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Abstract

Transformer-based models, capable of learning better global dependencies, have recently 

demonstrated exceptional representation learning capabilities in computer vision and medical 

image analysis. Transformer reformats the image into separate patches and realizes global 

communication via the self-attention mechanism. However, positional information between 

patches is hard to preserve in such 1D sequences, and loss of it can lead to sub-optimal 

performance when dealing with large amounts of heterogeneous tissues of various sizes in 3D 

medical image segmentation. Additionally, current methods are not robust and efficient for heavy-

duty medical segmentation tasks such as predicting a large number of tissue classes or modeling 

globally inter-connected tissue structures. To address such challenges and inspired by the nested 

hierarchical structures in vision transformer, we proposed a novel 3D medical image segmentation 

method (UNesT), employing a simplified and faster-converging transformer encoder design that 

achieves local communication among spatially adjacent patch sequences by aggregating them 

hierarchically. We extensively validate our method on multiple challenging datasets, consisting of 
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multiple modalities, anatomies, and a wide range of tissue classes, including 133 structures in the 

brain, 14 organs in the abdomen, 4 hierarchical components in the kidneys, inter-connected kidney 

tumors and brain tumors. We show that UNesT consistently achieves state-of-the-art performance 

and evaluate its generalizability and data efficiency. Particularly, the model achieves whole brain 

segmentation task complete ROI with 133 tissue classes in a single network, outperforming prior 

state-of-the-art method SLANT27 ensembled with 27 networks. Our model performance increases 

the mean DSC score of the publicly available Colin and CANDI dataset from 0.7264 to 0.7444 

and from 0.6968 to 0.7025, respectively. Code, pre-trained models, and use case pipeline are 

available at: https://github.com/MASILab/UNesT.
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1. Introduction

Medical image segmentation tasks have become increasingly challenging due to the need for 

modeling hundreds of tissues (Huo et al., 2019; Wasserthal et al., 2022) or hierarchically 

inter-connected structures (Landman et al., 2015) in 3D volumes. In the past few years, 

convolutional neural networks (CNNs) have dominated medical image segmentation due to 

their superior performance. Among all the CNNs, the U-Net (Ronneberger et al., 2015) and 

its variants have been the most widely used for medical image segmentation. A ‘‘U-shape’’ 

model generally consists of an encoder for global representation learning and a decoder 

to gradually decode the learned representation to a pixel-wise segmentation. However, 

CNN-based models’ encoding performance is limited because of their localized receptive 

fields (Hu et al., 2019).

Vision Transformers (ViT), on the other hand, are capable of learning long-range 

dependencies and have recently demonstrated exceptional representational learning 

capabilities and effectiveness in computer vision and medical image applications 

(Dosovitskiy et al., 2020; Hatamizadeh et al., 2022; Zhou et al., 2021a). Unlike CNNs, 

ViTs learn better long-range information by tokenizing images into 1D sequences and 

leveraging the self-attention blocks to facilitate global communication (Hatamizadeh et al., 

2022), which makes transformers better encoders. However, by tokenizing the image into 

1D patches, transformers are less able to capture local positional information compared 

to CNNs, due to the lack of locality inductive bias inherent to CNNs (Cordonnier et al., 

2019; Dosovitskiy et al., 2020). To overcome this, ViT usually requires a large amount 

of training data which is expensive to acquire (Tang et al., 2022; Zhou et al., 2021a). 

With small datasets in the medical field, insufficient data can lead to model inefficiency, 

especially when dealing with a large number of tissues of various sizes. Moreover, the self-

attention mechanism for modeling multi-scale features for high-resolution medical volumes 

is computationally expensive (Beltagy et al., 2020; Han et al., 2021; Liu et al., 2021).

To improve representation learning in transformers in small datasets, recent works envision 

the use of local self-attention (Liu et al., 2021; Cao et al., 2021; Han et al., 2021). To 
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leverage information across embedded sequences, ‘‘shifted window’’ transformers (Liu et 

al., 2021) have been proposed for dense predictions and modeling multi-scale features. 

However, these attempts aiming to adapt the self-attention mechanism by modifying 

patch communication often yield high computational complexity. In addition, the Swin 

transformer under-performs when datasets are small, or there are a large number of 

structures (Liu et al., 2021).

Considering the advantages of hierarchical models (Çiçek et al., 2016; Roth et al., 2018; 

Tang et al., 2022) on modeling heterogeneous high-resolution radiographic images and 

inspired by the aggregation function in the nested ViT (Zhang et al., 2022), we propose a 

Hierarchical hybrid 3D U-shape medical segmentation model with Nested Transformers 

(UNesT). Specifically, with nested transformers as the encoder, UNesT hierarchically 

encodes features with the 3D block aggregation function and merges with the convolutional-

based decoder via skip connections at various resolutions to enable learning of local 

behaviors for small structures or small datasets. The 3D nested structure retains the original 

global self-attention mechanism and achieves information communication across patches by 

stacking transformer encoders hierarchically.

We perform extensive experiments to validate the performance of UNesT on the challenging 

whole brain segmentation task with 133 classes using T1 weighted (T1w) MRI images and 

a collected renal substructures 3D CT volumetric dataset with 116 patients on characterizing 

multiple kidney components including renal cortex, medulla and pelvicalyceal system with 

kidney function. We further evaluate UNesT on three widely-used public datasets Beyond 

The Cranial Vault (BTCV) (Landman et al., 2015), KiTS19 (Heller et al., 2021), and 

BraTS21 (Baid et al., 2021) to illustrate the generalizability of UNesT. We compare UNesT 

to recent convolutional and transformer-based 3D medical segmentations baselines and 

conduct scalability and data efficiency analysis in a low-data regime.

Our contributions to this work can be summarized as:

• We introduce a novel 3D hierarchical block aggregation module, and propose a 

new transformer-based 3D medical segmentation model, dubbed UNesT. The 

model provides local spatial patch communication to better capture various 

tissues. This method achieves hierarchical modeling of high-resolution medical 

images and outperforms local self-attention variants with a simplified design 

compared to the ‘‘shifted window’’ module leading to improved data efficiency.

• We validate UNesT on a whole brain segmentation task that contains hundreds 

of classes. UNesT outperforms the current convolutional- and transformer-based 

single model methods. Our single model also outperforms the prior top method 

SLANT27 (Huo et al., 2019) ensembled with 27 networks, and achieves new 

state-of-the-art performance.

• We collect and manually delineate the first in-house renal substructure 

dataset (116 CT subjects). We show that our method achieves state-of-the-art 

performance for accurately measuring cortical, medullary, and pelvicalyceal 

system volumes. We demonstrate the clinical utility of this work through 

accurate volumetric analysis, strong correlations, and robust reproducibility. We 
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also introduce MONAI Bundle, a new plug-and-use framework for deploying 

models. Our codes, trained models, and tutorials are released for public 

availability.

• We investigate model scalability and data efficiency in low-data regimes as 

well as the impact of the size of pre-training dataset. We show the proposed 

method’s generalizability by validating it on public datasets: BTCV, KiTS19, and 

BraTS2021.

2. Related works

Medical Segmentation with Transformers.

Transformer models demonstrate the ability of modeling longer-range dependencies for high 

dimension and high-resolution medical images in 3D Space. The scalability, generalizability, 

and efficiencies of ViT and hierarchical transformers enable stronger representation learning 

for dense predictions (e.g., pixel-to-pixel segmentation). Medical image segmentation tasks 

embed learning problems with multi-scale features instead of fixed scale, such as word 

tokens. To employ the vanilla Transformer (Dosovitskiy et al., 2020) for medical images, 

recent works proposed variant architectures that use ViT as network components.

Transformer is known for its capability of capturing long-range dependencies but lacks 

inductive bias, which is inherent in CNNs. To reap the advantages of both CNNs 

and transformers, many efforts have been made to integrate the benefits of CNNs and 

transformers into a hybrid network. In the medical image segmentation domain, these works 

can be classified into three types: Transformer as main encoder, transformer as secondary 

encoder, and fusion model of both transformer encoder and CNNs encoder (Li et al., 2023).

When utilizing the Transformer as the primary encoder, the segmentation model usually 

includes a sequence of successive transformer blocks as the encoder. Various studies have 

used this design, such as UNETR, VT-UNet, and SwinUNETR (Hatamizadeh et al., 2022; 

Peiris et al., 2021; Tang et al., 2022). The advantage of sequence-to-sequence modeling 

as the first embedding for medical images is to directly generate tokenized patches for 

the feature representation. Most of these methods connect a convolutional neural network 

(CNN)-based decoder and form the ‘‘U-shaped’’ architecture for segmentation. This design 

features the long-range modeling ability for input images with a transformer encoder and 

better inductive bias with CNN decoder.

The second design utilizes a transformer as a secondary encoder after the CNNs encoder. 

The reason for this design is two-fold. Firstly, due to the lack of inductive bias in 

transformer models, encoding image feature with CNN networks leads to superior global 

feature modeling. Secondly, performing global self-attention on voxels in high-resolution 

medical images is computationally intensive. By using the CNN encoder first, the 

computational workload can be significantly reduced (Li et al., 2023). One early use of 

vanilla transformer blocks for medical segmentation is the TransUNet (Chen et al., 2021b), 

which used 12 2D transformer layers for encoding bottleneck features. TransUNet++ (Wang 

et al., 2022), AFTer-UNet (Yan et al., 2022), TransClaw (Chang et al., 2021), Ds-TransUNet 
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(Lin et al., 2021), TransAttUNet (Chen et al., 2021a) and GT-UNet (Li et al., 2021b) 

improved the self-attention blocks and achieved promising performance in CT segmentation. 

In addition, TransBTS (Wang et al., 2021a), CoTr (Xie et al., 2021b), and TrasnBridge 

(Deng et al., 2021) explored variant modules such as deformable transformer blocks for 3D 

image segmentation tasks. Later, SegTrans (Li et al., 2021a), MT-UNet (Wang et al., 2021c) 

introduced squeeze and expansion mechanisms and mixed structure for modeling context 

affinities. BAT (Wang et al., 2021b) and Poly-PVT (Dong et al., 2021) used grouping or 

boundary-aware designs to improve transformer robustness with cross-slice attention.

The third design utilizes both transformer and CNNs encoders in parallel, which are also 

called fusion models. This design aims to take the global and local information from the 

transformer and CNNs encoder, respectively, for better representation learning. The encoded 

representations by two encoders are then fused into a single decoder. TransFuse (Zhang 

et al., 2021a), and FusionNet (Meng et al., 2021) are pioneering works that benefit from 

learning global and local features. The PMtrans (Zhang et al., 2021b) and X-Net (Li et al., 

2021c) introduce a multi-branch pyramid and a dual encoding network which demonstrate 

leading results on pathology images. MedT (Valanarasu et al., 2021) and Ds-TransUNet 

(Lin et al., 2021) proposed a CNN global branch and a local transformer branch with an 

axial self-attention module. With a fusion model, input medical images are split into both 

whole feature and non-overlapping patches followed by two encoder branches. With fusion 

designs, model complexities are commonly large due to the additional encoding branches, 

which is a disadvantage of these models. To the best of our knowledge, no fusion model has 

been proposed for volumetric medical image segmentation.

Recently, scientists have investigated the full adoption of transformer models for medical 

image segmentation. There are challenges in using pure transformer models, especially for 

3D images, due to the limitation of inductive bias and the high complexity of transformers. 

Swin UNet (Cao et al., 2021) is a pure transformer model designed for 2D medical images. 

It adopted the ‘‘U-shape’’ architecture and used a skip connection that connected the 

encoded features to the transformer decoder. D-Former (Wu et al., 2022) utilized dynamic 

position encoding blocks and local scope modules for improving local feature representation 

learning. MISSformer (Huang et al., 2021) is a pure transformer network with feed-forward 

enhanced blocks in its transformer modules. This design leveraged long-range dependencies 

with local features at different scales. The nnFormer (Zhou et al., 2021a) is another 

promising network that used 3D transformers and combined encoder and decoder with self-

attention operations. nnFormer incorporated a skip attention mechanism to replace simple 

skip connections, which outperformed CNN-based methods significantly. Though the use 

of pure transformers as the model is more intuitive and better for design consistency; Yet, 

there are still uncharted areas using self-attention in the decoder. High model complexity can 

cause unsatisfied robustness and is challenging to explore in 3D context.

Pre-training transformers with a large-scale dataset are of potential value to boost 

transformer model performance (Dosovitskiy et al., 2020). Empirical studies (Zhai et al., 

2022) show that the transformer model can have better scalability when more data are fed. 

In the medical domain, researchers have explored self-supervised pre-training approaches 

with CNNs (Zhou et al., 2021b). More recently, pre-training 3D transformers (Tang et al., 
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2022) for radiological images have been presented. Furthermore, uniformed pre-training 

frameworks (Xie et al., 2021a,c) are shown to construct teacher–student models for medical 

data. However, the use of pre-training is computationally exhaustive. In this paper, we aim to 

simplify and evaluate the effect of the pre-training framework with empirical studies.

Hierarchical Feature Aggregation.

The aggregation of multi-level features could improve segmentation results by merging 

the features extracted from different layers. Modeling hierarchical features, such as U-Net 

(Çiçek et al., 2016) and pyramid networks (Roth et al., 2018), multi-scale representations are 

leveraged. The extended feature pyramids compound the spatial and semantic information 

through two structures, iterative deep layer aggregation which fuses multi-scale information 

as well as deep hierarchical aggregation which fuses representations across channels. In 

addition to a single network, nested UNets (Zhou et al., 2018), nnUNets (Isensee et al., 

2021), coarse-to-fine (Zhu et al., 2018) and Random Patch (Tang et al., 2021a) suggest 

multi-stage pathways enrich the different semantic levels of features progressively with 

cascaded networks. Different from the above CNN-based methods, we explore the use of 

data-efficient transformers for modeling hierarchical 3D features by block aggregation.

3. Method

3.1. Hierarchical transformer encoder

The overall UNesT architecture is shown in Fig. 1. The input image is a sub-

volume X ∈ ℝH × W × D × C and the volumetric embedding token has a patch size of 

Sℎ × Sw × Sd × C. 3D tokens are projected onto a size of H
Sℎ

× W
Sw

× D
Sd

× C′ in 

the patch projection step, where C′ is the embedded dimension. Following the motivation 

in Zhang et al. (2022) for efficient non-local communication, all projected sequences of 

embeddings are partitioned to blocks (blockify) with a resolution of X ∈ ℝb × T × n × C′, 
where T  is the number of blocks at the current hierarchy, b is the batch size, n is 

the total length of sequences, as shown in Fig. 1. The blocks are non-overlapping and 

n remains the same in different hierarchies. The dimensions of the embeddings follow 

T × n = H
Sℎ

× W
Sw

× D
Sd

. Each block is fed into sequential of transformer layers (Sharir 

et al., 2021) separately, which consist of the canonical multi-head self-attention MSA , 

multi-layer perceptron MLP  with skip connection (He et al., 2016), and layer normalization 

LN  (Ba et al., 2016). We add learnable position embeddings to sequences for capturing 

spatial relations before the blocked transformers. The output of transformer encoder is 

computed as follows:

zt = MSAHRCHY1 LN zt − 1 + zt − 1, t = 1…L
zt = MLP LN zt + zt, t = 1…L

(1)
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where MSAHRCHY1 denotes the multi-head self-attention layer of hierarchy l, zt and zt are the 

output representations of MSA and MLP and L denotes the number of transformer layers. 

zt − 1 denotes the input of the transformer encoder, as shown in Fig. 1, after undergoing layer 

hlnormalization and MSA, zt − 1 is added to the output via a skip connection to produce zt. 

The result is then passed through another layer hlnormalization and a MLP. Finally, zt is 

added to the final result to generate the output of a transformer layer, denoted by zt, which 

serves as the input to the subsequent transformer layer.

In practice, MSAHRCHY1 is applied in parallel to all partitioned blocks:

MSAHRCHY1 Q, K, V = Stack BLK1, …, BLKT

BLK = MSA( Q, K, V = Stack Softmax QiKi
⊤

σ V i W o, i = 1…H,

(2)

where Q, K, V  denotes queries, keys, and value vectors in the multi-head attention, and 

H represents the total heads in the MSA. In each block, Q, K, V  have the dimension of 

σ. Dot-product attention is applied between Q and KT to get an attention matrix of size 

σ × σ. To overcome the issue that when σ has a large value, the dot product between Q
and K becomes magnified causing the softmax function to produce extreme value, the dot 

products is scaled by 1
σ  Vaswani et al. (2017). V  is then multiplied with the attention 

matrix to get the final output with size σ. The computation of each head is performed in 

parallel and then combined through concatenation. The final result is then reshaped with 

matrix W ∈ ℝH ⋅ σ × dout to match the output dimension. As previously stated, each block 

shares a common size of b × n × C′ within the same hierarchy so that the MSA output 

of each block has the same size. The outputs of each block are concatenated to obtain the 

final results, which represent the MSA of that particular hierarchy. All blocks at each level 

of the hierarchy share the same parameters given the input X, which leads to hierarchical 

representations without increasing complexity.

3.2. 3D block aggregation

We extend the spatial nesting operations in Zhang et al. (2022) to 3D blocks to form a local 

attention hierarchical design. Different to Liu et al. (2021), Tang et al. (2022), which utilizes 

global attention among ‘‘shift windows’’. In our design, transformer encoders are applied 

to each volume block separately to achieve local attention, with each block being modeled 

independently. Information across blocks is communicated by the aggregation module. This 

design leads to reduced computational complexity and improved data efficiency.

In the first hierarchy, suppose the input feature size is H′ × W ′ × D′ × C′. The input 

feature is blockified into T  blocks with the aforementioned size of T × n × C′. After 

the transformer encoder, the blocks are transformed back to the feature map with size 

H′ × W ′ × D′ × C′, which serves as the input of the next hierarchy. In the following 

hierarchy, the input feature downsamples by a factor of 2 for each dimension and 
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transformed to embedded dimension before blockify with a pooling block consisting of 

a convolutional layer, a normalization layer and a max pooling layer to build multi-scale 

feature maps as in Ronneberger et al. (2015), Liu et al. (2021) for better representation 

learning. Applying the pooling block before blockify facilitates the information exchange 

between blocks and enables non-local communication because it allows convolution and 

pooling to be performed on the spatial area that belongs to different blocks after blockifying. 

The pooling block reduces the feature size by 2 × 2 × 2, and the sequence length n remains 

the same, the number of blocks T  reduces by a factor of 8 in each hierarchy as a result. 

Consequently, in the subsequent level of the hierarchy, the feature maps are blockified to 

the size of T
8 × n × C″, where C″ represents the embedded dimension in that hierarchy. The 

unblocked feature maps after the transformer encoder have a size of H′
2 × W ′

2 × D′
2 × C″. 

This process continues until the number of blocks T  reach 1.

In our model design, there are three hierarchies which result in a total number of 64, 8, and 

1 block in each hierarchy. In the volumetric plane, the encoded blocks are merged among 

adjacent block representations, as it shown in Fig. 1. The design and use of the aggregation 

modules in the 3D scenario leverage local attention and improved data efficiency which we 

demonstrate in our ablation studies.

3.3. Decoder

To better capture localized information and further reduce the effects of lacking inductive 

bias in transformers, we use a hybrid design with a convolution-based decoder for 

segmentation.

We use a patch size of 4 × 4 × 4 in our encoder. The patch embedded dimension is set to 

128 so that the feature size is H
4 × W

4 × D
4 × 128 after patch projection. The 3 hierarchies 

have a number of transformer layers (depth) of 2, 2, and 8 and embedded dimensions 

(width) of 128, 256, and 512, respectively. The feature size at the end of each hierarchy is 
H

4 × 2i × W
4 × 2i × D

4 × 2i × C where i = 0, 1, 2 and C = 128, 256, 512, as shown in Fig. 1 

The feature map from the last hierarchy is fed into a layer normalization layer to generate 

the transformer encoder output.

As previously mentioned, the feature size is reduced by a factor of 2 in each dimension 

at each level of the hierarchy, resulting in the generation of multi-resolution feature maps. 

Inspired by the U-shape models (Ronneberger et al., 2015) which utilize multi-scale strategy, 

we merge the multi-resolution features which is the output of each hierarchy with the 

decoder with skip connections followed by convolutional layers.

The bottleneck is generated by feeding the output of the last hierarchy to a layer 

normalization followed by a 3 × 3 × 3 convolutional layer. We upsample the bottleneck 

by applying a transpose convolutional layer. The output of the transposed convolution 

is concatenated with the prior hierarchical representations and fed into a residual 

block consisting of two 3 × 3 × 3 convolutional layers, each followed by an instance 
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normalization (Ulyanov et al., 2016) layers (Fig. 1). In each hierarchy, excluding the 

last one, we have incorporated a residual block with the aforementioned layers in the 

skip connection between the hierarchy’s output (encoder) and decoder. Since we believe 

these residual blocks can help minimize the semantic gap between the features from 

the transformer encoder and the CNN decoder. However, since the bottleneck in our 

architecture involves transforming the output of the last layer using a normalization layer 

and a convolutional layer, the semantic meaning is expected to be similar to that of the 

last hierarchy’s output. Therefore, we choose not to include a residual block in the skip 

connection of the last hierarchy. The processed feature maps from the encoder are then 

concatenated with the feature maps from lower hierarchies or bottleneck upsampled by 

transposing convolutional layers. This merged feature map is then passed through another 

residual block with the layers mentioned earlier to merge the information from both the 

encoder and decoder. To enhance the semantic information, we apply the aforementioned 

residual block to both the input image and the features obtained after the path projection. 

The resulting features were then passed to the decoder through the skip connection, as 

illustrated in Fig. 1. The segmentation mask is acquired by 1 × 1 × 1 convolutional layer 

with a softmax activation function. Compared to some prior related works such as TransBTS 

(Wang et al., 2021a) and CoTr (Xie et al., 2021b), our design employs the hierarchical 

transformer directly on images and extracts representations at multiple scales without 

convolutional layers.

4. Experiments

4.1. Dataset

Whole Brain Segmentation Dataset.—Training and testing data are MRI T1-weighted 

(T1w) 3D volumes from 10 different sites. The training set consists of 50 scans from the 

Open Access Series on Imaging Studies (OASIS) (Marcus et al., 2007) dataset which is 

manually traced to 133 labels based on the BrainCOLOR protocol (Klein et al., 2010) 

by Neuromorphometrics Inc. The size of the data is 256 × 256 × [270, 334] with 1 mm 

isotropic spacing. The testing cohort contains Colin27 (Colin) T1w scan (Aubert-Broche 

et al., 2006) and 13 T1w MRI scans from the Child and Adolescent Neuro Development 

Initiative (CANDI) (Kennedy et al., 2012) dataset. The Colin dataset contains one high-

resolution scan averaging from 27 scans of the same subject. The label is manually traced to 

130 labels based on BrainCOLOR protocol. The size of the scan is 362 × 362 × 434 with 

0.5 mm isotropic spacing. The CANDI dataset is manually traced to 130 labels following the 

BrainCOLOR protocol. The size of the scan is 256 × 256 × 128 with spacing of 0.94 mm 

× 0.94 mm × 1.5 mm. A detailed class name and the 3 classes not labeled in the test sets 

can be found in Table A.13 in the supplementary material. The CANDI dataset contains a 

different age group (5–15 years old) compared to the OASIS training cohort (18–96 years 

old), which allowed assessment of different populations. Following the same practice in 

Huo et al. (2019), we use auxiliary labels comprising of 4859 T1w MRI scans from eight 

different sites whose labels are generated by using an existing multi-atlas segmentation 

pipeline (Asman and Landman, 2014) to pre-train the model and finetune the pre-trained 

model with the 50 manually traced data from the OASIS dataset. A detailed summary of the 

4859 multi-site images is shown in Table 1.
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Renal Substructure Dataset.—We construct an internal cohort of the renal 

substructures segmentation dataset with 116 subjects imaged under institutional review 

board (IRB) approval (IRB #131461). Cortex, medulla, and pelvicalyceal systems are 

labeled in the dataset (Fig. 2). Data with ICD codes related to kidney dysfunction are 

excluded since they could potentially influence kidney anatomy. The left and right renal 

structures are outlined manually by three interpreters under the supervision of clinical 

experts. The renal columns are included in the cortex label. The medulla is surrounded by 

the cortex, and the pelvicalyceal systems contain calyces and pelvis that drain into the ureter. 

All manual labels are verified and corrected independently by expert observers. For the test 

set of 20 subjects, we perform a second round of manual segmentation (interpreter 2) to 

assess the intra-rater variability and reproducibility. The image size of each scan is 512 × 

512 × [90, 131] with spacing of [0.54, 0.98] mm × [0.54, 0.98] mm × 3.0 mm.

Multi-organ Segmentation (BTCV) Dataset.—We evaluate model generalizability 

with the Beyond The Cranial Vault (BTCV) dataset. It is comprised of 100 de-identified 

contrast-enhanced CT volumes with 13 labeled anatomies, including spleen, right kidney, 

left kidney, gallbladder, esophagus, liver, stomach, inferior vena cava (IVC), portal and 

splenic veins (PSV), pancreas, right and left adrenal gland. The image size of each scan is 

512 × 512 × [80, 255] with the spacing of [0.54, 0.98] mm × [0.54, 0.98] mm × [2.5, 7.0] 

mm. 50 scans are publicly available in the MICCAI 2015 Multi-atlas Labeling Challenge 

(Landman et al., 2015), in which 20 scans are used for public testing.

KiTS19.—To further validate the generalizability of the proposed method for characterizing 

renal tissues, we apply the model to the public KiTS19 dataset. The KiTS19 (Heller et al., 

2021) task focuses on the whole kidney and kidney tumor segmentation. Images and labels 

from 210 subjects are publicly available. The image size of each scan is 512 × [512, 796] × 

[29, 1059] with spacing of [0.44, 1.04] mm × [0.44, 1.04] mm × [0.5, 5.0] mm.

Brats.—The BraTS 2021 dataset contains 1251 subjects, and each scan is associated with 

4 MRIs: (1) native (T1) and (2) post-contrast T1-weighted (T1Gd), (3) T2-weighted (T2), 

and (4) T2 Fluid-attenuated Inversion Recovery (T2-FLAIR). Each subject’s images are 

registered and resampled to 1.0 × 1.0 × 1.0 mm isotropic resolution. The input 3D volumes 

are of size 240 × 240 × 155.

4.2. Implementation details

To eliminate the impact of data difference on the final performance, all baseline models 

undergo the same data augmentation and pre-processing steps, except of the nnUNet 

framework-based methods. Experiments are implemented in Pytorch and MONAI1. All 

segmentation models are trained with a single Nvidia RTX 5000 16G GPU with an 

input volume size of 96 × 96 × 96. We follow the initial learning rate and weight decay 

configurations used in each respective baseline, provided that the original baseline was 

tested on the same task. If the baseline does not test on that task, for nn-UNet based method 

(nn-UNet and CoTr), we keep the initial settings since the training planner in the code has 

1 https://monai.io/ 
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the original learning rate set as default. For the other models, we adopt an identical learning 

rate of 1e-4 and weight decay of 1e-4. The rationale behind this decision is twofold. Firstly, 

these baselines’ initial learning rate and weight decay settings match or closely resemble this 

setting. Secondly, we utilize a cosine scheduler with 500 step warm-up for all the models 

which will adjust the learning rate based on the models accordingly.

4.2.1. Whole brain segmentation—During pre-training with auxiliary labels, the 

learning rate is initialized to 0.0001 with weight decay of 1e−4 to train for 200 K iterations. 

During finetuning, the learning rate is set to 1e−5 to train for 50 K iterations. As shown 

in Fig. 3, all data are registered to the MNI space using the MNI305 (Evans et al., 1993) 

template and preprocessed following the method in Huo et al. (2019). All processed images 

have a size of 172 × 220 × 156 with isotropic spacing of 1 mm. Registered input images 

are randomly cropped to the size of 96 × 96 × 96 during the online augmentation. We use 

a five-fold cross-validation strategy during finetuning. The best-performing model in each 

fold is selected to test on the external testing set and ensembled to get the final prediction 

in the MNI space. Predictions in MNI space are inverse transformed to the original space 

using NiftyReg (Ourselin et al., 2001) for evaluation (Fig. 3). No data augmentation is used 

in all the experiments due to the negative impact on model performance observed during 

our experiments. Segmentation performances are evaluated using Dice similarity coefficient 

(DSC) and symmetric Hausdorff Distance (HD).

4.2.2. Renal substructures segmentation—Five-fold cross-validation is used for all 

experiments on 96 subjects, while 20 subjects are used for held-out testing. The five-fold 

models’ ensemble is used for inference and evaluating test set performance. For experiment 

training, we used (1) a CT window range of [−175, 275] HU; (2) scaled intensities of [0.0, 

1.0] with 1.0 mm isotropic spacing. The learning rate is initialized to 0.0001, followed by a 

weight decay of 1e−4 for 50 K iterations. Common data augmentation such as random flip, 

rotation, and change of intensity are applied with the probability of 0.1. For fair comparison 

and direct evaluation of the effectiveness of models, no pre-training is performed for all 

segmentation tasks. Segmentation results are evaluated with DSC and HD. We conduct 

volumetric analyses on kidney components in terms of R squared error, Pearson R, absolute 

deviation of volume, and the percentage difference between the proposed method and 

manual label.

4.2.3. Multi-organ segmentation—80 subjects are used for training/validation and 20 

are used for testing. The images are resampled to 1.5 mm × 1.5 mm × 2.0 mm. We perform 

the same data augmentation as the renal substructure segmentation. The learning rate is 

initialized to 0.0001 followed by a weight decay of 1e−4 for 100 K iterations. Segmentation 

results are evaluated with DSC.

4.2.4. Kidney and kidney tumor segmentation—We perform five-fold cross-

validation experiments on 210 subjects and show DSC results of the held-out 20%. The 

experiments have the same settings as the renal substructures dataset.
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4.2.5. Brain tumor segmentation—Following the same data split of Swin UNETR 

(Tang et al., 2022), SegResNet (Myronenko, 2019), and nnUNET (Isensee et al., 2021), we 

train our method with five-fold cross-validation with a ratio of 0.8 and 0.2.

5. Results

We evaluate the UNesT performance against recent convolutional-(Isensee et al., 2021) and 

transformer-based (Wang et al., 2021a; Zhou et al., 2021a; Hatamizadeh et al., 2022; Tang et 

al., 2022) 3D medical segmentation baselines. UNesT presents distinguished results on the 

task of whole brain segmentation with 133 tissue classes. Next, we perform experiments on 

the first kidney substructures CT dataset. We further validate model generalizability with the 

publicly available BTCV, KiTS19, and BraTs2021 datasets.

5.1. Whole brain segmentation

A detailed comparison of quantitative performance is shown in Table 2 and Fig. 4. The 

qualitative performance is shown in Fig. 5. All the models are pre-trained with 4859 

auxiliary pseudo labels and are finetuned with 50 manually traced labels from OASIS in 

the 5-fold ensemble setting. We first compare the proposed UNesT model with nnUNet 

(Isensee et al., 2021) and several transformer-based methods. Most of the methods have 

infinite HD on the CANDI dataset associated with 0.43 to 0.69 DSC score indicating those 

methods fail to predict all of the 130 classes in the external testing set. UNETR performs 

the best among these widely used 3D medical image segmentation methods. Compared with 

UNETR, UNesT improves the performance in the Colin (from 0.7320 to 0.7444) and the 

CANDI (from 0.6851 to 0.7025) dataset by a margin. SLANT27 (Huo et al., 2019), the prior 

state-of-the-art method, divides the whole brain into 27 parts and ensembles 27 tiled 3D-

UNet (Çiçek et al., 2016) for the final predictions. Within the same 5-fold ensemble settings, 

UNesT ensembled with 5 models outperforms SLANT27 ensembled with 135 models in 

terms of DSC in both Colin (0.7444 vs. 0.7264) and CANDI (0.7025 vs. 0.6968) dataset and 

achieves the state-of-the-art performance. UNesT achieves significant improvement on the 

test set compared to SLANT27 with p < 0.05 under Wilcoxon signed-rank test and further 

reduces the variation of DSC score distribution with tighter quartiles (Fig. 4). In Fig. 5, we 

show UNesT has better captures on the boundary and correctly segments brain tissues. As 

the external testing set represents a high resolution and different age population cohort, we 

show that our method can generalize learned knowledge to different populations (see Table 

3).

5.2. Characterization of renal substructures

Segmentation Results.—Compared to canonical kidney studies using shape models or 

random forests in Table 4, deep learning-based methods improve the performance by a large 

margin from 0.7233 to 0.7991. Among the nnUNet (Isensee et al., 2021) and extensive 

transformer models, we obtain the state-of-the-art average DSC score of 0.8564 compared to 

the second-best performance of 0.8411 from SwinUNETR, with a significant improvement 

p < 0.05 under Wilcoxon signed-rank test. We observe higher improvement in smaller 

anatomies such as the medulla and collecting systems. We compare qualitative results in Fig. 

6. Our method demonstrates the distinct improvement of detailed structures for the medulla 
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and pelvicalyceal systems. Fig. 7 shows that the proposed automatic segmentation method 

achieves better agreement compared to inter-rater assessment, 0.03 against 0.29 of mean 

difference indicating reliable reproducibility.

Volumetric Analysis.—Table 5 lists the volume measurement with the proposed method. 

The UNesT achieves an R squared error of 0.9348 on the cortex. The correlation 

performance metric with Pearson R achieves 0.9896 for the UNesT against the manual 

label on the cortex. Our method obtains 2.5259 with an absolute deviation of volumes. 

The percent difference in the cortex is 3.8411. We observe the same trend for the Medulla 

and Pelvicalyceal systems. Quantitative results show that our workflow can serve as the 

state-of-the-art volumetric measurement compared to the prior kidney characterization state-

of-the-art (Tang et al., 2021b).

5.3. Multi-organ segmentation

We present the quantitative performance and qualitative segmentation comparison on the 

BTCV dataset in Table 6 and Fig. 8, respectively. No pre-training or ensemble is performed 

in all experiments. UNesT achieves the best average performance on BTCV dataset which 

demonstrate the generalizability of UNesT. Compared with the other methods, UNesT 

achieves large improvement on organs that are small in size, such as the esophagus, 

pancreas, and adrenal glands, where UNesT outperforms the second best performing method 

by 2.5%, 1.2% and 1.9%, respectively. In Fig. 8 rows 1 and 2, UNesT successfully 

differentiates stomach tissues and background tissues demonstrating that UNesT has a better 

capability on identifying heterogeneous organs. UNesT better captures spatial information 

in Fig. 8 row 3, where most of the other model confuses right/left kidneys and liver/spleen 

tissues.

5.4. Kidney and tumor segmentation

To validate the generalizability of UNesT, we compare KiTS19 results among nnUNet 

(Isensee et al., 2021) and transformer-based methods. Our approach achieves moderate 

improvement at DSC of 0.9794 and 0.8439 for kidneys and tumors, respectively, as shown in 

Table 7, indicating that the designed architecture can be used as a generic 3D segmentation 

method. We show a qualitative comparison between our transformer-based model with the 

CNN-based nnUNeT in Fig. 9. Case 1 is an above average sample that shows UNesT 

achieves a clearer boundary between kidney and tumor, while case 2 is an under average 

case where the 3D DSC score of UNesT achieves 0.80 compared to 0.72.

5.5. Brain tumor segmentation

In Table 8, we compared the performance of UNesT with three top-performed methods in 

BraTS 2021 challenge dataset. Dice scores of the three types of brain tumors are presented 

in the table with 5 folds experiment design. UNesT consistently outperforms the CNN-based 

method SegResNet and nnUNet, and the transformer-based Swin UNETR. In particular, 

for ET, UNesT achieves top Dice scores of 0.898 on average and outperforms the closest 

competing method by 0.7%. Overall, the average Dice across 5 folds and 3 brain tumor 

structures is 0.917 which surpasses the state-of-the-art by 0.4%.
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5.6. Ablation study

5.6.1. Model scales—To investigate the scalability of our proposed model, we designed 

‘‘small’’, ‘‘base’’ and ‘‘large’’ UNesT models (UNesT-S, UNesT-B and UNesT-L) by 

scaling the depth, heads and width of the transformer. Detailed parameters of UNesT models 

with various hyperparameter settings are shown in Table 9. Experiments are performed on 

whole brain segmentation task with 50 T1w MRI scans from the OASIS dataset. 45 T1w 

scans are used for training and the other 5 for validation. No pre-training is performed for all 

the models. We start with 20% of the training data and add 20% each time until all data are 

included. All models are trained five times with 9, 18, 27, 36, and 45 samples, respectively. 

Fig. 10(a) and (b) shows the quantitative results of DSC in the CANDI and Colin dataset, 

respectively. Fig. 10(c) shows the distribution of the average DSC in each subject of the test 

set. Fig. 11 shows the qualitative comparison of whole brain segmentation of different model 

scales trained with 45 T1w scans.

We observe that larger models and additional data improve segmentation performance. 

Larger models are more data efficient as with the amount of training data increase, larger 

models perform better than smaller models. In Fig. 11, compared with UNesT-S and UNesT-

B, UNesT-S evidently mis-classified a large amount of background and brain tissues pixels 

whereas UNesT-B has mostly clean background indicating that UNesT-B better utilizes the 

training data efficiently. UNesT-L further improves the segmentation results indicating that 

larger models are more data efficient. In terms of reducing annotation effort, both UNesT-B 

and UNesT-L perform better with 9 training samples than UNesT-S with all the training 

samples, which reduces the annotation effort by at least 80%. When adding additional data, 

the DSC score increases for all the models of different scales. In terms of the relationship 

between model size and DSC score performance, although the DSC score performance 

steadily increases as the model scale increases, the performance differences become smaller. 

In low-data regime, UNesT-B can achieve comparable DSC compared to UNesT-L, but 

UNesT-B marginally outperforms UNesT-S. When all the training data are included, the 

performance increase ratio between UNesT-B and UNesT-S is 5.41% (0.6941 versus 0.6585) 

compared with 1.83% between UNesT-S and UNesT-B (0.7068 versus 0.6941) on the 

Colin dataset and 3.93% (0.6244 versus 0.6008) versus 3.04% (0.6434 versus 0.6244) on 

the CANDI dataset. Although UNesT-L has 3 times more parameters than UNesT-B, the 

comparable performance between UNesT-L and UNesT-B indicates UNesT-B is efficient for 

the training data. After reaching a certain point, scaling up models may not necessarily lead 

to large performance improvements.

In Table 10, we summarize the training and testing/inference time with the whole brain 

segmentation using different model scales and sliding window overlaps. According to our 

benchmarks, the inference time is mostly impacted by the sliding window overlap, as the 

increase of overlap will result in a significant number of patches in overlap = 0.7. We 

benchmark the registered MRI volume 172 × 220 × 156. In practical clinical settings, auto 

segmentation of a given MRI volume with a single GPU or CPU can achieve satisfactory 

performance (shown in Fig. 10) and inference time (e.g., 2.34 s).
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5.6.2. Data efficiency—We investigate the data efficiency of our proposed method 

using the whole brain and renal substructures dataset. Fig. 11 shows the performance 

comparison between different UNesT variants, base and larger model are of better data-

efficient when training with less data (e.g., 9 or 18). We show the UNesT-B model achieves 

133 classes segmentation of DSC 0.6131 with only 9 training samples. Fig. 12 shows the 

data efficiency evaluated and compared on the renal substructure dataset. UNesT achieves 

DSC of 0.7903 compared to the second-best SwinUNETR 0.7681 when training with 20% 

samples. With the increase of training data, our method performs consistently higher DSC 

compare to baseline methods. We observe the UNesT model trained with 20% data is 

comparable to nnUNet or TransBTS using full training data, which shows superior data 

efficiency.

5.6.3. Effects of block aggregation—We show the hierarchical architecture design 

(with 3D block aggregation) provides significant improvement for medical image 

segmentation (as shown in Fig. 12). The result shows that the hierarchy mechanism 

achieves superior performance at 20% to 100% of training data. Under a low-data regime, 

block aggregation achieves a higher improvement (> 3% of DSC) compared to the second-

best method. We notice that the model without block aggregation (canonical transformer 

layers) obtains lower performance. In addition, UNesT with block aggregation demonstrates 

a faster convergence rate (15% and 4% difference at 2 K/30 K iterations) compared 

to the backbone model without hierarchies. The results show block aggregation is an 

effective component for representation learning for transformer-based models. In addition, 

compared with the Swintransformer-based method, our UNesT shows consistently superior 

performance, especially in whole brain segmentation, which indicates the 3D aggregation 

modules perform better than shifted window module for local patch communication.

5.6.4. Size of pre-training dataset in whole brain segmentation—Acquiring 

human annotation is labor intensive, thus many studies (Yang et al., 2022a; Roy et al., 

2017; Huo et al., 2019; Yang et al., 2022b) adopt the strategy of pre-training with pseudo 

labels and then finetuning with human annotations to get around this limitation and increase 

model performance. Herein, we perform experiments using different amounts of pre-training 

data in the whole brain segmentation to investigate the impact of pre-training data quantity 

on the final results. We repeat the experiments 6 times with 5, 25, 125, 625, 3125, and 

all available pre-training data, respectively. All the pre-trained models are finetuned using 

the OASIS dataset in the same 5-fold cross-validation setting. We include the results of 

the training from scratch using the OASIS dataset for comparison. The results are shown 

in Fig. 13. We observe that increasing the number of pre-trained examples up to 125 

resulted in a rapid improvement in the DSC score. Pre-training sizes greater than 125 do 

not further advance performance and the results fluctuate in a small range. This observation 

demonstrates that UNesT can benefit from pre-training using pseudo data, but a large pre-

training dataset is not a necessity. When the amount of pre-training data reaches a certain 

limit, the performance gains are reduced. Instead, adding more pseudo data could possibly 

confuse the network.
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6. Discussion

6.1. Why do we need an efficient hierarchical transformer-based medical segmentation 
model?

In this paper, we target the critical problem that transformed-based models commonly 

lack of local positional information resulting in sub-optimal performance when handling 

considerable tissue classes in 3D medical image segmentation. Specifically, medical 

segmentation datasets are small where images are of spatially high-resolution and high 

dimensionality which can lead to data inefficiency. Our proposed UNesT addresses 

the above problem by hierarchically aggregating the spatially adjacent patches and 

leveraging the global self-attention mechanism to combine global and local information 

efficiently. SwinUNETR (Tang et al., 2022), which uses ‘‘shifted window’’ for local 

patch communication, observed good but inconsistent performance. Specifically, it achieves 

second-best performance in the renal substructures segmentation, but in the whole brain 

segmentation, its DSC scores in test datasets under-perform the second-best performing 

SLANT27 model by a large margin. Our method consistently achieves superior results on 

the four evaluated heterogeneous tasks.

We highlight our method on dealing with multiple tissues and inter-connected structures. 

Compared to the prior state-of-the-art method SLANT27 (Huo et al., 2019), which used 27 

ensembled networks, UNesT successfully achieves better performance with a single model. 

Among current 3D medical image segmentation methods, we address the challenging tasks, 

including more than one hundred structures in T1w MRI, three inter-connected components 

in kidneys, thirteen major organs in the abdomen, kidney-tumor, and brain-tumor connected 

tissue.

When predicting multiple tissues that have various sizes and shapes simultaneously, the 

model performance is often susceptible to the tissues that are small in size. And when 

dealing with inter-connected tissues, model performance is particularly sensitive to boundary 

prediction, where missing boundary prediction will jeopardize the results of adjacent classes. 

However, boundary prediction is not a trivial task in medical image segmentation since the 

images usually have blurry boundaries and similar intensity/appearance which make it hard 

to characterize one tissue from another. In our UNesT model, we adopt hierarchical design 

which utilizes multi-scale strategy to handle the difference in tissue size and blurry boundary 

problems. At a coarse scale, the model can focus more on the overall structure of the image, 

and at a finer scale, the model can focus more on the detail of the tissues. Additionally, our 

design of 3D block aggregation provides additional adjacent positional information to the 

model, which gives it better tissue distinguish capability. Therefore, UNesT achieves better 

performance on handling multiple tissues and inter-connected tissue problems.

UNesT shows consistent competitive performance for the brain tumor segmentation task, 

which is a difficult problem. UNesT contains several hierarchical blocks as its encoder, 

and it can efficiently encode the multi-scale features of the 3D multi-modal inputs. And 

multi-scale embeddings are of significant value to medical image segmentation. We also 

observe that Swin UNETR, SegResNet, and nnU-Net achieve close competitive performance 

in this dataset. The three baselines contain feature downsample and upsample modules, 
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where multi-scale feature maps are utilized and output to the decoder. The quantitative 

results show that our method can be effective at modeling tumor tissues and efficiently 

learning multi-scale features.

The superior performance of UNesT in these inferences 5 different tasks demonstrates 

the effectiveness and efficiency of UNesT in segmenting multiple structures/tissues with 

small medical datasets. Specifically, we validate that our model is data efficient in low-

data regimes. Moreover, our experiments show that larger models are more data efficient, 

suggesting the proposed network is easily scalable if necessary. Furthermore, we study the 

impact of the number of pseudo labels used for pre-training. We observed that pre-training 

sizes exceeding a certain number do not further advance model performance. On the 

contrary, adding more pseudo labels may confuse the network and decrease performance 

(Fig. 13).

6.2. The combination of CNN and transformers

The proposed UNesT follows the first class of the CNNs and transformer combination 

design where transformer is the main encoder and CNNs served as the decoder. To evaluate 

the effectiveness of our proposed UNesT in comparison to other CNN and transformer 

hybrid models, we compare two models falling under the first category - UNETR and 

SwinUNETR. Additionally, we include TransBTS and CoTr from the second category, 

where transformers serve as secondary encoders and CNNs serve as the main encoder and 

decoder. All these baseline methods are specifically designed for 3D volumetric medical 

image segmentation. As there are currently no existing techniques in the third category that 

are optimized for this task, we do not include them in our comparative analysis.

CoTr achieves good performance in whole brain segmentation and multi-organ segmentation 

task in terms of DSC. However, in whole brain segmentation, both TransBTS and CoTr 

have inf value in the HD of the CANDI dataset. This may indicate that this type of model 

is susceptible to outliers. On the other hand, UNETR, SwinUNETR, and UNesT achieve 

relatively stable performance among four datasets, especially when dealing with outlier 

cases in the whole brain segmentation task.

6.3. Single models performance vs. Ensembles

According to the single instance benchmarks (Tables 11 and 12), we observe a similar 

performance trend to what is observed in the ensemble results (Table 2, Table 4) and 

Table 7. Some models have improved performance without using an ensemble, while 

others experience a minor decrease in performance. In general, the model’s performance 

is comparable whether or not an ensemble is utilized, but the use of an ensemble could 

potentially enhance the stability of the model’s performance. Ensemble five-fold models can 

effectively remove outlier predictions and improve overall performance. With single model 

testing, our method consistently achieves the best performance across different datasets. 

Compared to the five-fold ensemble strategy, a single instance is more practical and used in 

clinical workflow with faster inference time and less computational effort.
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6.4. Reproducibility against clinical radiologists

In this work, we develop the first in-house renal sub-structures CT cohort for segmentation, 

including the renal cortex, medulla, and pelvicalyceal system which are manually annotated 

by radiologists. We show that the proposed method is data-efficient for accurately 

quantifying kidney components and can be used for volumetric analysis such as in the 

medullary pyramids. Fig. 7 shows the proposed automatic segmentation method achieves 

better agreement compared to inter-rater assessment, with 0.03 versus 0.29 mean difference, 

respectively, indicating robust reproducibility. Visual quantitative analysis of renal structures 

remains a complex task for radiologists. Some of the histomorphometric features in regions 

of the kidney (e.g., textural or graph features) are poorly adapted for manual identification. 

In this study, we show that UNesT achieves consistently reliable performance. Compared 

with previous studies on cortex segmentation, the proposed approach significantly facilitates 

the derivation of the visual and quantitative results.

6.5. Limitation and sensitivity study

For whole brain segmentation, we observe current performance is limited by registration. 

Specifically, the DSC score in the MNI space is around 0.90 and around 0.87 in the Colin 

and CANDI dataset, respectively. However, the performance drops around 0.17 DSC score 

after inverse transformation to the original space. Investigation of registration performance 

should be considered in the future.

We study outlier cases of renal structure segmentation to demonstrate potential limitations. 

In reviewing most computer-automated segmentation methods, we found about 90% of the 

segmentation is promising, but about 10% are also found to be outliers. As shown in Fig. 

14, typical outliers under-segment and fail to capture parts of tissue labels (left two images). 

The missing parts result in a lower DSC score of about 0.80 (cortex) and 0.62 (medulla). 

The right two images show the other type of failure: over-segmentation, where we observe 

a complete renal segmentation but mis-labeling of nearby tissues. This issue can potentially 

be resolved by component analysis in a post-processing step. These two types of outlier 

segmentation are easily spotted with a rudimentary visual quality check.

7. Conclusions

In this paper, we propose a novel hierarchical transformer-based 3D medical image 

segmentation approach (UNesT) with a 3D block aggregation module to achieve local 

communication. We validate the effectiveness of UNesT on 5 different tasks in both CT 

and MRI modalities including a whole brain segmentation task with 133 classes, a renal 

substructure segmentation task, a multi-organ abdominal segmentation task, and a kidney/

tumor segmentation task as well as a brain tumor segmentation task. We consistently 

achieve state-of-the-art performance on the four datasets. Our single model outperforms 

27 ensembled models in the prior state-of-the-art method, SLANT27, for whole brain 

segmentation. In addition, we develop the first in-house renal sub-structures CT dataset with 

radiologists. UNesT achieves the best performance among recent popular convolutional- 

and transformer-based volumetric medical segmentation methods. We show the major 
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contribution of the proposed method on successfully modeling hundreds of tissues (e.g., 

133 classes) and hierarchically inter-connected structures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Overview of the proposed UNesT with the hierarchical transformer encoder. Input image 

volumes are embedded into patches. In each hierarchy, patch embeddings are downsampled 

and blockified before being fed into the transformer encoder. Outputs are deblockified back 

to the volume plane. Each hierarchy output is connected with the decoder through skip 

connection.
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Fig. 2. 
Visual and 3D illustration of the kidney components.
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Fig. 3. 
Overview of the workflow for the whole brain segmentation task. Original images are 

pre-processed and registered to the MNI space before feeding into the networks. Model 

outputs that are in MNI space are transformed back to the original space to get the final 

predictions.
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Fig. 4. 
Quantitative results of the whole brain segmentation on the testing data. SLANT27 

shows the smallest variation among the other baselines. UNesT achieves the overall 

best performance. Compared with SLANT27, UNesT further reduces the variation with 

improved median and quartiles of the DSC. * indicates statistically significant (p < 0.05) by 

Wilcoxon signed-rank test. Detailed quantitative performance comparison of 130 classes is 

shown in Fig A.17 in the supplementary material.
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Fig. 5. 
Qualitative results of whole brain segmentation on the CANDI dataset (top 2 rows) and 

Colin dataset (bottom 2 rows). Boxed areas are enlarged in the lower row. Differences are 

emphasized with the orange arrow. UNesT shows better captures the boundary and correctly 

segments the tissues.
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Fig. 6. 
Qualitative comparisons of representative renal sub-structures segmentation on two right 

(top) and two left (bottom) kidneys. The average DSC is marked on each image. UNesT 

shows distinct improvement on the medulla (red) and pelvicalyceal system (green) against 

baselines. Comparisons with different baselines including the ViT and CNN hybrid 

approaches.
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Fig. 7. 
The Bland-Atman plots compare the medulla volume agreement of inter-rater and auto-

manual assessment. We show cross-validation on interpreter 1 and interpreter 2 manual 

segmentation on the same test set. Interpreters present independent observation without 

communication. The auto-manual assessment shows the agreement between UNesT and 

interpreter 1 annotation.
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Fig. 8. 
Qualitative comparison between UNesT and baseline methods on the BTCV data. Three 

representative cases are shown. The region with visual improvement is boxed and enlarged. 

White arrows emphasized the segmentation improvement on portal vein (yellow), stomach 

(purple), gallbladder (dark green), left kidney (light green), and spleen (red).
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Fig. 9. 
Qualitative comparison between our transformer-based segmentation method and the CNN-

based model. UNesT shows better tumor segmentation, and we observe the model can better 

distinguish the kidney-tumor boundary.
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Fig. 10. 
Comparison of segmentation results of models with different scales trained with different 

percentages of training data. (a) and (b) shows the test results of the CANDI and Colin 

dataset, respectively. (c) shows the results in both the CANDI and Colin dataset.
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Fig. 11. 
Visualization of segmentation results for each model scale trained with the same number of 

data. Comparing UNesT-S and UNesT-B, UNesT-S evidently mis-classified a large amount 

of background and brain tissues pixels whereas UNesT-B has mostly clean background 

indicating that UNesT-B has better capability on utilizing the training data efficiently. 

UNesT-L further improves the segmentation results indicating that larger models are more 

data efficient.
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Fig. 12. 
Left: DSC comparison on the test set at different percentages of training samples. Right: 

Comparison of the convergence rate for the proposed method with and without hierarchical 

modules, and validation DSC along training iterations are demonstrated. Different ViT-, 

CNN-based and hybrid baselines are compared.
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Fig. 13. 
DSC comparison on whole brain segmentation CANDI dataset with different amount of data 

with pseudo labels for pre-training.
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Fig. 14. 
Demonstration of potential outlier cases. The left two images show representative under-

labeling of tissues. The right two images show the over-labeling of tissues. These 

segmentations are computed on additional contrast-enhanced CT scans without ground truth 

labels.
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Table 7

KiTS19 DSC performance comparison with baseline methods. The UNesT achieves the highest DSC on the 

with-held test set.

Model Kidney Tumor Avg

nnUNeT (Isensee et al., 2021) 0.9643 0.8287 0.8965

nnFormer (Zhou et al., 2021a) 0.9723 0.8348 0.9036

CoTr (Xie et al., 2021b) 0.9735 0.8341 0.9038

TransBTS (Wang et al., 2021a) 0.9740 0.8374 0.9057

UNETR (Hatamizadeh et al., 2022) 0.9746 0.8382 0.9064

Swin UNETR (Tang et al., 2022) 0.9751 0.8397 0.9074

UNEST (Ours) 0.9794 0.8439 0.9117
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Table 9

Model parameters of different scales. Depth: number of transformer layers, Heads: number of heads in the 

multi-head attention, Width: embedded dimension. Each number in the bracket represents the corresponding 

hyperparameter in that hierarchy.

Model #Param Depth Heads Width

UNesT-S 22.4M (2, 2, 8) (2, 4, 8) (64, 128, 256)

UNesT-B 87.3M (2, 2, 8) (4, 8, 16) (128, 256, 512)

UNesT-L 279.6M (2, 2, 20) (6, 12, 24) (192, 384, 768)
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Table 10

Training and inference time of different model scales. Training iteration time reports the time for processing a 

single 96×96×96 patch. For the testing cases, the latencies are reported on MNI space size of 172 × 220 × 156 

using GPU RTX 3090Ti, regular inference pipeline without mixed precision, and no torchscript and TensorRT 

conversions. Note the inference patch size is 96 × 96 × 96, sliding window overlap has a significant impact on 

the inference time because the increase of overlap percentage will result in exponentially increased patches.

Model UNesT-S UNesT-B UNesT-L

Training

Iteration (s) 0.29 0.46 0.82

Testing

overlap = 0.3 (s) 0.84 0.98 1.23

overlap = 0.5 (s) 2.30 2.34 2.97

overlap = 0.7 (s) 6.76 6.99 7.85
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