can promote 

more diversity in our ensembles, while achieving a minimum amount of false negative error 

that can be determined empirically by setting the lower bound in the range of β.

2.4. Metric for Model Diversity

To quantify the diversity in an ensemble, we measured the agreement between pairs of 

models. More specifically, we measured the similarity between two models f1 and f2 for 

both true positive and false positive parts of the predictions, and computed the average 

across all model pairs in an ensemble:

sim p1, p2 =
2 j = 1

N p1
jp2

j

j = 1
N p1

j + j = 1
N p2

j

(6)

where pj = fj × yj or fi × 1 − yj  depending on whether we wanted the true positive or false 

positive similarity. Our insight is that in an ideal ensemble, true positive similarity should be 

high, whereas false positive similarity should be low.

3. Experiments

3.1. Internal Carotid Artery Lumen Segmentation

We first implemented our ensemble learning strategy on the challenging task of internal 

carotid artery (ICA) lumen segmentation. Segmentation of the ICA is clinically important 

because different types of plaque tissue confer different degrees of risk of stroke in 

patients with carotid atherosclerosis. Our IRB approved anonymized data-set consists of 

76 Computed Tomography Angiogram images collected at Weill Cornell Medicine/New 

York Presbyterian Hospital. All CTA images were obtained from patients with unilateral > 

50% extracranial carotid artery stenosis. All ground truth segmentation labels were created 

by a human expert (H. Ong) with clinical experience. The ICA lumen pixels were annotated 

within the volume of 5 slices above and below the narrowest part of the internal artery, in the 

vicinity of the carotid artery bifurcation point. We first used a neural network-based multi-

scale landmark detection algorithm to locate the bifurcation [15], and crop a volumetric 

patch of 72 × 72 × 12 from the original image with 0.35 – 0.7 mm voxel spacing in x and 

y directions and 0.6 – 2.5 mm voxel spacing in the z-direction, preserving the original voxel 

spacings. For each case, we confirmed that the annotated lumen is included in the patch. 

The data were then randomly split into 48 training, 12 validation, and 16 test patients. The 

created 3D image patches were used for all subsequent training and testing. We employed 

a 3D U-Net as our architecture for all of the models we trained in the ensemble, using 

the same design choices [6]. In this first experiment, we used the Tversky loss with high 

β values (we also experimented with balanced cross-entropy, and present those results in 
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Supplemental Material). We used a mini-batch size of 4, and trained our models using the 

Adam optimizer [10] with a learning rate of 0.0001 for 1000 epochs.

We trained 12 different models with uniform β = 0.95, and another 12 models with uniformly 

distributed random β values ranging from 0.9 to 1, resulting in low precision but high recall 

models. All models were randomly initialized, and a distinct set of training and validation 

images were used to increase model diversity. We called them low prec ensemble (β = 0.95) 

and low prec ensemble (random β) respectively. We also trained another 12 models with 

β = 0.5, creating a baseline ensemble of models trained with Dice loss, random initialization, 

and random train/validation split. Bagging were used for both baseline and low precision 

ensemble.

Figure 2 plots the quantitative results of the two ensemble strategies (low prec ensemble 

with random β and baseline ensemble) for different numbers of models in the ensemble. 

We randomly picked K models from all 12 models to generate the ensemble (where K is 

between 1 and 10). For each K, we created 10 random K-sized ensembles and computed the 

mean and standard deviation of the results across the ensembles.

As the number of models included in the ensemble increases, models trained with regular 

Dice loss show some improvement in Dice score from 0.576 to 0.614, as well as a small 

increase in terms of precision. On the other hand, as can be seen for K = 1 a single low 

precision model has a relatively low Dice score, but high recall (around 90%). The Dice 

score improves dramatically from 0.435 to 0.708 as we include more low precision models 

in the ensemble. The precision also improves substantially, indicating that many of the false 

positives are canceling each other. The ensemble recall decreases slightly as some of the true 

positives are removed in the ensemble. We observe that in this dataset, the low precision 

ensemble’s performance (Dice) plateaus around 4 models.

Figure 3 visualizes example results from different low precision models trained with random 

β. (h) is the ground truth label, and the image has several regions including the internal 

and external carotid arteries with similar gray values. Note that it is hard even for a human 

expert to distinguish the internal and external carotid arteries during annotation (see below 

for inter-human agreement). Fig. 3 (b), (c), (d), (e) and (f) are predictions made by 5 models 

trained with random β. We can see that they all make different false positive predictions but 

capture the structure of interest. (g) is the result after applying our ensemble strategy, and it 

manages to eliminate most of the false positives.

Table 1 lists the average Dice score, recall, and precision for single baseline and low 

precision models (random βs), two ensemble strategies (with K = 12, both fixed β and 

random β), an additional top performing ensemble baseline M-Heads [21], as well as a 

secondary manual annotation by another expert who was blinded to the first annotations. 

By using the baseline ensemble strategy with averaging and thresholding at 0.5, we boost 

the single model dice from 0.576 to 0.614, demonstrating the effectiveness of a regular 

ensemble strategy in our application. Our low precision ensemble method, on the other hand, 

is capable of greatly enhancing the performance from a relatively low single model dice of 

0.435 to 0.708, utilizing weak segmenters to make a more accurate prediction. We can see 

Ma et al. Page 7

IEEE Winter Conf Appl Comput Vis. Author manuscript; available in PMC 2024 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that the biggest dice score improvement (from 0.643 to 0.708) comes from using random β
instead of a single fixed value. The proposed method also has a better dice score compared 

to the M-Heads method. Compared to the baseline ensemble method, the low-precision 

ensemble (random β) has a higher Dice score, a lower false negative rate, and a comparable 

false positive rate. However, there is still room for improvement, particularly in recall rates, 

as can be observed from the second human expert performance.

For our diversity analysis, Table 2 lists the pairwise similarity scores of the true positive, 

false positive, and all positive (foreground) predictions for different ensemble methods. A 

higher score means less diverse predictions. Compared to a baseline ensemble, models in 

the low precision ensemble have a higher (lower) score for their true positive (false positive) 

predictions. Thus, our low precision ensemble is capable of making more diverse false 

positive errors but consistent true positive predictions. We observe that the false positive 

diversity is higher in the random β ensemble, relative to the fixed β = 0.95 ensemble. With an 

average true positive similarity of ~ 0.95, the correctly identified internal carotid artery can 

be mostly preserved in low precision ensembles.

3.2. Myocardium Segmentation

In our second experiment, we employed the dataset from the HVSMR 2016: MICCAI 

Workshop on Whole-Heart and Great Vessel Segmentation from 3D Cardiovascular MRI 

[17]. This dataset consists of 10 3D cardiovascular magnetic resonance (CMR) images. The 

image dimension and voxel spacing varied across subjects, and averaged at 390 × 390 × 165 

and 0.9 × 0.9 × 0.85 mm. The ground truth manual segmentations of both the blood pool and 

ventricular myocardium are provided. In our experiment, we focused on the myocardium 

segmentation because it is a more challenging task with a low state-of-the-art average dice 

score. Before training, certain pre-processing steps were carried out. We first normalized 

all images to have zero mean and unit variance intensity values. Data augmentation was 

also performed via image rotation and flipping in the axial plane. We implemented a 5 fold 

cross-validation, holding 2 images for testing and 8 images for training.

To demonstrate that our method is not restricted to a specific network architecture and 

loss function, we adopted the network and method used by the challenge winner [28]. 

We implemented the 3D FractalNet, with the same parameters and experimental settings 

proposed by the authors, trained with regular cross-entropy loss. We trained 12 different 

models, and we call this the Baseline Ensemble. To train models with high recall and low 

precision, we used balanced binary cross-entropy loss with random β ∈ 0.9, 1). Note that 

results obtained with Tversky loss are presentede in Supplemental Material. We trained 12 

different models to create the low precision ensemble (random β) and another 12 models 

with fixed β = 0.95.

Similar to the previous experiment, we randomly picked K models from all 12 models to 

generate an ensemble, where K goes from 1 to 10. For each K, we created 10 random 

K-sized ensembles, and computed the mean and standard deviation of the results across the 

ensembles (see Figure 4). Table 3 shows the experimental results of the average of 5 fold 

testing. The low precision ensemble model trained with fixed β = 0 . 95 value does not show 
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significant improvement over the regular ensemble. The Dice score improves from 0.790 

(for the state-of-the-art baseline) to 0.815 (for the low precision ensemble with random β). 

The low precision ensemble with random β method has higher Dice score and recall, but 

lower precision. We also observe a higher improvement in terms of average dice scores from 

single models to the ensemble.

Additionally, we perform a diversity analysis for different ensemble models. As we observe 

in Table 4, models in the low precision ensemble have more consistent true positive 

predictions but more diverse false positive errors.

3.3. Multiple Sclerosis (MS) Lesion Segmentation

We conduct our third experiment on MS lesion segmentation. MS is a chronic, inflammatory 

demyelinating disease of the central nervous system in the brain. Precise segmentation 

can help characterize MS lesions and provide important markers for clinical diagnosis 

and disease progress assessment [29]. However, MS lesion segmentation is challenging 

and complicated as lesions vary vastly in terms of location, appearance, and shape. 

Concurrent hyper-intensities make MS lesion tracing more difficult even for experienced 

neural radiologists (as shown in Fig 5). Dice score between masks traced by two raters from 

a ISBI dataset is only 0.732 [5].

We employ the dataset from ISBI 2015 Longitudinal MS Lesion Segmentation Challenge 

[5] to verify our method. The ISBI dataset contains MRI scans from 19 subjects, and each 

subject has 4–6 time-point scans. For each scan, FLAIR, PD-weighted, T2-weighted, and 

T1-weighted images are provided. All image modalities are skull-stripped, dura-stripped, N4 

inhomogeneity corrected, and rigidly coregistered to a 1mm isotropic MNI template. Each 

image contains 182 slices with FOV = 182 × 256. Two experienced raters manually traced 

all lesions, so there are two gold-standard masks. To our knowledge, using the intersection 

of the two masks to train our model yields the best performance. Only 5 training subjects 

(21 images) have publicly available gold-standard masks. We can evaluate our model on 

an online website by submitting predicted results of the remaining 14 subjects (61 images). 

Unlike ICA lumen and myocardium segmentation, MS patients usually contain numerous 

lesions with different sizes. Thus, to evaluate the performance of the method, we apply 

metrics of lesion-wise precision (L-precision) and lesion-wise recall (L-recall), which are 

defined as follows.

• Lesion-wise Precision

L‐Precision = LTP
PL ,

(7)

• Lesion-wise Recall

L − Recall = LTP
GL ,

(8)
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where LTP  denotes the number of lesion-wise true positives, GL is the total 

number of lesions in the gold-standard segmentation, and PL is the total number 

of lesions in the predicted segmentation. We calculate lesion-wise F1 score as 

harmonic mean of lesion-wise recall and precision.

We compare our ensemble method with four recent works [30, 1, 25, 7] on MS lesion 

segmentation. We build our baseline network architecture based on a publicly available 

implementation [30] designed for MS lesion segmentation. Other three methods for 

comparison are multi-branch network (MB-Net) [1], multi-scale network (MS-Net) [7], 

and cascaded-network (CD-Net) [25]. Similar to myocardium segmentation, all images are 

normalized to have zero mean and unit variance intensity values. We use random crop, 

intensity shifting, and elastic deformation to augment our data.

We trained 10 different models with regular dice loss, 10 models using Tversky loss with 

random high β ∈ 0.9, 1), and another 10 models with high β = 0.95 1. We refer these three 

methods as Baseline Ensemble, Low Prec Ensemble (random β) and Low Prec Ensemble 

(β = 0.95) in Table 5.

We can see from Table 5 that compared with the baseline ensemble model, the low-precision 

ensemble achieves a slightly higher lesion-wise F1 score. In terms of overall dice score, the 

low precision ensemble is 6% higher than the baseline ensemble. Also, compared to the 

recently proposed MB-Net [1], CD-Net [25], and MS-Net [7], the proposed low precision 

ensemble exhibits superior performance in all aspects. We also note that randomizing β
improves the quality of segmentations, yielding a dice score boost of 1.7 points and an 

increase in lesion-wise F1 score.

Because we do not have ground truth labels for the test images, we cannot show 

diversity measurements for true positive and false positive predictions. For overall positive 

predictions, however, the pairwise similarity scores are listed in Table 6. We observe that 

the low precision ensemble achieves the lowest among all three methods, indicating a more 

diverse set of results generated by models trained with random high β’s.

4. Conclusion

In this paper, we presented a novel low-precision ensembling strategy for binary image 

segmentation. Similar to regular ensemble learning, predictions from multiple models are 

combined by averaging.

However, in contrast to regular ensemble learning, we encourage the individual models to 

have a high recall, typically at the expense of low precision and accuracy. Our goal is to have 

a diverse ensemble of models that largely capture the foreground pixels, but make different 

types of false positive predictions that can be canceled after averaging.

We conducted experiments on three different data-sets, with different loss functions and 

network architectures. The proposed method achieves better Dice score compared to using a 

1Results obtained with balanced cross-entropy loss are included in the Supplemental Material.
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single model or a regular ensembling strategy that does not combine high recall models. We 

believe that our method can be applied to a wide range of hard segmentation problems, with 

different loss functions and architectures. Finally, the proposed strategy can also be used in 

other types of challenging classification problems.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
(a) An example CTA image with both internal and external carotid artery. (b) The image and 

overlaid manual ground-truth of the internal carotid artery
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Figure 2: 
Dice score, recall, and precision for two ensemble strategies vs. the number of models in the 

ensemble for segmentation of internal carotid artery in neck CTA
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Figure 3: 
An example CTA image and overlaid predictions of the internal carotid artery. (a) is the raw 

image. (b),(c),(d),(e),(f) are predictions made by different low precision models. (g) is the 

ensemble result. (h) manual ground-truth
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Figure 4: 
Performance of Low-Precision Ensemble vs Number of Models: Segmentation of 

Ventricular Myocardium in MRI
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Figure 5: 
Example FLAIR images and corresponding masks traced by two human experts and marked 

in red. The left three are a flair image, 1st rater’s mask, 2nd rater’s mask from subject-01’s 

first time-point scan. The right three are from subject-02’s first time-point scan. We can 

see from the figure, besides ms lesion areas, there are many other hyperintensities that can 

confuse algorithms or even human experts.
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Table 1:

Performance of different methods for Internal Carotid Artery Segmentation in Neck CTA. Best nonmanual 

dice score is boldfaced.

Method Dice Recall Precision

Single Baseline Model 0.576 ± 0.302 0.672 ± 0.393 0.563 ± 0.346

Single Low Precision Model 0.435 ± 0.192 0.944 ± 0.220 0.304 ± 0.255

Baseline Ensemble 0.614 ± 0.294 0.665 ± 0.388 0.649 ± 0.324

Low prec Ensemble (β=0.95) 0.643 ± 0.152 0.736 ± 0.191 0.628 ± 0.182

Low Prec Ensemble (random β) 0.708 ± 0.170 0.815 ± 0.212 0.670 ± 0.202

M-Heads [21] 0.655 ± 0.134 0.757 ± 0.152 0.634 ± 0.158

Second Human Expert 0.791 ± 0.140 0.906 ± 0.161 0.714 ± 0.146
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Table 2:

Average pairwise model similarity scores of true positive, false positive, and all positive (foreground) 

predictions for the different ensemble methods in the neck CTA experiment. Lower values indicate more 

diversity. A good ensemble should have high diversity in its (e.g. false positive) errors, but less diversity in 

correct predictions.

Method True Positive False Positive All Positive

Baseline Ensemble 0.768 0.637 0.696

Low prec Ensemble (β=0.95) 0.951 0.572 0.655

Low Prec Ensemble (random β) 0.954 0.515 0.643

IEEE Winter Conf Appl Comput Vis. Author manuscript; available in PMC 2024 July 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ma et al. Page 20

Table 3:

Performance for Segmentation of Ventricular Myocardium in MRI. Best dice score is boldfaced.

Method Dice Recall Precision

Single Baseline Model [28] 0.786 ± 0.045 0.845 ± 0.047 0.747 ± 0.081

Single Low Precision Model 0.757 ± 0.065 0.974 ± 0.062 0.607 ± 0.121

Baseline Ensemble 0.790 ± 0.033 0.872 ± 0.022 0.750 ± 0.078

Low Prec Ensemble (β=0.95) 0.796 ± 0.046 0.904 ± 0.028 0.715 ± 0.092

Low Prec Ensemble (random β) 0.815 ± 0.052 0.949 ± 0.034 0.719 ± 0.097
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Table 4:

Average pairwise model similarity scores of true positive, false positive, and all positive (foreground) 

predictions for the different ensemble methods in the myocardium segmentation experiment. Lower values 

indicate more diversity. A good ensemble should have high diversity in its (e.g. false positive) errors, but less 

diversity in correct predictions.

Method True Positive False Positive All Positive

Baseline Ensemble 0.926 0.760 0.898

Low prec Ensemble (β=0.95) 0.971 0.644 0.842

Low Prec Ensemble (random β) 0.974 0.621 0.818
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Table 5:

Performance comparison for segmenting MS lesions in brain MRI. Best dice and L-F1 scores are boldfaced.

Method Dice L-Recall L-Precision L-F1

Baseline Ensemble [30] 0.624 0.458 0.889 0.605

Low Prec Ensemble (β = 0.95) 0.645 0.473 0.823 0.601

Low Prec Ensemble (random β) 0.662 0.491 0.849 0.622

MB-Net [1] 0.611 0.410 0.860 0.555

CD-Net [25] 0.630 0.367 0.847 0.512

MS-Net [7] 0.501 0.429 0.434 0.431
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Table 6:

Pairwise model similarity scores of foreground predictions for the different ensemble methods. Lower values 

indicate more diversity.

Method Pairwise Similarity of Foreground Pixels

Baseline Ensemble 0.814

Low prec Ensemble (β=0.95) 0.753

Low Prec Ensemble (random β) 0.737
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