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Abstract 
The process of drug discovery is widely known to be lengthy and resource-intensive. Artificial Intelligence approaches bring hope 
for accelerating the identification of molecules with the necessary properties for drug development. Drug-likeness assessment is 
crucial for the virtual screening of candidate drugs. However, traditional methods like Quantitative Estimation of Drug-likeness (QED) 
struggle to distinguish between drug and non-drug molecules accurately. Additionally, some deep learning-based binary classification 
models heavily rely on selecting training negative sets. To address these challenges, we introduce a novel unsupervised learning 
framework called DrugMetric, an innovative framework for quantitatively assessing drug-likeness based on the chemical space distance. 
DrugMetric blends the powerful learning ability of variational autoencoders with the discriminative ability of the Gaussian Mixture 
Model. This synergy enables DrugMetric to identify significant differences in drug-likeness across different datasets effectively. Moreover, 
DrugMetric incorporates principles of ensemble learning to enhance its predictive capabilities. Upon testing over a variety of tasks and 
datasets, DrugMetric consistently showcases superior scoring and classification performance. It excels in quantifying drug-likeness 
and accurately distinguishing candidate drugs from non-drugs, surpassing traditional methods including QED. This work highlights 
DrugMetric as a practical tool for drug-likeness scoring, facilitating the acceleration of virtual drug screening, and has potential 
applications in other biochemical fields. 
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Introduction 
Identifying compounds with drug-like properties is a key factor 
in the success of new drug development. Drug-likeness is an 
important criterion used to assess the potential of compounds for 
drug development. This indicator helps to screen out compounds 
that may fail in clinical trials at an early stage, which is significant 
for increasing the success rate of drug development and reduc-
ing costs [1, 2]. Since the factors determining drug-likeness are 
numerous and involve chemical properties closely related to the 
biological activity, metabolism and transport characteristics of 
the drug, such as molecular weight, lipophilicity and the number 
of hydrogen bond donors and acceptors, drug-likeness cannot 

be simply quantified through experimental means directly [3–8]. 
Over the years, researchers have developed various methods to 
characterize drug-likeness [9]. 

In the early stages of drug-likeness assessment, researchers 
established rules based on physicochemical properties, such as 
Lipinski’s ’Rule of Five’ (RO5), which define standard features of 
drug molecules, for example, a molecular weight of less than 500, 
a logP of less than 5, fewer than 5 hydrogen bond donors and fewer 
than 10 hydrogen bond acceptors [10]. Other rules, including the 
Ghose filter, Veber rules and Egan rules, also explored the correla-
tion between drug-likeness and physicochemical properties and 
expanded the parameters considered by RO5 [11–13].
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However, these rule-based methods have limitations. They pro-
vide a ’pass/fail’ assessment based on specific thresholds rather 
than quantifying drug-likeness, which means they cannot differ-
entiate between compounds with varying degrees of drug-likeness 
[14, 15]. This means that although some compounds may only 
slightly exceed the set thresholds, they still have the potential to 
become effective drugs. This approach could lead to missing some 
promising drug candidates. Furthermore, drug development is a 
complex process that requires a balance between efficacy, safety 
and manufacturability, and the absence of a quantitative drug-
likeness score can increase uncertainty in the decision-making 
process for drug development teams [16]. 

To address the limitations of drug-likeness rules based on phys-
ical and chemical properties, researchers have developed a scor-
ing method called Quantitative Estimate of Drug-likeness (QED) 
[17]. QED combines eight physicochemical properties (molecular 
weight, LogP, H-bond donors, H-bond acceptors, charge, aromatic-
ity, stereochemistry and solubility), generating a score between 0 
and 1. The closer the score is to 1, the more drug-like the molecule. 
Due to its computational convenience, QED, as a molecular eval-
uation index, is widely used in the field of Artificial Intelligence 
(AI)-assisted drug discovery. In deep learning generative models 
(such as variational autoencoders (VAEs), generative adversarial 
networks (GANs), etc.), QED can serve as an optimization target 
or assessment metric, guiding the model to generate compounds 
with high drug-likeness. In reinforcement learning, QED can be 
used as a reward function, guiding the agent to design compounds 
with high drug-likeness. In the optimization problem considering 
multiple drug properties (such as activity, toxicity, pharmacoki-
netic properties, etc.), QED can serve as one of the optimization 
targets, helping to balance various properties and generate com-
pounds with high drug-likeness [5, 18–23]. However, some studies 
have shown that QED cannot distinguish between drug and non-
drug molecules [24–26], and the eight physicochemical properties 
selected by QED cannot fully cover all factors affecting whether a 
compound has drug-likeness. For example, some natural products 
with important biological activity, such as antibiotics or anti-
tumor agents, may violate some traditional drug-likeness rules 
[27]. QED simplifies multiple properties into a single score, which 
may oversimplify the complexity of drug-likeness. Drug-likeness 
is determined by a variety of factors, including physicochemical 
properties, biological activity, pharmacokinetic properties, toxic-
ity, etc. The interaction of these factors may be more important 
than any single factor [28]. This prompts researchers to explore 
alternative methods, such as deep learning techniques, to better 
predict drug-likeness. 

Deep learning methods significantly differ from traditional 
methods in terms of feature extraction from raw data. The 
performance of deep learning models is largely influenced by 
the quantity and quality of the training data [29]. However, 
the challenge is that drug-likeness is not a directly measurable 
quantity, and, currently, there are no molecular annotation data 
related to it, making the development of related regression 
models difficult. Therefore, most of the deep learning methods 
currently used for drug-likeness prediction choose to use a binary 
classification approach, aiming to classify molecules as drugs 
or non-drugs. Hu et al. [30] used an autoencoder-based classifier 
with approximately 700 chemical descriptors that can be obtained 
from a given molecule to distinguish drugs and ZINC molecules. 
Their method focuses on using autoencoders to learn the low-
dimensional representation of molecules and training a binary 
classifier with these representations. Beker et al. [24] adopted 
a method that uses both autoencoders, Mol2vec and Graph 

Convolutional Network (GCN) models to predict the drug-likeness 
of molecules. Their method first extracts the features of the 
molecules with autoencoders and Mol2vec, then processes 
these feature graphs with GCN, and finally predicts the drug-
likeness of the molecules with a classifier. Sun et al. [31] used  
a Graph Convolutional Attention Network (D-GCAN) to predict 
the drug-likeness of molecular structures. They used GCAN to 
directly operate on molecular graphs to learn the features of 
the molecules and then used these features to predict the drug-
likeness of the molecules. 

Although these models achieve high classification accuracy, 
they also have their potential limitations. First, the binary classifi-
cation method inevitably requires drug molecules as the positive 
set and non-drug molecules as the negative set. The positive set 
can be easily prepared using known drug molecules [25]. However, 
the selection of non-drug negative samples is challenging, and the 
preparation of a comprehensive negative set with chemical diver-
sity is not easy, as true non-drug molecules can only be verified 
through clinical trials [25]. Second, binary classification models 
tend to learn features specifically used to distinguish between 
drug and non-drug molecules, rather than learning the features of 
molecules themselves. This means that the learned features will 
be significantly influenced by the negative set used for training, 
i.e. a binary classification model trained in a specific negative 
set may not be able to distinguish non-drug-like molecules that 
are fundamentally different from those in the negative set, thus 
limiting the model’s generalizability. 

To tackle the challenges above, we innovatively propose the 
DrugMetric model. We constructed a dataset based on poten-
tial drug candidates and selected three non-drug datasets with 
decreasing drug-likeness from ChEMBL, ZINC and GDB, informed 
by prior knowledge. Utilizing a Variational Autoencoder-Gaussian 
Mixture Model (VAE-GMM) architecture, we effectively delineated 
the chemical space distribution of these four datasets. By comput-
ing the distribution Distance, we not only clarified the relative dis-
tances between the chemical spaces of different datasets but also 
assigned drug-likeness labels to each molecule based on these 
distances. Finally, we employed ensemble learning techniques 
to enhance the predictive accuracy of our drug-likeness scoring 
model. 

Our DrugMetric model has demonstrated exceptional perfor-
mance across multiple tasks. Compared to the traditional QED 
method, DrugMetric exhibited higher accuracy in drug-likeness 
scoring tasks on Clinical Drug (CD), ChEMBL, ZINC and GDB 
dataset, anti-cancer dataset and the MoleculeNet molecular prop-
erty prediction datasets. In distinguishing drugs from non-drugs, 
DrugMetric achieved AUC values of 0.83, 0.94 and 0.99 in three 
classification tasks, significantly outperforming existing methods. 
Furthermore, we conducted an in-depth analysis of DrugMetric’s 
potential and found a strong correlation with the hepatic microso-
mal stability data of candidate drugs. To enhance the accessibility 
of DrugMetric, we have made its code publicly available, allowing 
researchers to deploy the model locally and tailor it to their 
specific research needs. 

Materials and methods 
Datasets 
The training datasets play a pivotal role in our study. The 
positive dataset, henceforth referred to as CD dataset, comprises 
known drug molecules from three reputable sources: (1) Clinical 
trial records from the PubChem database, a public repository 
for information on chemical substances and their biological
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activities [32]. (2) Molecules categorized as FDA-approved drugs, 
which have undergone extensive testing to confirm their 
safety and efficacy for human use [33]. (3) Drugs recorded 
in the World Drug Index (WDI), a directory of drugs that are 
marketed globally [34]. These sources were chosen based on 
their alignment with AI’s contributions to the identification 
and progression of potential drugs through the development 
pipeline. 

For the negative dataset, we selected molecules from three 
distinct databases, each representing varying degrees of drug-
likeness potential: - GDB17, a comprehensive virtual compound 
library generated computationally, contains molecules that are 
purely theoretical at this stage. - ZINC15, a collection of com-
mercially available compounds that are often used in virtual 
screening during drug discovery processes. - ChEMBL, a curated 
database of bioactive molecules with experimentally measured 
bioactivity data. The negative set provides a gradient of drug-
likeness, with GDB17 molecules being the least drug-like and 
ChEMBL molecules being the closest to drug-like properties. 

To ensure the quality and relevance of data for our predictive 
models, we applied the following preprocessing steps to each 
dataset: 1. Removal of duplicate entries to maintain data integrity. 
2. Exclusion of molecules exceeding a molecular weight of 1000 
Dalton, as they typically face challenges related to bioavailability 
and membrane permeability. 3. Removal of molecules composed 
of fewer than six atoms to focus on compounds with sufficient 
complexity for potential biological activity. 4. Elimination of salts 
and preparations to avoid inaccuracies in computational models 
that predict solubility or stability. 

To counteract the imbalance in dataset sizes, we employed 
random sampling to equilibrate the number of molecules across 
the three negative sets, ensuring that each has a representa-
tion equal to that of the CD dataset. This approach is based 
on the premise that balanced datasets can improve the per-
formance and generalizability of machine learning models [25]. 
For a detailed breakdown of molecular counts in datasets used 
specifically for drug-likeness prediction tasks, refer to Table s4. 
We have updated the specific details of the datasets in to balance 
the positive dataset (CD), we sampled the three negative datasets 
(ChEMBL, ZINC and GDB) to match the number of molecules 
in the CD dataset, resulting in a 1:1:1:1 ratio across all four 
datasets. 

Rationale and mechanism of DrugMetric 
DrugMetric is a novel computational tool we have developed to 
assess the drug-likeness of molecules quantitatively. This tool 
aims to map the chemical properties of molecules to a score 
that reflects their potential as drug candidates. As illustrated in 
Fig. 1, DrugMetric employs a combination of a VAE and a GMM 
to analyze and differentiate the molecular drug-likeness within 
various datasets. 

The primary objective of DrugMetric is to categorize and score 
molecules by examining their distribution within a defined chem-
ical space. It does this by leveraging the power of a VAE to capture 
the complex, high-dimensional distribution of molecular data and 
a GMM to classify these distributions into distinct clusters, each 
representing different grades of drug-likeness. 

The VAE is predicated on the probabilistic framework of encod-
ing and decoding. It transforms input data x into a latent space 
representation z from which it seeks to reconstruct the origi-
nal data. The mathematical construct that governs this process 
is known as the Evidence Lower Bound (ELBO), represented by 

Equation 1: 

L(x; θ , φ) = Eqφ (z|x)[log pθ (x|z)] − DKL(qφ(z|x)‖p(z)) 

≤ log p(x) 
(1) 

The terms within the ELBO are delineated as follows: 

• L(x; θ , φ) symbolizes the ELBO which the VAE seeks to max-
imize, indicating the model’s effectiveness in data encoding 
and reconstruction. 

• θ and φ represent the parameters of the decoder and encoder, 
respectively. 

• Eqφ (z|x)[log pθ (x|z)] is the expected log-likelihood that quanti-
fies the fidelity of the reconstruction from latent variables. 

• DKL(qφ(z|x)‖p(z)) quantifies the Kullback–Leibler divergence, 
evaluating how the encoder’s approximate posterior distri-
bution diverges from the prior distribution, thus acting as a 
regularization component. 

The encoder, parameterized by φ, maps the input data into 
distribution within the latent space, while the decoder, parame-
terized by θ , reconstructs the data from this latent representation. 

Following the training of the VAE on our datasets, we evaluate 
the generated molecules to ensure they align with the physico-
chemical properties of our training set. This alignment is critical 
as it confirms the VAE’s effectiveness in learning the essential 
features of drug-like molecules. Figure 2(A–F) compares ALERTS, 
FractionCSP3, MW, ALOGP, PSA and atom nums, demonstrating 
that our model successfully generalizes from the training data. 

To encapsulate the molecular information efficiently, we utilize 
the VAE’s encoder to map each molecule to a Gaussian distribu-
tion, characterized by μ (mean) and σ (standard deviation). How-
ever, for simplicity and stability in subsequent analysis, we extract 
only the mean vector μ to represent the molecule’s position in 
chemical space. 

GMM to classify VAE-encoded molecule datasets 
To enable the categorization of molecule datasets based on their 
drug-likeness levels, we employed a GMM on the latent space 
representations generated by a VAE. The latent space comprises 
molecular structures from four distinct datasets, each represent-
ing a unique level of drug-likeness. By configuring the GMM 
to recognize four Gaussian distributions within this space, we 
approach the task as a multi-class classification challenge, aim-
ing to segregate the datasets according to their drug-likeness 
characteristics. 

The model’s discriminative power was quantified using the 
Area Under the Curve (AUC) [35], which we calculated to be 
0.67, as shown in Fig. 2(G). Our AUC value implies that the GMM 
can moderately distinguish between the different levels of drug-
likeness in the combined chemical space. 

Quantitative scoring of drug-likeness 
After the GMM identifies the clusters, we assign a quantitative 
score to each molecule to represent its drug-likeness. This scoring 
is predicated on the molecule’s chemical proximity to a ’reference 
point’ determined by the Candidate drug dataset. For the calcu-
lation of this proximity, we utilize the Wasserstein distance [36], 
which is an effective metric for gauging dissimilarities between 
probability distributions that may not share common support. 
The Wasserstein distance, also known as Earth Mover’s Distance, 
is conceptually the cost necessary to transform one distribution
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Figure 1. DrugMetric overall architecture. DrugMetric consists of four parts: data distribution acquisition through VAE; data distribution classification 
through Gaussian Mixture Model (GMM); setting of scoring labels based on inter-distribution distance; and selection of scoring model through ensemble 
learning. 

into another. Its mathematical expression is given by 

W(p, q) = inf 
γ∈�(p,q)

∫
X×Y 

c(x, y) dγ (x, y) (2) 

where p and q are the respective probability distributions, �(p, q) 
represents the set of all joint distributions with marginals p and q, 
and c(x, y) is a cost function that measures the ’distance’ between 
elements x and y. 

Given the mean vectors μi and covariance matrices σi derived 
from the VAE-GMM process for the four datasets (CD, CHEMBL, 
ZINC, GDB), where i ∈ {0, 1, 2, 3}, the Wasserstein distance between 
two Gaussian distributions is notably simplified. For such distri-
butions, the squared 2-Wasserstein distance can be computed as 
follows: 

W2 
2(μi, μj) = ||μi − μj||2 + Tr

(
σi + σj − 2

(
σ

1/2 
i σjσ

1/2 
i

)1/2
)

(3) 

The covariance matrices σ themselves are calculated using the 
formula: 

σ = ‖A‖2 = 
n∑

j=1

∥∥aj

∥∥
2 = 

n∑
j=1

(
m∑

i=1

∣∣aij

∣∣2)1/2 

(4) 

where A is a matrix with column vectors aj, and  aij are the 
elements of A, with  i indexing rows and j indexing columns. 

Scores are normalized to facilitate comparison across datasets, 
mapping them to a range from 0 to 100. A score of 100 corresponds 
to the reference Candidate drug dataset, while 0 signifies the 
greatest distance within the chemical space. The normalization 
formula is 

xnorm =
∣∣∣∣ W2(μi, μref) − min(W2(μ)) 
max(W2(μ)) − min(W2(μ)) 

× 100
∣∣∣∣ (5) 

where W2(μ) represents the Wasserstein distance for the 
molecule dataset, and μref is the mean vector of the reference 
Candidate drug dataset. 

Table 1. Normalized Wasserstein Distances and Drug-Likeness 
Scores 
Dataset CD ChEMBL ZINC GDB 

Normalized Score (μ) 100 28.62 22.83 0 
Normalized Score (σ ) 19.78 10.53 15.37 15.61 

The normalized Wasserstein distances and their associated 
drug-likeness scores for molecules across the datasets are 
presented in Table 1. This scoring system offers a standardized 
approach for evaluating and contrasting the drug-likeness of 
compounds, thereby facilitating a more informed drug discovery 
process. 

Employment of ensemble learning for optimal 
scoring model selection 
The primary objective of this section is to develop a robust regres-
sion model that utilizes the drug-likeness scores derived from the 
previous stages as labels. This model aims to predict molecular 
drug-likeness with high accuracy by leveraging the strengths of 
ensemble learning techniques. 

Graph Neural Networks (GNNs) have been acknowledged for 
their inherent capacity to process biochemical data effectively. 
However, recent investigations, including the work by Jiang et al. 
[37], indicate that the full potential of GNNs has yet to be realized 
in practice. Their study demonstrates that a synergy of GNNs (e.g. 
GCN) with well-established machine learning models (such as 
Support Vector Machines, Random Forests, and Extreme Gradient 
Boosting) can yield superior results in molecular property predic-
tion tasks. This sentiment is echoed by Deng et al. [38] through 
their XGraphBoost method, which also validates the enhanced 
performance achieved by integrating traditional machine learn-
ing with GNNs.
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Figure 2. (A–F) Comparison of physicochemical properties between training molecules and generated molecules. (A) ALERTS: a system for evaluating 
potential adverse drug reactions; (B) ALOGP: a parameter describing hydrophobicity FractionCSP3, the proportion of saturated carbon centers in a 
molecule; (C) synthetic accessibility: Synthetic accessibility refers to how easily a chemical compound can be synthesized based on the complexity of 
its synthesis steps and the availability of required materials.; (D) Hydrogen Bond Donor (HBD): HBD is an atom or group in a molecule that can donate 
a hydrogen atom to form a hydrogen bond with an electronegative acceptor; (E) PSA: polar surface area, a descriptor of molecular polarity; (F) atom 
nums: the number of atoms in a molecule. The generated molecules consistently mimic these properties of the training molecules. (G) GMM-based 
multi-class classification in the chemical space derived from the VAE-trained on four datasets. The AUC value of 0.67 reflects the discriminative ability 
of the GMM. (H) Selection and performance of the final drug-likeness prediction model using a three-layer Stacking and eight-fold Bagging ensemble 
learning strategy. The chosen model, WeightedEnsemble L3, uses an ensemble method based on weighted averages of multiple base models. 

These findings underpin our approach, suggesting that com-
bining the innovative capabilities of GNNs with the robustness of 
traditional machine learning algorithms is a pragmatic strategy 
to fully harness their potential. The resulting hybrid models are 
anticipated to exhibit improved accuracy and reliability, particu-
larly in the context of molecular property predictions. 

To this end, we have adopted a three-layer Stacking cou-
pled with an eight-fold Bagging ensemble learning strategy. 
Specifically, the training data are partitioned into three distinct 
layers, within which multiple foundational models are trained. 
Subsequently, the eight-fold Bagging technique is employed 
to further segregate the training data, ensuring that each 
foundational model is exposed to unique data subsets. This 
methodology is designed to bolster the model’s capacity for 
generalization while concurrently mitigating the likelihood of 
overfitting. 

As depicted in Fig. 2H, the WeightedEnsemble L3 was selected 
as the ultimate model for predicting drug-likeness. This ensemble 
model operates on the principle of weighted averaging, where 
individual base models are assigned weights in proportion to their 
validation set performance. Such a weighting scheme empowers 
models demonstrating higher accuracy to exert greater influence 
on the ensemble’s final predictions, thereby elevating the predic-
tive precision of the ensemble as a whole. 

Experiments and results 
Drug-Likeness scoring experiments 
In this section, we detail our comparative analysis of DrugMetric 
and QED, two scoring systems designed to assess the poten-
tial drug-likeness of molecular compounds. Our goal is to eluci-
date the strengths and limitations of each system across various
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Figure 3. Comparing DrugMetric Performance with QED across Datasets. (A,B) Shows the scores of DrugMetric and QED on the CD dataset, where DrugMetric 
(67.15) significantly outperforms QED (51.27). (C) Demonstrates the performance on a broad dataset of 195 anticancer drugs, with DrugMetric scoring an 
average of 70.01, significantly higher than QED’s 43.04. (D,E) Depicts their performance on MoleculeNet’s 9 molecular property prediction datasets, where 
DrugMetric exhibits superior accuracy and versatility, while QED demonstrates relatively weaker performance. These results underscore the potential 
and value of DrugMetric in practical applications. 

datasets and to provide insights into their relative effectiveness in 
aiding the drug discovery process. 

Evaluation on diverse chemical datasets 
To determine the efficacy of DrugMetric versus QED in predicting 
drug-likeness, we compared their scoring across four datasets: 
CD, ChEMBL, ZINC and GDB. These scores aim to quantify the 
potential for compounds within these datasets to qualify as 
drug candidates. In Fig. 3(A, B), DrugMetric’s scoring algorithm 
demonstrates a marked advantage over QED in evaluating 
the CD dataset, with scores of 67.15 compared to 51.27, 
respectively. This indicates a potential for DrugMetric to more 
accurately identify viable drug candidates within this set of 
compounds. 

Our analysis also shows that DrugMetric’s scores align with the 
expected drug-likeness hierarchy across the datasets: CD (67.15) > 
ChEMBL (41.45) > ZINC (30.41) > GDB (7.56). This gradation sug-
gests that DrugMetric effectively differentiates between datasets 
with varying levels of drug-likeness and is consistent with the 
current understanding of these compound libraries. 

Conversely, QED’s performance raises some concerns. Notably, 
it assigns the highest score to the ZINC dataset (72.99), which 
is counterintuitive given that ZINC, while rich in compounds 
with favorable physicochemical properties, may not necessarily 
comprise molecules with validated biological activity. This dis-
crepancy highlights a potential overestimation by QED of the 
drug-likeness of ZINC’s compounds. 

Additionally, QED’s lowest score for the CD dataset (51.27), 
which theoretically should contain highly drug-like molecules, 
suggests a limitation of the QED scoring system in recognizing 
complex or unique drug-like properties. This could lead to over-
looking compounds with drug development potential. 

Evaluation on anti-cancer drug dataset 
Our study extends to an anti-cancer dataset comprising 195 drugs 
[39], chosen due to the critical nature of cancer therapeutics in 
global healthcare. Anti-cancer drugs often present unique chal-
lenges in drug-likeness evaluation due to their complex molec-
ular structures designed to target specific biomarkers [40, 41]. 
Traditional scoring systems like QED may not fully account for 
these complexities, potentially underestimating the drug-likeness 
of compounds with unconventional structures or mechanisms. 

In our analysis, as depicted in Fig. 3(C), DrugMetric consistently 
awarded higher scores to anti-cancer drugs, with an average of 
70.01 compared to QED’s 43.04. This suggests that DrugMetric 
may possess a more refined algorithm capable of recognizing the 
specialized characteristics of anti-cancer drugs, thereby offering 
a more accurate assessment of their potential as therapeutic 
agents. 

Evaluation on moleculenet datasets 
To assess the generalizability of DrugMetric and QED, we evalu-
ated their performance across nine MoleculeNet datasets [42], 
encompassing a range of molecular properties indicative of drug-
likeness, such as biological activity, toxicity, solubility and phar-
macokinetics. 

DrugMetric demonstrated superior performance in datasets 
intrinsically linked to drug-like properties, including SIDER, BBBP, 
ToxCast, Tox21, ClinTox, FreeSolv and ESOL. The scoring trends 
observed (refer to Fig. 3DE) highlight DrugMetric’s proficiency in 
evaluating molecular properties that are directly relevant to drug 
discovery—particularly its precision and stability in scoring. 

Conversely, in the qm7 and qm8 datasets, which focus primar-
ily on quantum mechanical properties, the distinction between 
the scoring systems was less marked. This parity indicates that
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for molecular properties that extend beyond typical drug-like 
attributes, both DrugMetric and QED perform similarly. Neverthe-
less, it is noteworthy that DrugMetric’s core strength lies in its 
application to drug-likeness evaluation, where it demonstrated 
enhanced accuracy and practical utility. 

Implications for drug discovery 
The comparative analysis between DrugMetric and QED offers 
valuable insights for drug discovery, particularly when choosing a 
scoring system that can accurately reflect a compound’s potential 
as a drug candidate. DrugMetric’s superior performance across 
various datasets, including CD, ChEMBL, ZINC and GDB, reveals 
its robustness in identifying compounds with high drug-likeness, 
as supported by the scores presented in Fig. 3(A). 

The ability of DrugMetric to adhere to the expected drug-
likeness hierarchy—demonstrating the highest scores for com-
pounds in the CD dataset and progressively lower scores for 
ChEMBL, ZINC and GDB—aligns with industry knowledge of 
these libraries. Such clear differentiation is critical in guiding 
researchers toward molecules with the highest potential for drug 
development, streamlining the selection process in the early 
stages of discovery. 

In contrast, the inconsistencies observed in QED’s perfor-
mance, particularly its overestimation of the ZINC dataset’s drug-
likeness, underscore the need for DrugMetric that can discern 
beyond mere physicochemical properties. There is a significant 
demand in the pharmaceutical industry for tools that can capture 
the nuanced attributes of drug-like molecules, especially those 
with complex structures or mechanisms of action that are not 
adequately quantified by traditional scoring criteria. 

Furthermore, the lower scores assigned by QED to the CD 
dataset, which is expected to contain highly drug-like molecules, 
raise concerns about its utility in current drug discovery 
paradigms. The risk of missing out on valuable drug candidates 
due to an underestimation of their drug-likeness underscores the 
importance of selecting a scoring system that is sensitive to the 
multifaceted nature of drug compounds. 

Drug classification experiment 
To comprehensively evaluate the classificatory ability of Drug-
Metric and other drug-likeness indices, we conducted a series of 
experiments. 

To assess the efficacy of these scoring systems, we employed 
the Receiver Operating Characteristic (ROC) curve, a widely used 
tool in machine learning for diagnostic testing. The ROC curve 
effectively illustrates a scoring system’s ability to distinguish 
between drug-like and non-drug-like molecules by plotting the 
True Positive Rate (TPR) against the False Positive Rate (FPR). 
An ideal scoring system would yield an ROC curve that closely 
tracks the upper left corner of the graph, indicating high sen-
sitivity (TPR) and specificity (1-FPR), with an Area Under the 
Curve (AUC) approaching the maximum value of 1. We define 
the TPR and FPR as follows: TPR, which reflects the proportion 
of true drug-like molecules correctly identified by the scoring 
system: 

TPR = 
TP 

TP + FN 
(6) 

FPR, which measures the proportion of non-drug-like molecules 
incorrectly classified as drug-like: 

FPR = 
FP 

FP + TN 
(7) 

Evaluation on diverse chemical datasets 
In the initial, we utilized four datasets: CD, ChEMBL, ZINC and 
GDB. The purpose was to test DrugMetric alongside QED, as well as 
four renowned pharmaceutical evaluation criteria—GSK, Pfizer, 
Lipinski’s ’Rule of Five’ and the Golden Triangle—for compar-
ative analysis. Specific details are provided in Supplementary 
Table S6. 

The comparative ROC analysis revealed that the DrugMetric 
scoring system exhibited superior performance, achieving 
the highest AUC value of 0.99 in the comparison between 
the GDB and CD datasets (Fig. 4C). This result highlights 
DrugMetric’s exceptional ability to accurately categorize drug-
like molecules. In contrast, the QED scoring system showed 
variable performance, with its lowest AUC at 0.21 when applied 
to the ZINC/CD dataset pairing, as shown in Fig. 4(B). The  AUC  
values for the classical pharmaceutical criteria ranged from 0.29 
to 0.56, indicating a moderate capability in the classification 
task. 

Comparation with ADMET-score 
this experiment incorporated datasets provided by ADMET-
score[43]: DrugBank, WITHDRAW[44] and ChEMBL. Due to the 
proprietary nature of ADMET-score, the analysis was based 
on pre-scored data. ADMET-score is a drug-likeness evaluation 
tool that aggregates data from 18 key ADMET parameters to 
create a comprehensive index. Although ADMET-score is not 
open-source, we utilized three datasets with available ADMET-
score data for our analysis: DrugBank (n = 796), WITHDRAW (n = 
240) and ChEMBL (n = 1954). 

The WITHDRAW dataset includes 240 drugs that were 
withdrawn from the market primarily due to safety concerns. 
This dataset is particularly valuable for testing drug-likeness and 
safety profiles because it represents real-world scenarios where 
drugs that initially seemed promising were later found to have 
critical issues. 

In the comparative analysis of ROC curves using DrugMetric, 
QED and ADMET-score, the performance of these scoring sys-
tems provides deep insights into the unique characteristics of the 
WITHDRAW dataset. 

Firstly, in the comparison between DrugBank and WITHDRAW, 
all methods showed relatively low AUC scores (DrugMetric 
at 0.58, ADMET-score at 0.60 and QED at 0.52 Fig. 5C), which 
might initially seem disappointing. However, this result is 
actually very informative. The WITHDRAW dataset contains 
compounds that were once considered drug-like but were later 
removed from the market due to safety reasons. The moderate 
performance of these scoring systems suggests a potential 
gap in their ability to discern long-term safety issues from 
basic drug-like properties. This is particularly critical because 
a drug’s initial ’drug-like’ qualities (such as bioavailability, 
solubility, permeability) do not necessarily correlate with its safety 
profile, which often involves more complex, long-term biological 
interactions. 

The results from the comparison between ChEMBL and 
WITHDRAW further clarify this point. Even though DrugMetric 
shows improved performance (AUC of 0.87 Fig. 5B) compared to  
its results against the DrugBank dataset, the scoring system’s 
ability to differentiate between generally safe, market-approved 
drugs (from ChEMBL) and those known for safety issues (from 
WITHDRAW) indicates a robustness in identifying compounds 
with higher initial drug-likeness without necessarily accounting 
for the subtler, often delayed toxicity profiles.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae321#supplementary-data
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Figure 4. comparison of ROC curves of selected drug classification indicators. In addition to comparing the drug versus non-drug distinction performance 
of DrugMetric and QED, four rules used for drug screening were also tested: Pfizer, GSK, Lipinski, and Golden Triangle. (A) CD as the positive set, ChEMBL 
as the negative set. (B) CD as the positive set, ZINC as the negative set. (C) CD as the positive set, GDB as the negative set. In all three experiments, 
DrugMetric achieved the highest classification performance (0.83, 0.94, 0.99), whereas QED’s ability to distinguish between drugs and non-drugs was 
poorer than random guessing (0.44, 0.21, 0.29). 

Figure 5. Comparison of ROC curves for drug classification using DrugMetric, QED and ADMET-score across various dataset pairings. (A) DrugBank vs. 
ChEMBL, where DrugMetric achieved the highest AUC of 0.88, followed by QED with 0.79 and ADMET-score with 0.65. (B) ChEMBL versus WITHDRAW, 
with DrugMetric recording an AUC of 0.87, QED at 0.79 and ADMET-score at 0.70. (C) DrugBank vs. WITHDRAW, showing DrugMetric with an AUC of 0.58, 
QED at 0.52 and ADMET-score at 0.60. These results demonstrate the varying effectiveness of each scoring system in distinguishing drug-like molecules 
in different dataset contexts. 

Evaluation on 17 FDA-approved but toxic molecules 
We have broadened our analysis to include the ClinTox dataset, 
which distinguishes between FDA-approved drugs and those that 
failed clinical trials due to toxicity issues. Notably, within this 
dataset, 17 compounds are identified as both FDA-approved and 
toxic. We designed a binary classification task to differentiate 
FDA-approved compounds that exhibit clinical toxicity (positive 
samples) from those without reported toxicity issues (negative 
samples). 

Figure 6 provides a visual comparison of the performance 
between two metrics, DrugMetric and QED, in identifying FDA-
approved but clinically toxic molecules. The results clearly 
demonstrate that DrugMetric significantly outperforms QED. 
Specifically, DrugMetric achieves an ROC AUC of 0.83, indicating 
a robust capability to distinguish between the two categories 
of compounds. In contrast, QED registers a considerably lower 
AUC of 0.39, reflecting its limited effectiveness in this specific 
task. However, it is important to note that the small size of 
the test data could potentially limit the reliability of these 
results. 

In summary, DrugMetric emerges as an exceptionally effective 
scoring system for classifying drug candidate molecules, demon-
strating superior performance over QED and other traditional 
metrics within the context of this study. The insights derived from 

Figure 6. ROC curve comparison of DrugMetric and QED in identifying 
FDA-approved but clinically toxic molecules from the ClinTox dataset. 
The analysis targeted a subset of 17 FDA-approved toxic compounds. 
DrugMetric outperformed QED with an ROC AUC of 0.83 compared to 0.39 
for QED. 

our comprehensive analysis can significantly aid researchers 
in selecting the most appropriate scoring systems and refining 
their predictive models, thereby potentially enhancing the 
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Figure 7. DrugMetric web server interface. DrugMetric web server allows users to type in or upload their mol file with multiple SMILES sequences and 
the backend model will check the validity of the molecule and predict the durg-likeness score. 

Table 2. Comparison of hepatic stability for high versus low 
ChemAIrank Molecules 

Mouse Half-life (mins) Human Half-life (mins) 

TOP-10 56.53 44.40 
BOTTOM-10 24.18 30.32 

efficiency and success of the drug discovery processes. Yet, it also 
indicates limitations in detecting subtler, often delayed toxicity 
profiles. 

Correlation analysis: liver microsomal stability 
and drugmetric of CDK2/4/6 inhibitors 
Hepatic microsomes are organelles within liver cells that contain 
a variety of enzymes, including the cytochrome P450 enzymes, 
which are major pathways for drug metabolism [45]. The rate 
of drug metabolism determines the drug’s half-life, impacting its 
dosage and administration frequency [46]. Assessing drug stability 
in hepatic microsomes can therefore predict the metabolic rate 
in vivo citeobach1999prediction. This study evaluated the hepatic 
microsomal stability of 52 CDK2/4/6 kinase inhibitors in the cel-
lular assay phase. The half-life (t1/2) and clearance rate (CL) of the  
drugs were determined using first-order kinetic equations. Liquid 
chromatography-tandem mass spectrometry methods quantified 
the concentration of compounds in the hepatic microsomes. The 
half-life is the time required for the drug concentration to reduce 
by half, calculated as follows: 

t1/2 = 
0.693 

k 
(8) 

Where the elimination rate constant ( k) is derived from the slope 
of the linear regression of the natural logarithm of concentration 

versus time. The volume of distribution (Vd) is inversely related to 
the drug’s microsomal concentration and is a critical determinant 
of the clearance rate. C represents the microsomal compound 
concentration: 

CL = Vd × k (9) 

Vd = 
1 
C 

(10) 

Data regarding the half-lives of these inhibitors in both human 
and mouse microsomes were collected. To determine the associa-
tion between DrugMetric scores and hepatic microsomal stability, 
molecules were ranked based on their DrugMetric scores, and both 
the top 10 (TOP-10) and bottom 10 (BOTTOM-10) molecules were 
selected for further analysis. 

As shown in Table 2, the experimental results indicated 
that the TOP-10 molecules have an average half-life of 44.40 
min in human-derived liver microsomes and 56.53 min in 
mouse-derived liver microsomes. Conversely, the BOTTOM-10 
molecules have an average half-life of 30.32 min in human 
microsomes and 24.18 min in mouse microsomes. This sug-
gests that molecules with higher DrugMetric scores may have 
slower metabolic rates, potentially leading to longer thera-
peutic effects. It is also observed that the same molecule 
may have different half-lives in human and mouse micro-
somes, possibly reflecting interspecies metabolic differences—an 
important factor to consider in drug development and pharma-
cokinetic studies. 

Web server development 
In order to achieve a more intuitive and user-friendly presentation 
of results, we developed the DrugMetric web server (Fig.7) using
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Streamlit [47]. Additionally, users can quickly deploy the service 
locally via the publicly available code repository. 

In the DrugMetric web server, users can upload their molecu-
lar data for computations like drug-likeness scoring. The server 
will display the screened candidate compounds in an interactive 
visualized form, allowing users to conduct comparative analysis. 

Conclusion 
In conclusion, our study has demonstrated that DrugMetric, a  
computational tool leveraging a VAE coupled with a GMM, offers a 
significant advancement in assessing the drug-likeness of molec-
ular entities. By meticulously curating datasets from diverse 
sources such as PubChem, FDA records and the WDI, and applying 
rigorous preprocessing steps including deduplication, molecular 
weight filtering and balancing via random sampling, we have 
established a robust foundation for model training and validation. 
DrugMetric not only surpasses the QED system in scoring drug-like 
properties but also exhibits superior performance compared to 
traditional pharmaceutical evaluation criteria. 

The innovative use of ensemble learning, integrating GNNs 
with established machine learning techniques, has resulted in a 
regression model—WeightedEnsemble L3—that predicts molecu-
lar drug-likeness with high precision. This model’s superiority is 
evidenced by its judicious combination of multiple foundational 
models through stacking and bagging, thereby enhancing gener-
alizability and mitigating overfitting. 

DrugMetric is capable of accurately ranking compounds in vari-
ous datasets, including CD, ChEMBL, ZINC and GDB, in alignment 
with industry expectations. This marks a crucial advancement 
in molecular drug-likeness prediction. By effectively distinguish-
ing between molecules of varying drug-likeness and providing a 
quantitative measure that reflects the complex characteristics of 
drug-like molecules, DrugMetric is poised to become a key tool for 
researchers. 

Our findings further reveal that DrugMetric scores correlate 
well with the hepatic microsomal stability of CDK2/4/6 kinase 
inhibitors, suggesting that higher scores are indicative of slower 
metabolic rates and potentially extended therapeutic effects. This 
correlation is particularly valuable in informing the pharmacoki-
netic profiling of drug candidates and underscores the necessity 
of accounting for interspecies variations in drug metabolism dur-
ing the development process. 

Ultimately, the efficacy of DrugMetric in enhancing the drug 
discovery pipeline is clear. Its methodological rigor, high predictive 
accuracy, and consistent performance across diverse datasets 
suggest that it can serve as a reliable guide in the prioritization 
and selection of promising drug candidates, potentially expediting 
the journey from concept to clinic. 

Key Points 
• We introduce DrugMetric, a novel unsupervised learning 

framework combining a VAE and a GMM that enhances 
the precision and reliability of drug-likeness evaluation 
while addressing the limitations of existing methods. 

• DrugMetric employs a strategy that scores drug-likeness 
based on chemical space distance, leveraging unlabeled 
data to overcome the challenges of traditional methods. 

• DrugMetric consistently surpasses traditional drug-
likeness scoring methods, proving its robustness and 
higher accuracy through comprehensive evaluations on 

various datasets, with implications for improving the 
drug discovery pipeline. 
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