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Abstract

The field of craniomaxillofacial (CMF) surgery is rich in pathological diversity and broad in the 

ages that it treats. Moreover, the CMF skeleton is a complex confluence of sensory organs and 

hard and soft tissue with load-bearing demands that can change within millimeters. Computer-

aided design (CAD) and additive manufacturing (AM) create extraordinary opportunities to 

repair the infinite array of craniomaxillofacial defects that exist because of the aforementioned 

circumstances. 3D printed scaffolds have the potential to serve as a comparable if not superior 

alternative to the “gold standard” autologous graft. In vitro and in vivo studies continue to 

investigate the optimal 3D printed scaffold design and composition to foster bone regeneration that 

is suited to the unique biological and mechanical environment of each CMF defect. Furthermore, 

3D printed fixation devices serve as a patient-specific alternative to those that are available 

off-the-shelf with an opportunity to reduce operative time and optimize fit. Similar benefits have 

been found to apply to 3D printed anatomical models and surgical guides for preoperative or 

intraoperative use. Creation and implementation of these devices requires extensive preclinical and 

clinical research, novel manufacturing capabilities, and strict regulatory oversight. Researchers, 

manufacturers, CMF surgeons, and the United States Food and Drug Administration (FDA) are 

working in tandem to further the development of such technology within their respective domains, 

all with a mutual goal to deliver safe, effective, cost-efficient, and patient-specific CMF care. This 

manuscript reviews FDA regulatory status, 3D printing techniques, biomaterials, and sterilization 

procedures suitable for 3D printed devices of the craniomaxillofacial skeleton. It also seeks 

to discuss recent clinical applications, economic feasibility, and future directions of this novel 

technology. By reviewing the current state of 3D printing in CMF surgery, we hope to gain a 

better understanding of its impact and in turn identify opportunities to further the development of 

patient-specific surgical care.
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1. INTRODUCTION

A large portion of our self-identity is housed within facial features. Patients with facial 

differences as a result of craniomaxillofacial (CMF) trauma, such as sports injuries and 

road accidents, congenital anomalies, infectious disease, tumor resection, or edentulism 

have reported associated stressors of self-acceptance, negative responses of others, and 

difficulty coping with associated impairments.1–4 These associated impairments can include 

compromised sensory organ function, speech, and mastication.5 The field of CMF surgery 

treats a diverse range of ages and pathologies, both of which must be considered when CMF 

surgeons form and execute their surgical plan. Moreover, the CMF surgeon is challenged by 

varying load-bearing demands, proximity of sensory organs, as well as the microbiota of the 

oronasal cavity, all of which may complicate bone healing.6 A multitude of strategies to fit 

and fill these defects have been deployed and continue to evolve in the hope of restoring 

the form and function of any given defect site. The combined effort of computer-aided 

design/computer-aided manufacturing (CAD/CAM) and 3D printing (3DP) to create patient-

specific devices based on individual computed tomography (CT) or magnetic resonance 

imaging (MRI) data is one such strategy that has drastically changed the approach to CMF 

defect repair.

Traditionally, CMF reconstruction relies upon harvesting bone from a healthy donor site 

such as the fibula. While autografting remains the gold standard today, it is limited 

by donor site morbidity, finite stock, risk of resorption, prolonged operative time and 

hospital stay, as well as patient-reported increases in postoperative pain.7–9 Allografts 

and xenografts solve many of the autograft’s shortcomings, yet they are still associated 

with risk of disease transmission and antigenic reactions.7,10 For these reasons, synthetic 

alloplasts, including metals, polymers, and ceramics, have been popularized within the 

field of CMF. The characteristics of any implantable material, resorbable or nonresorbable, 

should meet the needs of the biological environment it is placed within. For non-resorbable 

materials traditionally used for rigid fixation (e.g., titanium alloys), these needs include 

biocompatibility, mechanical strength, and osteogenic properties that facilitate bone healing, 

at a minimum. While this is equally as important for resorbable materials used in other 

forms of bone defect repair (e.g., ceramics and many synthetic polymers), they are also 

expected to degrade in a predictable and timely manner such that the defect site is 

mechanically supported as the material gradually becomes replaced with regenerated bone 

that is similar in quality to native bone.11,12,10 This is achievable only if the material is 

pro-osteogenic, pro-angiogenic, and inflammation from its degradation is kept to a minimum 

so as to not interfere with any of these processes. A material that meets these requirements 

does not currently exist without the combined effort of bone tissue engineering strategies 

and three-dimensional (3D) printing.
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With respect to conventionally used fixation devices, commercially available plates are 

produced in generalizable configurations, requiring the surgeon to manually bend them 

to a contour specific to the patient’s anatomy. They typically need to be adjusted again 

intraoperatively as changes to surgical margins may occur between the preoperative and 

intraoperative period.13 This can be physically challenging and time-consuming to the 

point that it significantly extends operative time, particularly for surgeons early on in their 

training.13–15 Even still, complete bone-plate congruence without visible gaps is rarely 

achieved.13,16 For more complicated cases, a plate may need to be bent repeatedly, resulting 

in residual stresses that can compromise its performance in vivo.13,14,17–19 Residual stresses 

generated from titanium plate contouring have been theorized to initiate crack formation 

that then grow larger under the loading stresses associated with mastication, leading to plate 

fracture and screw loosening.13,17,19 Previous literature has found that in comparison to 

commercial plates made of the same material, 3D printed plates have superior mechanical 

properties.14 Furthermore, the need to bend 3D printed plates preoperatively may be 

minimized or eliminated, as they are printed to fit the exact shape of patient anatomy. 

This shortens operative time and reduces any unnecessary wear that may compromise 

performance.14,20

In addition to fixation devices, 3D printing can be utilized to create other implantable 

and nonimplantable devices to improve CMF surgical care. Implantable scaffolds for 

bone defect repair are customizable to the nanoscale allowing them, unlike autografts, 

to precisely fit geometrically complex defects.16,21–23 Alterations to scaffold architecture, 

including porosity and surface topography, lends to both augmented osteoconductivity and 

vascularization within defects.10,24 Moreover, scaffolds may be further seeded and/or coated 

with mesenchymal stem cells, exogenous growth factors, antimicrobials, and regenerative 

pharmaceuticals to minimize risk of failure and further accelerate bone growth and 

neoangiogenesis.10,25–27 Other uses for 3D printing within craniofacial surgery are patient-

specific anatomic models or surgical guides for preoperative and intraoperative use. Clinical 

studies have found overwhelming evidence of improved surgical accuracy and aesthetic 

outcomes.28–31

However, patient-specific 3D printed medical devices (3DMD) are still in their nascency, 

with many barriers to overcome before they become commonplace in the operating 

room. The aim of our review is to comprehensively assess the role of 3D printing in 

craniomaxillofacial reconstruction. The FDA regulatory status of 3DMD, as well as 3D 

printing techniques, biomaterials, and sterilization procedures suitable for 3DMD of the 

CMF skeleton are discussed. Finally, recent clinical applications, economic feasibility, and 

future directions of this novel technology are examined.

2. FDA REGULATORY OVERSIGHT

Attaining FDA approval of patient-specific 3D printed medical devices, whether for 

anatomical model, surgical guide, or implantable scaffold, is a complex feat. 3DMD 

devices are regulated by the FDA’s Center for Medical Devices and Radiological Health 

(CDRH). 3DMD with biologic components (i.e., stem cells and exogenous growth factors) 

are termed “combination products” and require the additional involvement of the Center 
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for Biologics Evaluation and Research (CBER), adding further scrutiny/complexity to the 

approval process. This has led to the creation of the Breakthrough Device Program which 

aims to expedite the development, assessment, and review of combination products if 

they meet certain criteria.32 It is paramount that researchers determine what regulatory 

agency their device falls under, as this will dictate which regulations they must follow. 

Researchers should also anticipate any resistance that they may meet regarding their 

development process in the early stages of experimentation to accelerate future clinical 

applicability.33 Furthermore, gaining a deeper understanding of this rigorous process will 

allow craniomaxillofacial surgeons to effectively deliver safe, innovative, and informed care 

to their patients.

The U.S. FDA seeks to align its quality system (QS) requirements for medical devices 

with those of the International Organization for Standardization (ISO). The ISO is a 

nongovernmental global network of national standards bodies; of which, the American 

National Standards Institute (ANSI) serves as the U.S. member body to the ISO. QS 

requirements for FDA-regulated medical devices are called current good manufacturing 

practices (CGMP) and can be found in part 820 under section 520(f) of the Federal Food, 

Drug and Cosmetic Act.34 They are intended to provide a framework of basic requirements 

that manufacturers must abide by in their production process of medical devices for human 

use.34 Manufacturers only need to follow those that are applicable to their specific device.34 

For QS regulation of a device constructed with additive manufacturing, QS requirements 

must be enforced at each phase of development. The set of ISO standards that are related to 

medical device biocompatibility is ISO 10993. Standards that fall within the scope of ISO 

10993 are often referenced in FDA guidance documents for medical device manufacturers. 

Furthermore, the ISO technical committee (TC) responsible for publishing standards related 

specifically to additive manufacturing is called ISO/TC 261.

As characterized by the FDA, the additive manufacturing process of a medical device can be 

divided into five phases: design, software workflow, build, postprocessing, and final testing 

considerations (Figure 1A).33 In the design phase, patient CT or MRI data are converted 

to a compatible format (e.g., DICOM file).35 During the software workflow phase, the 

scan is segmented by an image segmentation system, such that the anatomical region of 

interest is isolated from the remainder of the scan. It can then be further optimized prior 

to conversion to a 3D printer compatible file (e.g., standard triangulation language (STL) 

file). Many patient-specific implants for cranial defects are designed using the mirror image 

reconstruction technique, where the healthy side contralateral to the defect is mirrored 

along the midsagittal plane.15 This technique becomes problematic if the defect crosses the 

midsagittal line. An alternate technique, called the baffle planner technique, does not require 

an intact contralateral side to model the implant.15 As a part of the build phase, selected 

materials are used to fabricate the device. Postprocessing may consist of, but is not limited 

to, cleaning unsintered raw materials, sterilization, packing, and labeling. The device can 

only then be tested and characterized (e.g., geometry, dimensions, mechanical properties) 

in its final form, after postprocessing, in what is known as the final testing considerations 

phase. Ultimately, any 3DMD device to be sold and marketed should be prepared using 

FDA-cleared segmentation software, printer, materials, and postprocesses.35 An overview of 
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considerations to address within each part of the 3DMD workflow is illustrated in Figure 

1B.

The FDA classifies medical devices into the following regulatory classes, Class I, II, 

and III. Assigned rank of a device is determined by degree of risk posed to the patient 

and intended use and specialized indications for use. Consequently, class rank determines 

the type of premarket submission required for FDA clearance to market.37 Class I and 

II devices, unless exempt, will require the submission of a premarket notification, also 

known as a 510(k). A class I or II device cannot be marketed until the FDA issues a 

510(k) clearance stating that the device is substantially equivalent (SE) to an existent, 

FDA-approved predicate device.38 A study published in 2018 performed a search of the 

FDA medical device database that determined 7% of 3DMD cleared through the 510(k) 

pathway thus far were for craniofacial application.39 And as of 2023, only five 3DP software 

platforms (class II devices) currently on the market have been FDA-cleared to create 

anatomical models specifically for craniomaxillofacial reconstruction.35 The companies that 

produce the 510(k)-cleared software include Materialise, 3D systems, Ricoh, Axial 3D, and 

Medviso.35 For class III devices, a premarket approval application (PMA) is necessary. This 

is typically required if the device is new or if a device submitted through a 510(k) is deemed 

not substantially equivalent (NSE) to a predicate.40 A PMA for a class III device necessitates 

submission of scientific evidence in support of clinically significant results with benefits that 

outweigh any associated risks of its use.40 Moreover, whether the 3DMD is implantable, 

load-bearing, or patient-specific will also impact the type of information that should be 

included to establish device safety and efficacy in any given premarket submission. The 

CDRH and CBER can be contacted during the presubmission process for feedback regarding 

any component of the development process.33

To better understand this complex topic, we present the following real-world example. 

In 2015, BioArchitects submitted a 510(k) premarket notification to the CDRH for FDA 

approval of a class II, 3DMD device.41 Their 3D printed titanium cranioplasty plate was 

deemed substantially equivalent to an existing, legally marketed predicate device used for 

the same purposes.42 Thus, the FDA granted them permission to market their device as seen 

on their Web site,43 eliminating the need to complete a PMA. It is important to note that data 

pertaining to any FDA-cleared medical device are accessible in the FDA’s online “medical 

device databases” and can be searched by application route (e.g., 510(k), PMA) or device 

name.44

A massive barrier to 3DMD currently is transporting them safely and in timely to the 

hospital care facility (HCF). The FDA has begun discussions with stakeholders to determine 

a regulatory approach that will allow these 3DMD to be manufactured closer to their 

end-user, the patient, at the point-of-care (POC). Three different POC scenarios have 

been proposed including (1) HCF use of a 3D printing medical device production system 

(MDPS), (2) traditional manufacturer on or near the HCF, and (3) 3D printing facility is 

created and run by the HCF.45 In scenario 1, an FDA-cleared MDPS, which is a legally 

marketed bundle of materials, software, printer, and postprocessing equipment intended 

to create a 3DMD for an intended use (e.g., polymer-based cranioplasty plate), would be 

located in the HCF. QS regulatory compliance would ultimately fall on the manufacturer 
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of the MDPS as long as the HCF uses the MDPS in accordance with its labeled use. In 

scenario 2, the HCF leases space to a traditional manufacturer of a finished device, who 

would be responsible for regulatory compliance of a given FDA-cleared 3DMD intended for 

a specific use. Scenario 3 would transfer the responsibilities of QS regulatory compliance 

entirely to the hands of the HCF. In this case, clinical and engineering training programs 

for 3DMD development may become a part of certification and licensing programs for 

surgeons that will frequently use this technology in their practice. Ultimately, the FDA will 

modify existent and/or formulate new regulations as the technology evolves and regulatory 

compliance is passed from traditional manufactures to the HCF. For this reason, it is of 

utmost importance that CMF surgeons become familiar with this process as point-of-care 3D 

printing facilities trend toward finding a commonplace within hospital systems.

3. BIOMATERIALS FOR 3D PRINTED BONY DEFECT REPAIR OF THE CMF 

SKELETON

3.1. Titanium and Titanium Alloys.

Titanium is the leading 3D printed biomaterial for craniomaxillofacial repair.46 More 

specifically, it is the gold standard for rigid fixation of craniofacial fractures.46 Direct 

Metal Laser Sintering (DMLS) or Electron Beam Melting (EBM) are utilized to generate 

customizable implants for orbital, mandibular, and cranial reconstruction.47 Titanium and its 

alloys, classified as a-, (a + b)-, and b-type, are known to exhibit excellent tensile strength 

while remaining lightweight.21,29 They are inherently osteointe-grative, facilitating bone 

growth into the implant; this is theorized to due to an early transition from proinflammatory 

(M1-phenotype) to reparative/anti-inflammatory (M2-phenotype) macrophage predominance 

shortly after placement.29,48–50

Additionally, the surface layer of titanium-based implants forms an oxide film that is 

resistant to corrosion.21 A drawback of this biomaterial is the discrepancy in Young’s 

moduli (i.e., elastic modulus) between titanium alloys and cortical bone, leading to a 

phenomenon known as stress shielding.51 Stress shielding, due to differences in moduli 

between bone and titanium, is a cause of progressive implant loosening, often necessitating 

reoperation. Interestingly as a class, b-type titanium alloys exhibit the lowest elastic 

moduli, yet a- and (a + b)-type alloys are more widely used in practice.51,52 In addition, 

micro- or nanoscale wear particles from titanium implants have been shown to dampen 

osteoblastic activity and augment osteoclast recruitment, further perpetuating the issue.53,54 

Investigations continue to (a) engineer b-type titanium alloys with both maximized dynamic 

strength and a Young’s modulus similar to native bone and (b) determine a surface treatment 

(e.g., abrasive smoothening and polishing, gritting, cold treatment, or passivation and 

anodization) that would generate a 3D printed surface topography to counteract potential 

loosening or migration.24,47,51 There is also risk of susceptibility artifact with various 

imaging modalities when considering titanium implant placement.55,56 When imaged with 

CT or CBCT, metal implants often result in beam hardening, streak artifact, and photon 

starvation, all of which obscure surrounding structures.57,58 Furthermore, signal loss, 

geometric distortion and “pile-up” artifacts often impede MRI imaging if metal implants are 

present.59 For these reasons, metal-free implants may be preferable in patients undergoing 
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oncologic reconstruction, in which complete and accurate visualization of bone and soft 

tissue structures in the postoperative period is critical.55 Shared complications of titanium-

based implants in all CMF patients (i.e., adult and pediatric) that increase the risk of 

reoperation include postoperative pain, palpability, infection, and exposure. In this context, 

3D printed synthetic polymers have become increasingly popularized as they provide self-

limited rigid fixation with a lesser chance of requiring a second procedure.60,61

3.2. Synthetic Polymers.

Biocompatible synthetic polymers that are under investigation or currently in use 

for craniofacial reconstruction include polycaprolactone (PCL), polylactic acid (PLA), 

polyglycolic acid (PGA), polylactide-co-glycolide (PLGA), poly(methyl methacrylate) 

(PMMA), polyethylene (PE), and polyetheretherketone (PEEK). Synthetic polymers are 

easily manufactured and cost-effective.62 Among them, PMMA, PE, and PEEK are 

nondegradable polymers.63 Unlike titanium alloys, the appeal of the remaining degradable 

polymers is that they will not restrict growth in developing pediatric skeletal defects.60,61,64 

Moreover, synthetic polymers do not interfere with radiographic, CT, or MRI studies.65 

They are also lighter than titanium alloys, with fewer reports of pain and palpability.66 

However, synthetic polymers do not possess osteointegrative properties due to their 

biological inertness.67 Additionally, elastic moduli of synthetic polymers are generally 

lower than those of native bone. While this eliminates the concern for stress shielding, it 

also implies a lessened load-bearing capacity.5,65 Figure 2A–C represent the Von Mises 

stress distribution during mastication at single bite points (canine, first molar, second/3rd 

molar), as determined by finite element models of the human cranium performed by 

Prado et al.68 Areas under high stress, as depicted in red, would require materials with 

high mechanical performance.68 Scaffolds composed entirely of a synthetic polymer may 

inadequately support a bony defect at these points while bone regeneration transpires. For 

these reasons, they are often combined with other biomaterials or bioactive molecules to 

improve their mechanical strength and bone regenerative capacity, respectively. Some of 

which have been previously studied include bone-derived mesenchymal stem cells, adipose-

derived mesenchymal stem cells (ASCs), stromal vascular fraction (SVF), decellularized 

cortical bone (DCB), polydopamine, tricalcium phosphate (TCP), hydroxyapatite (HA), 

gelatin, and collagen.69–76 A higher rate of infection is also a frequently reported 

concern of synthetic polymer-based implants.77 To minimize infection, bactericidal-coated 

scaffolds continue to be investigated and optimized (e.g., silver nanoparticle impregnation, 

zinc chelation, ε-Polylysine coating).78–81 Despite many commonalities among synthetic 

polymers, each differs in its hydrophilicity, degradation rate, and biocompatibility, impacting 

their individual potential for clinical application.

3.2.1. Polycaprolactone.—Polycaprolactone, an FDA-ap-proved thermoplastic 

polyester, is the second most studied and used 3D printed material for craniofacial 

application.12,75,76,82–87 PCL is known to be biodegradable and highly biocompatible.21 

PCL is commonly 3D printed using Fused Deposition Modeling (FDM), rendering it very 

cost-effective.21 Due to its hydrophobicity, the degradation rate in vivo is estimated to occur 

between 1 and 2 years.88 This prolonged resorption time may interfere with proper bone 

regeneration within the defect site if a shorter healing period is expected. For this reason, 
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PCL has been successfully copolymerized with hydrogels, like collagen, to augment its 

resorption kinetics while still providing the scaffold great mechanical strength.89,90 The 

addition of collagen also improves the scaffold’s osteoconductive properties, which are 

lessened if PCL is used alone. Furthermore, several composite PCL-mineral scaffolds have 

been compared to evaluate potential osteointegrative enhancement. Mineral sources included 

HA, TCP, DCB, and Bio-Oss (BO) which is an inorganic bovine trabecular bone. Among all 

treatment groups, PCL-DCB and PCL-BO demonstrated the greatest osteoinductivity after 3 

weeks in vitro which was theorized to be due to the presence of a collagen phase.75

PCL has also been evaluated as a candidate for craniofacial defect repair in several in vivo 
studies.86,91 Recently, the effect of oxygen loading on vascularization and bone regeneration 

was evaluated in critical-sized calvarial defects of a murine model.86 Biodegradable 

synthetic microtanks housed within a porous ASC-seeded PCL-scaffold were hyperbarically 

loaded with pure oxygen. The microtanks were designed to release oxygen over hours after 

placement in vivo. Compared to non-O2-loaded scaffolds, O2-loaded scaffolds exhibited 

enhanced bone regeneration after 8 weeks.86 O2-loading may serve as a viable strategy 

in improving the hypoxic microenvironment known to exist within large nonvascularized 

scaffolds (>1 mm).86 Additionally, a study performed by Singh et al. in a skeletally mature 

minipig model examined the bone regenerative capacity of PCL-DCB scaffolds that were 

intraoperatively infused with the autologous stromal vascular fraction (SVF) in critical-

sized zygomatic arch defects. SVF is an easily accessible and readily available source of 

mesenchymal stem cells that can be extracted from autologous lipoaspirate tissue. Compared 

to acellular PCL-DCB scaffolds, the SVF group demonstrated superior osteointegration after 

1-year in vivo, as deduced by requiring a significantly higher torque to fracture the bone-

scaffold interface.91 This approach to bone regeneration is particularly appealing because, 

if clinically translated, the SVF could be harvested and extracted intraoperatively from 

patient’s adipose tissue. Moreover, as an autologous cell source with osteogenic potential, 

SVF-infused scaffolds may supply the benefits associated with an autograft without the 

comorbidities.

3.2.2. Polylactic Acid, Polyglycolic Acid, Polylactide-co-glycolide.—Polylactic 

acid, polyglycolic acid, and polylactide-co-glycolide are FDA-approved, biodegradable 

thermoplastic polyesters. PLA and PGA are both hydrolyzed to nontoxic, although 

acidic products. Local inflammatory responses (LIR) because of their metabolization have 

been previously reported.11,92,93 This is of particular importance because inflammation 

often potentiates fibrosis which may compromise regenerated tissue function or even 

result in scaffold rejection.23 Of note, implants placed in anatomical areas with little 

vascularization are at higher risk of LIR.94 PLA is a stiff, hydrophobic polymer with an 

estimated degradation time of 6–24 months.95,96 By contrast, PGA is more hydrophilic 

in nature and thus degrades rather rapidly within 1.5–3 months.95,96 For this reason, 

PGA-fabricated scaffolds may not adequately provide mechanical support to a defect site 

while tissue regeneration occurs.97 However, due to a similar elastic modulus to cortical 

bone, PGA remains an excellent candidate for bone regeneration if copolymerized with 

other biomaterials. PLA and PGA can be copolymerized, forming PLGA, to better suit the 

biological environment. The degradation rate of a PLGA-scaffold can be customized with 
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molecular weight and PLA:PGA ratio adjustments.92,96 For example, PLGA (LA/GA = 

50/50) will degrade over 1 month, as opposed to PLGA (LA/GA = 85/15) which resorbs 

completely after 5–6 months due to a higher composition of hydrophobic PLA.96 Thus far, 

preclinical studies utilizing 3D printed scaffolds fabricated with PLA, PGA, or PLGA have 

demonstrated promising results for CMF defect repair.98–100

3.2.3. Poly(methyl methacrylate).—Poly(methyl methacrylate) is a nondegradable 

thermoplastic polyester. PMMA is hydrophobic with mechanical and elastic strength 

comparable to bone.101 PMMA commonly serves as an alternative to autografting for 

cranioplasty. Historically, liquid PMMA was poured directly into a defect to fit and 

fill it intraoperatively. Consequently, an exothermic hardening process occurred with an 

associated risk of local tissue necrosis.102–104 Risk of burn injury is circumvented when 

PMMA is poured into a 3D printed mold of the defect intraoperatively or 3D printed 

as a porous PMMA-scaffold preoperatively. While autografting remains the gold standard 

in cranioplasty today, there is a wealth of evidence that autografts carry greater risk of 

resorption and failure.102,105 In this context, alloplastics, such as titanium and PMMA, have 

been looked at more favorably. That being said, PMMA-fabricated scaffolds have yet to 

be FDA-cleared for use in cranioplasty due to very low quality of evidence about risk of 

infection.101,106 More recently, 3D printed PMMA scaffolds have been successfully applied 

to midface and mandibular osseous defect repair with low infection rates.107

3.2.4. Polyethylene.—Polyethylene is a nondegradable, inexpensive thermoplastic 

polymer that is often printed with Fused Deposition Modeling (FDM). In comparison to 

pure PE, high-density polyethylene (HDPE) is more frequently seen in clinical practice 

due to its superior durability and higher melting point (131 °C).108 Since 1985, Stryker 

(Kalamazoo, MI) has produced porous HDPE (MEDPOR) and HDPE/titanium mesh 

(MEDPOR TITAN) implants for use in cranio-maxillofacial reconstructive or cosmetic 

cases.109 Like other synthetic polymers, there is always a risk of infection and extrusion. 

The chances of these complications are lessened, however, if the elastic modulus of the 

biomaterial closely matches that of the native tissue.110 This is postulated to be due to more 

evenly distributed mechanical loading across the tissue-implant interface, preventing tension 

and micromovement that may lead to extrusion. For example, for a hypothetical auricular 

reconstruction, the modulus of a porous 3D printed HDPE-scaffold was engineered to more 

closely match that of auricular cartilage when compared to MEDPOR.81 Additionally, 

these HDPE-scaffolds have been experimentally loaded and/or coated with bioactive, 

antimicrobic, and angiogenic substances resulting in dampened inflammatory response and 

enhanced tissue ingrowth, outperforming their commercial counterparts.81,111

3.2.5. Polyetheretherketone.—Polyetheretherketone is a well-described 

nondegradable, thermoplastic polyaromatic for use in craniofacial reconstruction. PEEK 

implants are commonly printed via FDM or Selective Laser Sintering.112 This biomaterial is 

known for its mechanical strength, modulus similar to cortical bone, and excellent thermal 

resistance.73 Unlike the previously mentioned thermoplastic polymers, structurally complex 

3D printed PEEK implants can be sterilized by autoclaving without risk of deformation or 

changes to its biocompatibility.73,112 It is important to note that a recently published PEEK 
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Safety Profile by the FDA identified an association between PEEK used in cranioplasty 

and seizure or exposure of the implant with a moderate quality of evidence.113 Although 

it was emphasized that these are complications associated with other biomaterials used 

for cranioplasty as well.113 Other craniofacial applications have included correction of 

zygomatic, mandibular, and orbital rim or floor deformities.114 Composite scaffolds, such 

as PEEK/Hydroxyapatite, continue to be evaluated as a candidate for craniofacial defect 

repair.74,115 Previous studies have demonstrated increased cellular adhesion, proliferation, 

and alkaline phosphatase activity with a corresponding decrease in tensile strength.74,115 

In this context, the load-bearing demands of each unique defect environment must be 

considered.

3.3. Bioceramics.

Bioceramics generally utilized for bone regeneration have included calcium phosphates 

(CaP), calcium carbonates, calcium sulfates, and bioactive glasses.116 In contrast to 

synthetic polymers, bioceramics are inherently osteointegrative, osteoinductive, and 

osteoconductive.117 When fabricated as a porous 3D printed scaffold, bioceramics promote 

a strong tissue-scaffold interface, recruit mesenchymal stem cells (MSCs) to the defect 

site, and provide bioactive surfaces that facilitate osteogenesis, respectively. In their pure 

forms, however, they are limited by poor angiogenic properties and slow degradation 

rates, making these processes occur at an inadequate pace.117,118 This issue is amplified 

at the center of large craniofacial defects, which are already under hypoxic conditions. 

Also, unlike synthetic polymers, bioceramics are mechanically weak and brittle, raising 

concern for their performative potential within load-bearing defects.117,119 However, a 

recent study found that 3D printed β-TCP scaffolds were able to restore critically sized, full-

thickness mandibulectomy defects in a rabbit model despite return to normal mastication 

after implantation.120 This solidifies their potential to withstand areas of high mechanical 

stress if they are constructed properly on the microscale. Ongoing strategies to improve 

the osteogenic and mechanical potential of bioceramic scaffolds have included active 

component loading, doping with trace elements, bioactive surface coatings, as well as the 

addition of micro- and nanostructures or alterations to pore size.117 β-Tricalcium phosphate 

(β-TCP), a bioactive calcium phosphate, has garnered particular attention within the field 

of craniomaxillofacial reconstruction given its well-documented safety profile, 6–18-month 

resorption period, and similar composition to the mineral phase of human bone.25,84,119 

β-TCP resorption kinetics are much more favorable to hydroxyapatite, which exhibits a 

degradation rate of approximately 1%/year.121 Direct-Ink-Writing (DIW), or robocasting, 

with bioactive ceramic colloidal ink followed by sintering allows for customization 

of a defect-specific scaffold.25 Sintering effectively improves the scaffold’s mechanical 

strength by densification.121 Previous studies have suggested optimal outcomes in treating 

mandibular defects of a rabbit model after scaffold sintering at 1100 °C for 4 h.120,122 The 

in vivo performance of β-TCP scaffolds has been found to significantly improve with the 

addition of the FDA-approved pharmaceutical dipyridamole (DIPY). DIPY is an adenosine 

A2A receptor indirect agonist with a bone regenerative capacity. DIPY-augmented β-TCP 

scaffolds have been investigated in criticalsized, craniofacial defects within skeletally mature 

and immature rabbit, ovine, or swine models.122–130 Shen et al. successfully accelerated 

the degradation rate of β-TCP to 55%/year (calvarial defect) and 90%/year (alveolar defect) 
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with the addition of a 1000 μM DIPY coating (Figure 3A,B).130 This study, as well as 

other studies performed by this group, found that the β-TCP scaffold was replaced with 

regenerated, vascularized bone that is similar in its mechanical and histologic properties 

to native bone.122–130 If evaluated in a skeletally immature animal model in proximity 

to a growth suture, the suture remained patent, even past the point of facial growth 

completion.126–128,131 This finding is critical as suture obliteration in pediatric patients 

is a feared complication of β-TCP scaffolds augmented with growth factor, recombinant 

human bone morphogenic protein (rhBMP-2).128 Ultimately, replacement of exogenous 

growth factors, such as rhBMP-2, with regenerative pharmaceuticals, like DIPY, mitigates 

the deleterious effects associated with their supraphysiological dosing requirements.132 To 

summarize the differences between the aforementioned biomaterials, refer to Table 1 for 

their respective advantages and disadvantages.

4. 3D PRINTING TECHNOLOGIES

According to the ISO and American Society for Testing and Materials (ASTM), there 

are seven overarching categories of additive manufacturing processes: vat polymerization, 

material jetting, binder jetting, material extrusion, powder bed fusion, sheet lamination, 

and directed energy deposition. These 3DP processes differ in their energy sources, 

suitable printing materials, and methods by which CAD data are used to fabricate 

individual layers and then solidify and/or fuse them to create the desired design.133 

Several printing techniques may belong within a single category, in which case small 

nuances distinguish them from one another. Many of these printing techniques have 

been patented or trademarked by their original developers, adding an additional layer of 

complexity to the nomenclature. The categories used to 3D print patient-specific anatomical 

models, surgical guides, or implantable devices in CMF reconstruction broadly include vat 

photopolymerization, material jetting, material extrusion, and powder bed fusion. Here we 

seek to discuss the intricacies of each 3D printing technique as they relate to craniofacial 

surgery.

4.1. Vat Photopolymerization.

The three key components of vat photopolymerization (VPPP) include a light source, a vat, 

and a light-curable resin.133,134 For a 3DMD, the resin must be a nontoxic, biocompatible 

photoactive material.134 A platform is submersed within a vat, or reservoir, of a liquid 

resin in its monomer or oligomer form (Figure 4A). A focused curing light irreversibly 

solidifies the liquid through photopolymerization of these monomers and oligomers.133 The 

curing light path follows the segmented layers of the STL model. Once stabilized, the 

platform is lowered or raised by a constant height to build upon the previous layer until 

device completion. Layer thickness typically falls between 50 and 100 μm.135 The printer 

will also build a removable latticework beneath any overhangs that may require additional 

support.133,134 The completed model is withdrawn from the vat, support structures are 

removed, and the final model is cleansed and then cured within an UV chamber to 

complete the polymerization process. Techniques within this category are distinguished 

based upon light curing method, including laser (stereolithography (SLA)), projector (digital 
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light processing (DLP)), light emitting diodes (LEDs), and oxygen (continuous digital light 

processing/continuous liquid light processing).134

SLA, patented by Charles W. Hull in 1986, is a technique utilized regularly for 3D printing 

in complex CMF reconstruction. Anatomical models and surgical guides are fabricated 

using epoxy- or acrylic resins.134 SLA-printed scaffolds for hard tissue repair can also 

be developed by using photocurable bioinks. These bioinks are hydrogel-based with or 

without additional cells or osteoconductive bioceramics (e.g., hydroxyapatite, β-TCP). For 

example, a scaffold with a perfusable vessel lumen was successfully constructed with 

a gelatin methacryloyl (GelMA)/nanocrystalline hydroxyapatite bioink for bony defect 

repair.136 Recently, SLA-printed bioceramic scaffolds demonstrated robust osteointegration 

in a rat calvarial model.137 In this study, HA and β-TCP were mixed with acrylic resin 

for SLA-printing, followed by thermal cycling of the final construct to remove the resin 

entirely ahead of implantation. Standard print speed ranges between 10 and 20 mm/h and 

accuracy is determined by diameter of the laser beam, with small spot sizes allowing for 

high resolution.134

4.2. Material Jetting.

Like vat photopolymerization, material jetting requires a UV light source and a light-

curable liquid resin. Unlike VPP, material jetting (MJT) uses thermal force to deliver 

microdroplets of low-viscosity feedstock, from cartridge to jet head, onto a build 

platform.138 Photopolymer materials are extruded in a layered fashion and cured as 

successive layers are assembled. Layers can be as small as 16 μm in thickness, allowing 

for intricate geometrical structures with high accuracy.139,140 Instead of printing a lattice 

support structure to later be removed as done with VPP processes, all MJT printers require 

a support material to deposit the build material(s). MultiJet, trademarked by 3DSystems, is 

a single build material printer supported by a wax.139 By contrast PolyJet, a MJT system 

developed by Stratasys, can print multiple build materials supported by a gel.139 This allows 

PolyJet printers to create multicolored anatomical models that highlight relevant vasculature 

and innervation or patient-specific hardware.141 During postprocessing, MultiJet and PolyJet 

printers remove support material by melting and waterjet/chemical bath, respectively.139 

PolyJet postprocessing steps are laborious in comparison to those of MultiJet. However, 

PolyJet is often still the preferred system due to its multimaterial capabilities. A recent study 

found that compared to surgical guides produced by SLA and digital metal printing (DMP), 

the PolyJet printer was the most accurate and demonstrated the highest reproducibility, 

even after 1-month storage of devices.142 Similarly, the smallest mean difference between 

3D printed surgical guide and its CAD model was found when fabricated by a PolyJet 

printer compared to an SLA or MultiJet system.143 Bone constructs were also printed 

with this AM technology. Similar to VPP, biocompatible photopolymers must be used 

but may be mixed and/or coated with osteoconductive materials, like polydopamine and 

hydroxyapatite.144 Although generally, restriction of printable materials to photoreactive 

polymers is a significant limitation of vat polymerization and material jetting.
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4.3. Material Extrusion.

Fused deposition modeling (FDM), trademarked by Stratasys, and fused filament fabrication 

(FFF) both use thermal material extrusion technology. Within a heated build chamber, FDM 

dispenses a spool of thermoplastic filament through a heated, pressurized nozzle onto a 

heated build plate.133 Like the AM technologies discussed previously, a dissolvable support 

material is required for material extrusion. This is deposited simultaneously through a 

second nozzle and removed during postprocessing by hot water or solvent bath.145 Instead 

of requiring light-curable resins to be photopolymerized, such as in VPP or MJT, molten 

layers printed with FDM or FFF simply fuse as they cool. Printable materials include 

thermoplastic polymers often used for CMF applications such as PEEK, PLA, PLGA, 

PCL, and bioceramics. It is important to note that FFF is not conducted within a heated 

build chamber, leading to uneven cooling146 and inconsistencies in the device’s mechanical 

performance; thus, FDM is preferred if the 3DMD is intended for implantation. FDM has 

also been found to produce the most dimensionally accurate mandibular models among the 

material extrusion techniques.147 That being said, FDM has been employed to fabricate 

thermoplastic polymer/ceramic composite scaffolds for bone regeneration, anatomical 

models for resident training, preoperative bending of off-the shelf fixation devices, or to 

facilitate accurate intraoperative reconstruction, as well as surgical guide fabrication for a 

range of CMF applications.148–152

Direct-ink-writing (DIW) is also a material extrusion AM process but relies entirely on 

pressurized syringe pumps, without heat, for deposition (Figure 4B).153 Because of this, 

emphasis is placed on fine-tuning the ink’s rheological properties, such as viscosity, 

yield stress, and elastic moduli for optimal printability.153 As it relates to craniofacial 

surgery, DIW is capable of printing multimaterial structures with thermoplastic polymers 

(PLA, PGA, PLGA, PCL, PEEK), bioceramics, bioceramic/hydrogel composites, and less 

frequently titanium when incorporated into a water-based suspension for printing.121,154,155 

A support material may also be necessary for successful DIW and can be removed by 

dissolution or melting during postprocessing. Additional efforts to facilitate solidification 

of the 3DMD’s final form will vary by material but may include sintering, photocuring, or 

solvent evaporation.153

4.4. Powder Bed Fusion.

Powder bed fusion (PBF) is an AM process that encompasses selective laser sintering (SLS), 

selective laser melting (SLM), direct metal laser sintering (DMLS), and electron beam 

melting (EBM). All materials printed by PBF exist as a powder feedstock supplemented 

with a feeder chamber. Powder is mechanically rolled evenly, and in successive 2D-cross 

sections, across a neighboring build chamber. Layer thicknesses are reported as 100–120 

μm (SLS), 20–100 μm (SLM/DMLS), and 45–150 μm (EBM).156 The powder is selectively 

consolidated by melting (SLM, EBM) or sintering (SLS, DMLS). In the case of SLS, 

SLM, and DMLS the heat source enabling solidification is a high-power laser and, in 

EBM, an electron beam. The surrounding, unconsolidated powder serves as a support to 

the 3DMD as it is built. Although, additional support may be warranted for structures 

with complex geometries. One advantage of PBF, unlike VPP, is unused powder can be 

recycled for future build cycles; however this should be done cautiously as studies have 
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reported alterations to several mechanical properties of the final device.157 In respect to 

CMF applications, EBM, SLM, and DMLS can print powdered titanium or TiAl6 V4 ELI, 

whereas SLS prints powdered thermoplastic polymers (e.g., PE, PEEK, PLA, PCL) or 

ceramics.158 Postprocessing involves compressed air to remove any unconsolidated powder, 

as well as numerous grinding and/or polishing procedures to adjust surface roughness.159 

Overall, PBF AM processes are great options for printing patient-specific surgical plates, 

fixation devices, or scaffolds for CMF bone repair.160–162

5. STERILIZATION TECHNIQUES

After printing, the devices must be adequately sterilized without compromising their final 

form. To be FDA-cleared for intraoperative use, all 3DMD require validation of a certain 

sterility assurance level (SAL).163 The SAL is defined as the expected probability of a 

living microorganism following sterilization.164 FDA requires an SAL < 10−3 for any 

device touching skin and SAL < 10−6 for an implantable device. Additionally, implantable 

devices necessitate pyrogenicity testing to rule out presence of Gram-negative endotoxins or 

material-mediated pyrogens that may cause a febrile reaction in the patient.165

Sterilization techniques are distinguished by class on the basis of their known level of 

efficacy. Established Category A have been deemed safe and effective, with the most 

literature in support of their efficacy.165 This class encompasses dry heat, ethyl oxide (EO) 

in a fixed chamber, steam (e.g., autoclave), and radiation (e.g., gamma or electron beam) 

sterilization.165 Sterilizers within Established Category B do not have any FDA-recognized 

consensus standards but do have an established place in the literature.165 Established 

Category B includes hydrogen peroxide, ozone, and EO in a flexible bag system.165 The 

final category is known as Novel Sterilization Methods and includes vaporized peracetic 

acid, high intensity light, micro-wave radiation, sound waves, and ultraviolet light.165 These 

methods have not been FDA-reviewed nor determined to adequately sterilize products, 

however, may become viable sterilization options in the future.165

The mechanical and physical properties of the materials within a 3DMD determine the 

safest method for sterilization. Due to its high melting point and Young’s modulus, a 

3DMD made from titanium is sterilizable by irradiation or autoclaving without risk of 

deformation.166 Similarly, PEEK 3DMD can be sterilized by autoclave without significant 

changes to its dimensional accuracy.73,107,167 By contrast, PMMA devices should not be 

sterilized by autoclave as conflicting data exists regarding structural compromise.107,168 The 

remaining thermoplastic materials, PLA, PGA, PLGA, PE and PCL, are not survivable 

by autoclave, dry heat, or EO sterilization without altering their final structure or 

mechanical properties.169,170 H2O2 plasma vapor sterilization, ethanol, and electron beam 

irradiation have been found to be the safest sterilization techniques for PGA/PLGA and 

polycaprolactone.169,171 Steam sterilization by autoclave (121 °C for 40 min) has been 

found to alter the physiochemical properties and pH of porous bioceramics with a concern 

that this would affect their osteoinductivity/osteoconductivity in vivo.172
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6. ECONOMICS

Since the approval of 3D printing-related Current Procedural Terminology (CPT) codes 

for anatomic models and surgical guides in 2018, interest to incorporate 3DMD in routine 

surgical care has grown exponentially.173 By 2028, the 3DMD market is projected to be 

a $6.9B industry with an annual growth rate 17.1%.174 Establishment of a POC 3DP 

facility has enormous benefits to both patients and surgeons within the private and academic 

sectors. As it stands, extended manufacturing and transport times due to distant third-party 

manufacturers bottleneck widespread use of the technology. For example, 3DMD cannot 

be used in acute CMF trauma cases, although if available it would alleviate many of the 

challenges associated with reconstruction of extensive facial traumas.4 Additionally, the 

tendency to incorporate biologics (e.g., stem cells) into 3D printed scaffolds is not conducive 

to transport across great distances. Thus, HCFs can differentiate themselves by having 

such capabilities in-house. As of 2019, there were 113 hospitals in the United States with 

centralized 3D printing capabilities.175 An HCF considering the establishment of their own 

POC facility must first consider the cost of all the required materials and equipment needed 

for the 3DP workflow.

The first requirement is a 3D printer and compatible segmentation software. The 3D printer 

itself has the largest upfront cost. Depending on the type, processing speed, manufacturer, 

and desired printable materials, cost ranges widely with a mean of approximately 

$100,000.35,176 Several of the more inexpensive options with many potential CMF 

applications are material jetting, material extrusion, and stereolithography printers.35,140,177 

It is important to emphasize that only a select number of printers currently on the market 

are FDA-cleared for 3DMD fabrication.35 Options that have been coined as low cost, such 

as an inexpensive material extrusion printer, have not yet been validated by the FDA, despite 

similar clinical performance.178,179 The price of segmentation software typically requires 

a quote, as they depend on the size and output of the 3D printing system. Some software 

are accompanied by their own biomedical engineers available to collaborate directly with 

surgeons. Their labor fees in addition to any other individuals necessary to oversee and 

maintain the equipment must also be accounted for in the overall cost of a POC 3D printing 

facility.

An additional cost to consider is the required printing materials. Their prices fluctuate 

heavily based on supply and demand in a commodity-like market. For example, as of June 

2023, polylactic acid was trading at $2.66/kg.180 By contrast, PEEK is valued at hundreds 

of dollars per kilogram.181 A 1-year trend in cost per kilogram of common 3D printed 

materials can be seen in Figure 5A and B with the volatility and percent change per month 

of their respective costs over the past year depicted in Table 2.180,182–184 While these prices 

are seemingly inexpensive compared to the larger upfront costs discussed earlier, this would 

be a recurring expense for the HCF.

The average cost for an anatomical model produced by industry was $2467 with some 

reported to be as high as $6000.150,185,186 Conversely, a recent study noted that the average 

cost for 3D printed anatomical models produced in-house was $2180.185 Despite this initial 

cost, 3D printed anatomical model and surgical guides are estimated to save hospitals $5172 
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and $1918, respectively, due to reductions in operative time per case.173 That being said, it 

is predicted that an HCF must print a volume of 63 models or guides annually to cover the 

costs of having the 3DP system itself.173 Because of the extensive FDA-clearance process 

required for implantable 3DMD, there are few data reported currently on costs saved, if any, 

because of their use.

7. CLINICAL APPLICATIONS OF 3DMD IN CMF SURGERY

Considering both the barriers and benefits associated with 3DMD discussed thus far, it 

is understandable that anatomical models, surgical guides, and implants are slowly, yet 

excitedly, making their way into operating rooms for CMF application. Barriers have 

centered on the establishment of FDA-regulatory oversight and the expenses associated 

with this new and ever-developing technology. Cumulatively, the benefits of 3D printed 

anatomical models and surgical guides are theorized to include improved surgical accuracy, 

decreased operative time, and fewer complications. Additionally, in vitro and in vivo studies 

of patient-specific implants have established their potential to restore critical-sized defects in 

both load-bearing and nonload-bearing regions of the craniofacial region. However, surgeon 

familiarity, imaging quality, material, production equipment, and patient anatomy are all 

confounding variables that may hinder 3DMDs’ clinical performance. This section serves 

as a discussion of the most recent and representative clinical cases in craniomaxillofacial 

surgery that have utilized 3D printed models, guides, and implants produced by additive 

manufacturing processes.

7.1. Anatomical Models.

Anatomical models allow surgeons to tangibly visualize patient anatomy, developing 

a clearer, more efficient surgical plan for complex cranio-maxillofacial reconstructions. 

Anatomical model development is the product of a process known as virtual surgical 

planning (VSP). A digital simulation of the surgical intervention is generated from patient 

high resolution CT data collaboratively among the CMF reconstructive team and biomedical 

engineer. A study that 3D printed an auricular model for a microtia case highlights the 

dramatic difference that can exist between material cost alone and labor fees associated 

with model design (i.e., $1 vs $500, respectively).150 This data is then used to print the 

patient-specific model in addition to surgical guides or implants when warranted. The 

broad scope of anatomical model applications in oncologic, traumatic, and congenital CMF 

reconstruction is described in Table 3. Within this subset of representative cases, SLA187–

192 and FDM150,190,193,194 were the most commonly employed AM techniques. Models 

were studied both preoperatively and intraoperatively for surgery simulation and resident 

training, patient education, situating hardware and/or implant placement, and bending 

off-the-shelf fixation devices to anatomical contours. Reported benefits broadly included 

decreased operative time, decreased need for surgical estimations and thus higher accuracy, 

and improved patient education and modulation of expectations.

7.2. Surgical Guides.

The primary function of 3D printed surgical guides is to serve as templates to facilitate 

safe and accurate bone cutting or to properly position the device placement. Table 4 is a 
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representative summary of the various recent applications of surgical guides in CMF surgery. 

Although traditionally thought to be used strictly intraoperatively, surgical guides were also 

used preoperatively to perform mock surgeries on patient-specific anatomical models.195 

Very few identified studies disclosed the AM technique, but of those that did, SLA and FDM 

were the most common. Material of choice were various polymers, and in only one study 

was a titanium surgical guide made.31 In this case the titanium surgical guide was preferred, 

although much more expensive, to avoid risk of polymer deterioration and to guarantee 

guide stability and rigidity.31 Other parameters including cost, time to manufacture, and 

sterilization method were scarcely mentioned in the existing literature. Overarching benefits 

included decreased operative time, prevention of injury to critical nearby structures, accurate 

and symmetrical cutting and implant placement, and overall improved patient outcomes.196 

One caution that was raised in the case of oncologic reconstruction was the risk of tumor 

growth between the time of VSP and the day of surgery. In this case, it was encouraged that 

cutting guides be developed with a slight overestimation of defect size.197

7.3. Implants.

To date, 3D printed implants have been utilized largely in cranioplasties and nasal, orbital, 

maxillary, and mandibular reconstruction (Table 5). Titanium and thermoplastic polymers, 

predominantly PEEK, were the materials of choice for orbital, nasal, maxillary, and 

mandibular reconstruction.114,198–208 In addition to these materials, the use of 3D printed 

bioceramics has also been attempted in cranioplasties.209–213 Of note, many of these studies 

were performed outside of the United States and largely in adults with few exceptions 

of pediatric patients. Implant cost, time to manufacture, and sterilization methods were 

rarely reported, despite being some of the most widely discussed limitations of 3DMD. 

Commonly reported benefits mentioned were physician and patient aesthetic satisfaction, 

improved implant fit to anatomical contours, and reduced operative time. However, 3 of 

the 17 identified studies reported development of an implant with an improper fit due to 

errors with the initial CT scan or conversion to CAD.200–202 It must be emphasized that 

each transition step within the 3D printing process introduces an opportunity for inaccuracy. 

Imaging quality of CT- and MRI-data have been reported to modulate the mean absolute 

error between virtual 3D model and final printed product.35 Furthermore, the use of CAD 

software to develop a 3D printer compatible file has also been shown to compromise 

the integrity of the original scan.35 As a part of their quality system regulations, FDA-

approved software platforms verify preservation of original scan data.35 It is imperative that 

HCFs purchase FDA-cleared software and compatible printers when planning to establish 

their own POC 3D printing facility. Future clinical studies should aim to report as much 

information as possible regarding the various stages of their unique 3D printing workflow to 

facilitate reproducibility and build a foundational clinical database.

8. FUTURE DIRECTIONS

8.1. Automatization of 3D Printed Implant Design.

With the focus of HCFs and the U.S. FDA alike on the development of hospital-operated 

3DP facilities, researchers have begun to investigate the automatization of the user-

dependent aspects of the 3DP workflow. More specifically, the challenge of accurate 3DMD 
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formulation lies within the conversion from original scan data to DICOM, and finally to a 

3D printable file. This process is both timely and technically complex, posing a challenge 

to inexperienced users. To combat this issue, Li et al. developed a database of CT-based, 

healthy cranial scans injected with randomly generated artificial defects.224 The goal is to 

train deep learning algorithms, by way of data sets like these, to perform automatic defect 

reconstruction and implant generation.224 This would save time, reduce labor expenses, and 

improve implant design accuracy by eliminating risk of human error, which is a frequently 

reported cause of improper fit of 3D printed implants.200–202 The deep learning algorithm 

can be refined to generate implant designs for real CMF defects more accurately if other 

researchers contribute their own scan data to the database.224

8.2. 3DMD + Augmented Reality.

With the latest advancements in augmented reality (AR) technology, commercial AR 

platforms have become available for surgical use. AR allows the user to virtually visualize 

an overlay of critical patient anatomy (e.g., arterial supply, innervation, musculature) 

that may not be visible in reality.225 The virtual, holographic projections are generated 

from patient CT/MRI data and registered in that specific surgical field. AR can be 

combined with 3D printing technology for resident training, preoperative planning, or 

intraoperatively to accurately position surgical guides and subsequent fixation devices. Thus, 

far, this technology has been successfully applied in craniosynostosis, face transplantation, 

mandibular and auricular reconstruction, as well as for patient-specific facial artery 

mapping.214,225–229 With adequate training, reported outcomes have included improved 

accuracy, minimization of operative injury, reduced costs, and shortened intraoperative 

time.225

8.3. In Situ Bioprinting.

In situ bioprinting is a rapidly advancing form of 3D bioprinting in which biomaterials/

bioinks are used print acellular/cell-laden constructs, respectively, directly into the desired 

defect site.230 Subtypes include bedside mounted (e.g., traditional in situ bioprinter, robotic-

arm assisted bioprinter) and hand-held (e.g., ionically activated, light activated) printers; 

both of which can be used in a sterile surgical suite. In situ bioprinting research for CMF 

repair remains in its preclinical stages, with critical-sized, murine calvaria defects.231–233 

For example, Kérourédan et al. printed endothelial cell-based microvascular networks in 

defects prefilled with collagen, MSCs, and VEGF.231 This experimental group exhibited 

improved vascularization and bone regeneration compared with scaffolds randomly seeded 

with endothelial cells and negative controls. Relative to ex vivo bioprinting (i.e., premade 

constructs), clinical application of in situ bioprinting would eliminate many challenges 

associated with the production of 3DMD with biologic components. More specifically, 

printing directly onto the patient would minimize contamination risk and implantation 

delays associated with ex vivo manufacturing and transportation.231

8.4. 4D Printing.

4D printing is defined by the ability of 3D printed structures to temporarily transform 

and reform to an original shape when cued by an external stimulus. Stimuli can include 

but are not limited to temperature, water or solvents, magnetism, and ultraviolet light.234 
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Shape transformations such as folding, curling, twisting, and linear expansion have all been 

achieved. This technology has the potential to optimize bone defect repair with 3D printed 

scaffolds. For example, Senatov et al. 3D printed a PLA/15 wt % HA porous scaffold by 

fused filament fabrication with heat-sensitive shape memory.235 Clinically, scaffolds can be 

surgically inserted in their compact, deformed shape and upon shape-memory activation, 

expand to precisely fit the bone defect.235,236 As it stands, a limitation of 4D printing is 

identifying materials that are responsive to stimuli that are benign to humans. For example, 

heat-sensitive shape memory is only feasible if it is within the range of human body 

temperature.234 Soybean oil epoxidized acrylate fabricated scaffolds have recently been 

discovered to be capable of such transformations and have even demonstrated promising 

osteoconductive potential.234 This technology has also been harnessed to create 3DMD 

capable of shape change with tissue growth, with enormous implications for pediatric 

cranio-maxillofacial bone repair as the scaffold could expand with skeletal development.237

9. CONCLUSION

3D printing technology within the field of craniomaxillofacial surgery has grown 

exponentially in recent decades. Possible applications have proven to touch every aspect 

of the field with an overarching ability to improve functional and aesthetic outcomes as 

well as reduce the operative time and postoperative complications. Researchers continue 

to push the envelope with the capabilities of 3DMD, including shape memory devices. 

This has the potential to disrupt current standard-of-care for pediatric craniofacial patients. 

Craniofacial surgeons excitedly introduce anatomic models, surgical guides, and implantable 

devices into their operating rooms, proving or disproving their benefits on a case-by-case 

basis and furthering the research as a result. Meanwhile, the FDA is working diligently with 

stakeholders to discuss feasible ways to provide this care safely and accessibly to patients 

at the point-of-care. As discussed, 3DMD has the potential to become the new standard 

within CMF surgery. In order to prepare for 3DMD finding its eventual commonplace, it is 

imperative that this technology continue to be better understood, discussed, and refined for 

all of its applications within craniomaxillofacial surgery.
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Figure 1. 
(A) The 3DP workflow is for manufacturing a patient-specific anatomical model, surgical 

guide, or implant. CT/MRI data are converted to a DICOM36 and further processed in 

preparation for design, printing, and postprocessing. (B) This highlights the critical phases 

of the 3DMD workflow that are overseen by the FDA. Within each phase, the FDA 

emphasizes specifications that must be considered for approval of a premarket device. 

Created with BioRender.com.
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Figure 2. 
Representation of Von Mises stress distribution across the facial skeleton based upon bite 

point at the (A) canine, (B) 1st molar, or (C) 2nd/3rd molars. Green and red depict low and 

high areas of stress, respectively. Created with BioRender.com.
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Figure 3. 
A drawback of 3D printed bioceramics for targeted bone regeneration is their resorption 

kinetics. With the addition of a 1000 μM DIPY coating, Shen et al. successfully altered the 

degradation rate of β-TCP scaffolds to 55%/year and 90%/year within (A) calvarial and (B) 

alveolar defects, respectively, in a rabbit model. Reproduced from ref 131. Copyright 2023, 

Wolters Kluwer Health Inc.
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Figure 4. 
(A) Schematic representation of stereolithography to create a 3DMD. A UV laser hits a vat 

filled with resin, resulting in a targeted photopolymerization reaction that allows for material 

solidification. (B) In DIW, a pressure controller regulates material flow while the nozzle 

moves in the x and y planes. Created with BioRender.com.
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Figure 5. 
(A) Cost per kilogram for various thermoplastic polymer raw materials over the past year 

(until July 2023) with projected values (P) for the next six months. (B) Cost per kilogram for 

raw titanium over the past year.
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Table 2.

Trailing 12 Months of Reported Volatility (Standard Deviation) and % Change Per Month of Cost per 

Kilogram of Each Material

Material Volatility % Change per Month

PLA $0.08 −0.36%

HDPE $0.15 −2.22%

PMMA $0.26 −1.21%

Titanium $2.48 −5.57%
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