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Abstract

The COVID-19 pandemic emerged in late December 2019. In the first six months of the 

global outbreak, the U.S. reported more cases and deaths than any other country in the world. 

Effective modeling of the course of the pandemic can help assist with public health resource 

planning, intervention efforts, and vaccine clinical trials. However, building applied forecasting 

models presents unique challenges during a pandemic. First, case data available to models 

in real time represent a nonstationary fraction of the true case incidence due to changes in 

available diagnostic tests and test-seeking behavior. Second, interventions varied across time and 

geography leading to large changes in transmissibility over the course of the pandemic. We 

propose a mechanistic Bayesian model that builds upon the classic compartmental susceptible–

exposed–infected–recovered (SEIR) model to operationalize COVID-19 forecasting in real time. 

This framework includes nonparametric modeling of varying transmission rates, nonparametric 

modeling of case and death discrepancies due to testing and reporting issues, and a joint 

observation likelihood on new case counts and new deaths; it is implemented in a probabilistic 

programming language to automate the use of Bayesian reasoning for quantifying uncertainty 

in probabilistic forecasts. The model has been used to submit forecasts to the U.S. Centers for 

Disease Control through the COVID-19 Forecast Hub under the name MechBayes. We examine 

the performance relative to a baseline model as well as alternate models submitted to the forecast 

hub. Additionally, we include an ablation test of our extensions to the classic SEIR model. We 

demonstrate a significant gain in both point and probabilistic forecast scoring measures using 

MechBayes, when compared to a baseline model, and show that MechBayes ranks as one of the 

top two models out of nine which regularly submitted to the COVID-19 Forecast Hub for the 

duration of the pandemic, trailing only the COVID-19 Forecast Hub ensemble model of which 

which MechBayes is a part.
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1. Introduction.

The emergence of COVID-19 in early 2020 led to the largest pandemic in over a century. 

Understanding the future trajectory of the pandemic can help decision-makers prepare 

for and consequently diminish the impact in terms of healthcare and economic burden. 

Forecasts of incident and cumulative deaths due to COVID-19 help in resource allocation 

and reopening strategies (Ray et al. (2020)). Forecasts provide important data to decision-

makers and the general public and can improve situational awareness of current trends and 

how they will likely evolve in coming weeks.

Infectious disease forecasting, at the time horizon of up to four weeks in the future, has 

benefited public health decision makers during annual influenza outbreaks (Lutz et al. 

(2019), Myers et al. (2000)). However, many forecasts of endemic, seasonal diseases, such 

as influenza, rely on ample historical data to look for patterns in the training data that can 

be projected forward into the future for extrapolation. In an emerging pandemic situation, 

models must be able to fit to limited data. Mechanistic models are a natural framework 

for modeling and forecasting in a limited data scenario, such as COVID-19. These directly 

model the transmission of the disease through the population and can be fit to public health 

surveillance data with relatively few parameters. In a Bayesian context, compartmental 

models can lever-age distributional estimates of parameters from smaller epidemiological 

studies to inform population level dynamics.

Our work is based on compartmental models, which are classical mechanistic models for 

disease transmission, that were first introduced by Kermack and McKendrick (1927). These 

assume that, at any given time, each individual is in one of a mutually exclusive set of 

compartments, typically either the susceptible, exposed, infected, or recovered compartment. 

A model is specified by setting the rates of flow of individuals between compartments. 

While these models have been used since their inception in the early 20th century, 

the COVID-19 pandemic represents a unique opportunity to explore their operational 

forecasting properties in real time at local, national, and global scales, for an emerging 

pathogen that, unlike influenza, does not have years of data on which models can train. 

This work details a fully operational model (which is available as a python package1) that 

performed second overall in the U.S. Centers for Disease Control COVID-19 forecasting 

initiative, trailing only the COVID Hub ensemble model which included MechBayes as a 

component model.

We develop a mechanistic Bayesian model that tailors compartmental models to the 

operational needs of making one- to four-week ahead forecasts of incident deaths for 

COVID-19. Since the primary goal is to parsimoniously forecast an observable quantity, 

1 https://github.com/dsheldon/mechbayes 
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estimating internal parameters of the model, many of which are poorly determined or not 

identifiable from the available data (Korolev (2021)), is not an explicit focus or prerequisite 

of our work. We distinguish this setup from longer-term scenario projection models, which 

require well identified epidemiological parameters that can be set to counterfactual values 

under different scenarios, such as an increase or decrease in intervention levels (Pei, 

Kandula and Shaman (2020), Borchering et al. (2021)). Scenario projection models are 

often based on similar foundations but require different adaptations than those needed for 

real-time forecasting.

Our model is tailored to the particular needs and data availability of COVID-19. The 

compartmental model jointly models infections and deaths and uses records of both incident 

cases and deaths—the two most widely available COVID-19 surveillance measurements—

for model fitting. Our model includes components to model changes over time in both the 

dynamics and the detection of COVID-19. In particular, transmission rates have changed 

significantly due to the addition and removal of control measures, such as social distancing, 

lockdown, and mask use, while infection reporting rates have changed due to significant 

changes in the availability of diagnostic testing (Catching et al. (2021), Flaxman et al. 

(2020), Lau et al. (2021)).

There have been many Bayesian differential equation models explored in an infectious 

disease context, particularly with COVID-19 (Johndrow et al. (2020), Yang and Lee 

(2020), Zhuang et al. (2013), Mbuvha and Marwala (2020), Zhuang and Cressie (2014), 

Grinsztajn et al. (2021)). Many of the models submitted to the CDC COVID-19 forecasting 

initiative are based on underlying compartmental models (Karlen (2020), Ray et al. (2020)). 

However, the heterogeneity of model performance (Cramer et al. (2021a)) shows that not all 

compartmental models are created (or implemented) equally. While both the theory behind 

the models and the ability to fit them through Bayesian methods has been established, the 

particular choices modelers face when adapting the theory to real data has consequences 

for forecast accuracy. In particular, MechBayes uses a flexible transmission model, flexible 

link between cases and deaths, and employs efficient fully Bayesian inference. The ability 

to build a modular probabilistic model with complex components and automatically 

obtain efficient inference procedures is a testament to recent advances in algorithms and 

software packages largely driven by advances in Markov chain Monte Carlo methodology, 

autodifferentiation, and automatic variable transformations for latent variables into an 

unconstrained parameter space (Uber (2020)). What separates our model from previous 

work is its practical application and demonstrated success in a real-time prospective CDC 

COVID-19 mortality forecasting initiative (Cramer et al. (2021a)).

We demonstrate the success of our model by showing that forecasts submitted to the CDC 

(under the model name “MechBayes”) via the COVID-19 Forecast Hub outperform a 

baseline probabilistic forecast model described in Cramer et al. (2021a). We additionally 

show (and point to independent evaluations that support the conclusion) that MechBayes is 

one of the top performing models out of those submitted to the COVID-19 Forecast Hub. 

Finally, we quantify the features of MechBayes that improve the model over a traditional 

compartmental model via an ablation study.
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2. Methods.

2.1. Data.

In this analysis we used confirmed case counts and deaths for the 50 U.S. states and the 

District of Columbia, as reported by the Johns Hopkins University Center for Systems 

Science and Engineering (JHU CSSE) (Dong, Du and Gardner (2020)). The data set 

reports the incident number of confirmed cases and deaths for each location at a daily 

frequency starting in early 2020. As noted in Krantz and Rao (2020), COVID-19 cases are 

underreported, with the fraction of all infections reported as cases for the U.S. estimated 

at 20–30% (Russel et al. (2020)). The fraction of all infections reported has also changed 

dramatically over the course of the epidemic (Rahmandad, Lim and Sterman (2020)).

2.2. Forecast targets.

We made probabilistic forecasts for one to four weeks ahead incident and cumulative 

deaths for all geographies. An individual forecast distribution is represented by a set of 

23 quantiles, ℚ = 0.01, 0.05, 0.10, …, 0.90, 0.95, 0.99 , with the median (0.50 quantile) 

representing the point forecast. While forecasts are made at the daily scale, we aggregate 

them to the weekly scale by summing incident death forecasts from the first forecasted 

Sunday through the following Saturday. We evaluate only forecasts of incident deaths 

which is the primary modeled quantity; forecasts for cumulative deaths are created by 

accumulating forecasted incident deaths.

2.3. Mechanistic Bayesian model.

Compartmental models have been used to effectively model and forecast disease in 

nonpandemic situations both retrospectively and in real time. These include complex 

compartmental models for real-time influenza forecasting (Shaman and Karspeck (2012), 

Osthus et al. (2017), Ong et al. (2010)) and a retrospective model evaluation of the 

1918 influenza pandemic (Hall et al. (2007)). Compartmental models have been used for 

both inference and forecasting not just in respiratory disease but in Ebola (Lekone and 

Finkenstädt (2006)), measles (Bokler (1993)), dengue (Syafruddin and Noorani (2012)), and 

a wide variety of other communicable diseases.

Compartmental models have also been adopted into a Bayesian framework before, including 

both stochastic disease dynamics and deterministic dynamics (Hotta (2010), Dukic, Lopes 

and Polson (2012)). Nonparametric transmissibility was included in a Bayesian SEIR model 

to study Ebola by Frasso and Lambert (2016). Time-varying transmissibility has also been 

studied in the frequentist setting using complex nonparametric functions (Smirnova, deCamp 

and Chowell (2019)). Many efforts have been made to use SEIR models in forecasting 

COVID-19 (Giordano et al. (2020), Yang et al. (2020), Bertozzi et al. (2020), Prem et al. 

(2020), Flaxman et al. (2020)). With the outbreak of COVID-19, accounting for testing has 

become a critical element in effectively using an SEIR model (Pei, Kandula and Shaman 

(2020), López and Rodo (2020)).

The MechBayes probabilistic model consists of three parts which together define a 

probabilistic model for the observed incident cases and deaths with the parameters and state 
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variables of a compartmental model as latent variables. The core part is the mechanistic 

disease model p x1:T, η1:T ∣ θ , which defines the distribution of the state variables x1:T

and time-varying parameters η1:T, given a vector θ of fixed, nontime-varying parameters. 

The state variable xt is a vector that enumerates the number of individuals in each 

compartment (susceptible, exposed, infectious, etc.) at time t, while ηt contains parameters 

of the disease model or observation process that change over time (e.g., due to changes in 

social distancing or test availability), which we model stochastically. MechBayes operates 

at a daily time step. The state trajectory x1:T = x1, …, xT  concatenates state vectors from 

each day, and η1:T collects time-varying parameters in a similar fashion. MechBayes also 

defines a prior distribution p θ  over fixed parameters and an observation model p yt ∣ xt, θ
for the vector yt of observed variables at time t (incident cases and deaths), given the 

state vector xt, time-varying parameters ηt, and fixed parameters θ. Each part of the 

probabilistic model is expressed by writing Python code to sample from the corresponding 

distribution within the NumPyro probabilstic programming language (Uber (2020)), which 

automates the construction of Markov chain Monte Carlo algorithms to sample from 

the distributions p θ, x1:T, η1:T ∣ y1:T , for inference about unobserved parameters and state 

variables, and p yT + 1:T + k ∣ y1:T , for forecasting (by integrating over unobserved state variables 

and parameters).

2.3.1. Disease model.—The MechBayes compartmental model is illustrated in Figure 

1 and is based on the classical SEIRD framework (Korolev (2021)). It consists of state 

variables S, E, I, R, D1, D2 that indicate the number of individuals in the population that 

belong on a given day to each one of the following mutually exclusive compartments: 

susceptible S , exposed (but not yet infectious) E , infectious I , recovered R , or 

one of two death compartments (D1 and D2).2 The death pathway is separated into two 

compartments to incorporate a time-delay between infection and death that is modeled 

separately from the ratio between observed cases and observed deaths, which both have 

prior estimates from the literature (Russell et al. (2020)). For simplicity, we assume a closed 

population of size N. The following parameters govern how members of the population 

move between compartments:

• βt: Transmission rate, which we allow to vary by time t;

• σ: Rate of transition from the exposed state E to infectious state I; that is, 1/σ is 

the expected duration of the time between exposure and onset of infectiousness;

• γ: Rate of transition from the infectious state I to either D1 or R; that is, 1/γ is the 

expected duration of the infectious period;

• ρ: Fatality rate (i.e., probability of transitioning from I to D1, as opposed to R);

• λ: Rate of transition from D1 to D2 (i.e., the inverse of expected number of days in 

D1 compartment before death).

2We will also use the state variable name as a short name for the compartment itself–for example, “the E state” –with the correct 
interpretation always being clear from context.
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On a given day t, the following differential equations describe the instantaneuous changes in 

each compartment with respect to the continuous time index τ ∈ t, t + 1 :

dS
dτ = − βt

SI
N ,

dE
dτ = βt

SI
N − σE,

dI
dτ = σE − γI,

dR
dτ = 1 − ρ γI,

dD1
dτ = ργI − λD1,

dD2
dτ = λD2 .

(1)

In addition, we augment the dynamics with an extra variable C τ  to count the cumulative 

number of individuals that enter the I compartment, with dynamics dC
dτ = σE that capture 

only the flow into, and not the flow out of, I. The number of individuals that first become 

infectious on day t is then C t + 1 − C t ; we consider these individuals candidates for 

being detected as confirmed cases on day t. We do not attempt to model testing delays or 

mismatches between onset of infectiousness and onset of a detectable infection.

The state vector at time t is then

xt = S t , E t , I t , R t , D1 t , D2 t , C t .

The distribution p x1  of the initial state x1 is described in the Supplementary Material 

(Gibson, Reich and Sheldon (2023)). While equation (1) is in continuous time, the observed 

data is in discrete (daily) time. The update from time t to time t + 1 is obtained by 

numerically solving the ordinary differential equation (ODE) with dynamics dx
dτ , given by 

equation (1) for the time interval τ ∈ t, t + 1 , over which the dynamics are fixed. This is 

contrasted with the typical approach where the dynamics are discretized (say by RK4) to a 

single step from t, t + 1 . We are explicitly running the odesolver continuously within the 

time interval t, t + 1  and sampling the right endpoint for a more accurate approximation of 

the dynamics. We write this as

xt + 1 = odesolve xt, dx
dτ .

We use the ODE solver in the the Python library JAX, which uses the Dormand-Prince 

algorithm (Dormand and Prince (1980)), a member of the Runge-Kutta family of ODE 

solvers. Importantly, JAX also supports automatic differentiation of odesolve using the 

adjoint method (Chen et al. (2018)) to compute partial derivatives of xt + 1 with respect to both 

the initial value xt and all dynamics parameters affecting dx
dτ . This is a key functionality that 
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allows us to embed ODE dynamics within a probabilistic model for which NumPyro can 

perform inference using Hamiltonian Monte Carlo (Neal (2011)).

In 2020, significant efforts to control the spread of COVID-19 relied on nonpharmaceutical 

interventions (Catching et al. (2021)). These included mandatory distance between 

individuals, closures of public spaces, and mask wearing. To add to the complexity, these 

interventions were implemented and repealed at different time points throughout the year, 

and the public complied with the interventions to varying degrees (Simonov et al. (2020)). 

In order to capture the aggregate effect of the interventions and other behavior changes 

nonparametrically, we choose a flexible model for the time-varying transmission parameter. 

We allow βt to vary following a Gaussian random walk on logarithmic scale, that is,

log βt N log βt − 1, σβ = 0.2 .

The random walk models nonstationary dynamics within the observed time period (t from 1 

to T ). For forecasting t > T , MechBayes does not attempt to model future behavior changes 

and simply predicts that the final value of βt will persist in to the future. However, to avoid 

extreme senstivity of forecasts to one or a few data points near the end of the time series, we 

average over the last 10 days instead of taking the final value; that is, for all i ≥ 1,

βT + i = 1
10 j = 0

9
βT − j .

2.3.2. Observation model.—The observed data used to fit the model is based on time 

series of incident confirmed cases and deaths. The model is fit separately for each location. 

The observations on day t are yt = yt, c, yt, d , where yt, c is the number of new cases confirmed 

on day t and yt, d is the number of new reported deaths. We assume that yt, c is a noisy 

observation of C t + 1 − C t , the modeled number of new infections on day t, using the NB2 

negative binomial model for for overdispersed counts (Cameron and Trivedi (1986)),

yt, c NB2 μt, c, κc , μt, c = pt, c ⋅ C t + 1 − C t .

This satisfies E yt, c = μt, c, with the parameter pt, c acting as a detection rate on the 

modeled number of new infections; the parameter κc controls overdispersion, with 

Var yt, c = μt, c + κcμt, c
2 . Note that the detection rate pt, c is time varying (see below). Similarly, 

we assume that yt, d is a noisy observation of D2 t + 1 − D2 t ,

yt, d NB2 μt, d, κd , μt, d = pd ⋅ D2 t + 1 − D2 t .

The detection rate pd for deaths is not time varying. The dispersion parameters κc and κd for 

both cases and deaths are estimated and given a truncated normal prior distribution with 

location 0.30, scale 0.15, and lower truncation limit 0.10.

We model the time-varying case detection rate as
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p1, c Beta 15, 35 ,
logit pt, c N logit pt − 1, c , σpc = 0.2 , t ≥ 1 .

The Beta distribution on the case detection rate at time t = 1 (corresponding to early March 

in our operational model) satisfies E pc = 0.3, with 90% probability of falling between 0.22 

and 0.38. Preliminary experiments suggested that the detection rate is poorly determined 

by data, and short-term forecasts are not sensitive to this parameter.3 We, therefore, use a 

moderately strong prior centered at 30%, as suggested by the literature (MIDAS (2020)). 

We then allow the detection rate to vary over time, following a Gaussian random walk on 

the log-odds scale, as shown above. This is meant to loosely model changes in diagnostic 

testing over time; in practice, it provides flexibility in the model that likely captures other 

changes in the relationship between reported cases and deaths over time, such as changes in 

the fatality ratio of the population infected at a given time.

For deaths we place a strong prior on the reporting rate: pd Beta 90, 10 . This satisfies 

E pd = 0.9 with 90% probability between 0.89 and 0.92. That is, we assume that deaths 

due to COVID-19 are most often correctly reported (Weinberger et al. (2020)). As with the 

absolute value of the case detection rate, short-term forecasts are not very sensitive to this 

parameter.

2.3.3. Epidemiological model parameters.—We use informative priors for 

epidemiological parameters, such as γ, σ, ρ, λ, and initial compartment values based on 

reasonable estimates of their epidemiological interpretation (Gibson, Reich and Sheldon 

(2023)). However, these parameters are unidentifiable from the observed data of cases 

and deaths, and βt can absorb any misspecification of the true epidemiological parameter 

settings. While our initial parameter settings were based on external estimates of the 

incubation period σ , recovery period γ , and time until death (λ) (MIDAS (2020)), their 

exact value is unimportant due to the lack of identifiability.

2.3.4. Implementation.—MechBayes is implemented in the NumPyro probabilistic 

programming language (Phan, Pradhan and Jankowiak (2019)) which automates the 

complex task of designing a posterior sampling algorithm. NumPyro uses the JAX Python 

library (Bradbury et al. (2018)) to automatically compute the partial derivatives needed 

for sampling via Hamiltonian Monte Carlo (Neal (2011)) and to compile model code for 

highly efficient computations. JAX includes a differentiable solver for ordinary differential 

equations (ODEs) (Chen et al. (2018)) which allows us to embed ODE-based compartmental 

models into the full probabilistic model with relative ease. The components described so far 

lead to the full probability model

p θ, η1:T, x1:T, y1:T = p θ p x1:T, η1:T ∣ θ
t = 1

T
p yt ∣ xt, ηt, θ ,

3It primarily impacts inferences about the true number of infections in the population; forecasts are, therefore, expected to be more 
sensitive to this parameter as herd immunity is approached.
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where ηt = βt, pt, c  are time-varying parameters (contact rate and case detection rate) and

θ = σ, γ, ρ, λ, pd, κc, κd, S1, I1, E1, D1,1, D2,1, R1

is the vector containing all other parameters.

Each model component is implemented in NumPyro (Phan, Pradhan and Jankowiak (2019)). 

We then use NumPyro’s implementation of the No-U-Turn Sampler (Hoffman and Gelman 

(2014)) (a variant of Hamiltonian Monte Carlo (Neal (2011))) to draw samples from 

the posterior distribution p θ, η1:T, x1:T ∣ y1:T , given an observation sequence y1:T (for model 

diagnostics), and to sample from the distribution p yT + 1:T + k ∣ y1:T  to make forecasts of future 

reported cases and deaths.

We draw 1000 warm-up sample and then 1000 posterior samples of model parameters. We 

also monitor the number of effective samples produced by HMC to ensure it is large enough 

to reflect accurate exploration of the posterior (Betancourt (2017)). All R̂ values were below 

1.2.

2.4. Operational forecasts.

On May 10, 2020, we began submitting incident and cumulative death forecasts on a weekly 

basis to the U.S. Centers for Disease Control (CDC) through the COVID-19 Forecast Hub 

consortium (Cramer et al. (2021b)). 4 Each week we submitted one- to four-week ahead 

forecasts for the 50 U.S. states and Washington, D.C., and later added forecasts for the U.S. 

national level, and U.S. territories. All forecasts used daily data up to and including the 

Sunday before the Monday submission. The “one week ahead” forecast corresponds to the 

week ending on the following Saturday, the “two week ahead” forecast to the week ending 

on the second following Saturday and so on. The model remained remained stable from May 

10, until the time of writing with only minor changes, for example, to prior distributions.

Over time, we developed a quality-assurance process to tune our model and to detect and 

troubleshoot suspicious forecasts. We regularly monitored the performance of our recent 

forecasts in terms of mean absolute error and calibration of prediction intervals, as measured 

by the probability integral transform (Gneiting, Balabdaoui and Raftery (2007)). We used 

these metrics and diagnostic plots to compare submitted forecasts to alternate models to tune 

parameters. This led us to introduce a resampling procedure to mitigate too-large prediction 

intervals (on May 17, 2020) and to slight changes to prior distributions (on September 6 and 

October 20, 2020).

Suspicious forecast were primarily caused by data reporting issues. It was relatively 

common for a state to report a large backlog of cases or deaths on one day due to changes 

in reporting practices or to correct previous errors. As an extreme example, New Jersey (NJ) 

reported nearly 1600 daily deaths on June 25, 2020, when it began the practice of including 

deaths from probable COVID-19 cases in its totals. Similarly, Texas (TX) removed 3000 

4For two weeks prior to May 10, we submitted forecasts of cumulative deaths only while the model was under active development and 
lacked several of the main components described here.
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confirmed cases on July 7, 2020, when it determined that cases detected by antigen testing 

should not be reported. Changes of smaller magnitude were extremely common. Because 

MechBayes includes a flexible model of time-varying transmission, it interprets large 

changes in cases or deaths as evidence of significantly increased or decreased transmission 

which leads to unrealistic forecasts.

Our quality-assurance process involved viewing diagnostic plots of each forecast together 

with the recent time series of incident deaths and cases to identify forecasts that were unduly 

influenced by data reporting issues. We also checked the JHU CSSE website (Dong, Du and 

Gardner (2020)) for notifications of reporting issues that might not be obvious in diagnostic 

plots. After identifying a potential problem, we searched for documented evidence of a 

reporting issue. These were usually reported on state department of health web sites or by 

local news outlets. If we could identify a reporting issue, we distributed the excess number 

of incident cases or deaths evenly over some time window selected using our best judgment 

based on available information.

We made a small number of other interventions. Some states do not report data on Saturdays 

or Sundays; we modified the data to omit such observations instead of treating them as 

zeros. Starting in October, we sometimes omitted weekend observations, even if they were 

nonzero to mitigate the influence of low values that are due only to the weekly reporting 

cycle. In a small handful of cases, the inference routine failed to converge or diagnostics 

showed signs of numerical instability; in those cases we adjusted the prior distributions 

slightly and reran the model to overcome the problem.

2.5. Experimental setup.

We conducted two different evaluations. First, we evaluated the forecasts made in real 

time and submitted to the CDC via the COVID-19 Forecast Hub to assess the quality of 

MechBayes as an operational forecast model. Second, we conducted an ablation study that 

compared retrospective forecasts made using different versions of MechBayes to assess the 

importance of different model components on forecast accuracy.

2.5.1. Baseline forecast evaluation.—We evaluated all one- to four-week ahead 

incident death forecasts submitted to the CDC between July 25, 2020, and June 7, 2021, 

for the 50 U.S. states and Washington, D.C.5 We computed the absolute error (AE) for point 

forecast and examined the distributions of absolute errors for different locations, forecast 

horizons, and dates. We used mean absolute error (MAE) as a summary metric. In addition, 

to evaluate the uncertainty calibration of our probabilistic forecasts, we measured the 

empirical coverage rates of the prediction intervals obtained from the forecasted quantiles 

by measuring the fraction of actual observed values that fell within different prediction 

intervals, referred to as coverage. We compared the performance of MechBayes to the 

performance of the COVID-19 Forecast Hub baseline model described by Cramer et al. 

(2021a).

5We submitted forecasts for U.S. territories and the U.S. as a whole, starting after May 10, but omit these from evaluation to allow for 
the largest number of evaluation dates where forecasts were made across a consistent set of regions.
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2.5.2. Forecast hub alternate model comparison.—To evaluate the relative 

performance of MechBayes against other models submitted to the forecast hub, we chose 

the nine models (including MechBayes) that have been submitting forecasts from July 25, 

2020, to June 7, 2021, for incident deaths across all 50 states and D.C. for every forecast 

week. These criteria balance including as many models as possible, including ones that 

have performed well in other analyses, while also having a large number of locations and 

dates for which all of the models made forecasts. For each of the models, we examined the 

distribution of absolute error of all point forecasts as well as summary metrics, such as the 

mean and median absolute error. We include this analysis to demonstrate that for a particular 

common subset of locations and dates, MechBayes is a top performing model.

A comprehensive evaluation of forecast hub models by Cramer et al. (2021a) examines 

multiple performance metrics and addresses the problem of comparing models that make 

forecasts for different sets of locations and dates and also finds that MechBayes is the 

top component model across many different evaluation criterion and the largest subset of 

common locations and dates (all 50 states from July 25, 2020, through June 7, 2021). This 

evaluation allows us to claim that MechBayes is the best performing component COVID-19 

mortality forecasting model submitted to the CDC challenge out of 26 nonensemble models 

evaluated.

2.5.3. Ablation test.—We also performed a retrospective evaluation to demonstrate the 

improvement in accuracy due to addition of different model components. We define the 

following three variants of MechBayes:

• MECHBAYES Full is the full MechBayes model as submitted to the forecast hub 

and described in the previous sections, including observations of both reported 

cases and deaths and a time-varying random-walk model for the case detection 

rate pt, c.

• MECHBAYES FIXED-Detection is the same as MechBayes full but with the time-

varying detection rate pt, c replaced by a constant detection rate pc.

• MECHBAYES DEATH-ONLY is the same as MechBayes Fixed-Detection but with 

observations only on incident deaths (the forecasted quantity) and not on cases. 

This model is included to assess the value of using incident cases as evidence to 

help forecast incident deaths.

Other than the changes described above, all model components, data handling, and fitting 

procedures were identical. Note that we did not include a model without time-varying 

transmissibility. Such a model is unable to adequately fit the observed data; previous 

COVID-19 modeling has clearly established that time-varying transmissibility is an essential 

model component (Pei, Kandula and Shaman (2020), Smirnova, deCamp and Chowell 

(2019), Flaxman et al. (2020), Abbott et al. (2020)).
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3. Results.

3.1. Model fitting and inference.

MechBayes captures signal in the observed data, even in the presence of highly variable 

incident death reporting, and produces forecasts and prediction intervals that track the data 

well (Figure 2(A)). The model infers a relationship between the logarithm of incident deaths 

and time that is nearly linear over short time periods but with slopes that not only change 

over time at somewhat discrete time points (Figure 2(B)), highlighting the exponential 

growth (or decline) over short time periods that is a hallmark of compartmental models, but 

also the fact that these dynamics vary over longer time periods.

The inferred value of the time-varying contact rate parameter βt (Figure 2(C)) is closely 

tied to the observed rate of change of incident deaths (and cases, not shown), especially as 

observed on a logarithmic scale: βt is high across all four example states in mid-March, when 

incident deaths grew rapidly, then falls as the growth rate of incident deaths declines during 

and after the initial wave, with subsequent changes that can be matched to specific events 

in the states, for example, increases in βt associated with second waves in Texas, California, 

and Florida during the summer of 2020, and a slow increase in βt in New York associated 

with an eventual increase in deaths in the fall of 2020. In all four states, the inferred value 

of time-varying case detection rate pt, c increases significantly from the start of the pandemic 

(Figure 2(D)). In practice, this parameter likely functions to model any changes over time 

in the ratio of observed cases to observed deaths. One reason for such a change is increased 

diagnostic testing; another reason is a decrease in the overall infection-fatality ratio (e.g., 

due to changes in the age distribution of patients and improved treatments). Both changes 

would lead to a larger number of observed cases for the same number of deaths and likely 

occurred in conjunction, leading the model to significantly increase its estimate of pt, c over 

time. It is apparent that MechBayes also uses pt, c to absorb some reporting anomalies, as seen 

in Texas: a string of both abnormally high and low numbers of incident deaths were reported 

in late summer, which correspond to the model inferring a temporary decrease in pt, c.

3.2. Real-time forecast results.

3.2.1. Baseline comparison.—MechBayes had lower absolute error than the baseline 

model in all quantiles of the error distribution (Figure 4(A)). The gap in performance 

(as measured by absolute error) increased as the magnitude of the error increased for all 

quantiles of the error distribution. MechBayes also had a lower absolute error at the central 

tendency of the absolute error distribution (as measured by mean or median) (Table 1).

Overall, MechBayes had an MAE of 50.00 deaths, when averaging over all regions, forecast 

dates, and targets. The baseline model had an MAE of 76.62 deaths. The prediction intervals 

at the 95% level covered the truth 94.8% of the time for MechBayes, compared to 89.2% for 

the baseline model over all targets, regions, and forecast dates (Figure 3(B)).

MechBayes had similar or lower MAE than the baseline for almost all states and targets 

(Figures 3(A), 3(C)). In particular, for the locations with the highest total death counts (NY, 

Gibson et al. Page 12

Ann Appl Stat. Author manuscript; available in PMC 2024 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



TX, CA, FL) (Dong, Du and Gardner (2020)), MechBayes uniformly outperformed the 

base-line.

MechBayes improved uniformly over the baseline model for every target (Figure 3(C)). The 

mean absolute error increased as horizon increased which is to be expected. The distribution 

of errors by forecast date for a given target showed significant variability, suggesting that 

different targets were easier to predict on certain forecast dates, again reflecting the change 

in forecast difficulty throughout epidemic.

MechBayes had lower MAE by forecast date (averaged over locations and targets) than the 

baseline for 40 out of 46 forecast weeks (Figure 4(B)). The largest increase in incident 

deaths during the evaluation period occurred in winter 2020. MechBayes significantly 

outperformed the baseline model during these weeks, with the exception of forecasts made 

on December 26, 2020, and January 2, 2021. However, in weeks with a small increase 

or a decrease in incident deaths the MAEs were much closer. This suggests again that 

MechBayes performs well during periods of more rapid change in incident deaths.

MechBayes prediction intervals contained the truth with at least the predicted probability 

(Figure 3(D)) but were somewhat conservative: the empirical probability of containing the 

truth was nearly exact for the 95% interval and higher than predicted for smaller intervals.

MechBayes predictive distributions also tended to be wider than the baseline model (Figure 

4 D) for all levels of theoretical coverage. The wide prediction intervals, coupled with 

the lower absolute error of MechBayes relative to the baseline (Table 1), suggests that 

MechBayes predictive distributions are both closer to the true value and have wider 

tails than the baseline model. At lower levels of theoretical coverage, the wider tails 

are underconfident. However, above 0.8 theoretical coverage levels MechBayes is well 

calibrated.

3.2.2. Alternate model comparison.—MechBayes had a lower absolute error in 

nearly all quantiles of the error distribution for seven out of the eight alternate models 

submitted to the forecast hub (Figure 4(C)). MechBayes was in the top two out of the nine 

models based on mean, median, and the 0.95 quantile of the absolute error distribution 

(Table 1). We subset to models that have been submitting consistently over the course of 

the pandemic to avoid the complexities of evaluation in the presence of missing forecasts 

handled in Cramer et al. (2021a). MechBayes also performed better than all models, except 

the ensemble for most quantiles of the error distributions (Figure 3(A)), with the only 

exception of the Karlen-pypm model for quantiles between 400 and 600 absolute error units.

The median of the error distribution for all models was between 17 and 34 deaths (Table 

1). The mean absolute error was between 49 and 77 deaths. The 0.95 quantile of the error 

distribution began to show more significant separation between models (Table 1).

3.3. Ablation test results.

MECHBAYES produced consistently better point forecasts than MECHBAYES DEATH-ONLY or 

MECHBAYES FIXED-DETECTION (Figure 5(A)). When averaged over all targets, locations, and 
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forecast dates, MECHBAYES had an MAE of 48.67, MECHBAYES DEATH-ONLY had an MAE 

of 68.33, and MECHBAYES FIXED-DETECTION had an MAE of 79.40. At every quantile level, 

the error of MECHBAYES FIXED-DETECTION was significantly larger than that of MECHBAYES 

DEATH-ONLY which suggests that using deaths as evidence is only beneficial in conjunction 

with flexibility allowed by the time-varying ratio between cases and deaths pt, c . Both 

MECHBAYES FIXED DETECTION and MECHBAYES DEATH-ONLY were less well calibrated than 

MECHBAYES (Figure 5(B)). The prediction intervals for both models were too narrow at all 

levels of coverage.

4. Discussion.

MechBayes is a fully Bayesian compartmental model capable of accounting for varying 

transmission rates, observations on both cases and deaths, and a time-varying ratio of cases 

to deaths. MechBayes produced consistently accurate real-time forecasts over the course 

of 23 evaluation weeks, and was ranked as one of the top two of 10 models on median 

and mean absolute error. Our experiments led us to the following conclusions about the 

performance of this model and the underlying methodology:

• MechBayes is accurate when compared to a baseline model. MechBayes had 

lower absolute error than the baseline model in almost all quantiles of the error 

distribution (Figure 4). The performance gain was higher when predicting deaths 

was difficult (in the upper quantiles of the absolute error distribution) because 

deaths were changing rapidly. This is true across target, week, and region 

breakdown. Error is significantly lower for one- to four-week ahead predictions 

with larger improvements at longer horizons. Additionally, the biggest gains 

in performance occur in regions with the largest incident death counts (Figure 

3(A)), such as Texas (TX), California (CA), New York (NY), New Jersey 

(NJ), and Florida (FL) (Dong, Du and Gardner (2020)). Finally, MechBayes 

performance gain was highest in forecast weeks with the large absolute error 

(Figure 3(B)). This leads us to conclude that MechBayes is better than the 

baseline model when it really counts—in regions where deaths were high and in 

weeks that were difficult to predict because of rapidly changing incident deaths.

• MechBayes is accurate when compared to the alternate models submitted to 
the forecast hub. MechBayes ranked second out of nine models in terms of 

mean and median of the absolute error distribution (Table 1). MechBayes trailed 

the COVID Hub ensemble by a small margin, even though MechBayes itself 

was a component model of the ensemble. In an independent evaluation by 

Cramer et al., MechBayes was the best component model on a variety of 

probabilistic scoring measures, suggesting it is not only a good point forecasting 

model (as measured by MAE) but also a good probabilistic forecasting model 

(Cramer et al. (2021a)). However, the same mechanisms—the underlying 

exponential growth intrinsic to compartmental models and the flexible, time-

varying transmission—that allow MechBayes to accurately model the pandemic 

in many situations also make its forecasts highly sensitive to errors estimating 

the current rate of exponential growth. For example, the four-week forecast 
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for Florida (FL) on July 25, 2020, was too high by 2861 deaths, due to 

MechBayes estimating a high exponential growth based on recent trends and 

possible reporting issues, when the eventual growth rate over the next four weeks 

was much more modest.

• MechBayes is probabilistically well calibrated. The MechBayes 95% prediction 

interval contains the truth 94.6% of the time (Figure 3(D)). MechBayes is 

conservative for smaller intervals. As a Bayesian model, MechBayes is able 

to reason effectively about uncertainty in the epidemiological model parameters, 

state variables, and observation noise, given the evidence, and translate this into 

appropriately calibrated forecast uncertainty.

• Adding case data when predicting deaths is helpful but only when accounting 
for time-varying relationship between observed cases and deaths. Allowing for 

a time-varying ratio between cases and deaths is a key feature for lower MAE 

(Figure 5(A)). MECHBAYES FULL both incorporates incident cases as evidence 

and allows for a flexible deviation between cases and deaths, which makes the 

model consistently more accurate than a model that does not account for cases 

at all (MECHBAYES DEATH-ONLY) and a model that does account for cases but 

fixes the detection probability (MECHBAYES FIXED-DETECTION). Including cases 

without properly accounting for factors that yield a changing ratio between 

observed cases and observed deaths over time hurts performance over leaving out 

observations on cases all together.

We have seen that MechBayes is a powerful Bayesian compartmental model that can capture 

the real-world complexities of forecasting during a pandemic. MechBayes’ disease model 

is a classical compartmental model which has good inductive bias for a novel epidemic. 

MechBayes is fully Bayesian which allows for a balance between model structure, evidence 

through observations on cases and deaths, and uncertainty. The implementation in the 

NumPyro probabilistic programming language allowed for rapid model development and 

experimentation. Finally, a reasonable investment of effort in validation prevented model 

pathologies due to data quality issues.

While we chose an exponential random walk on βt, there are many other choices for 

flexible nonparametric modeling of transmissibility. Further work might consider a spline 

model, Gaussian process, or a semiparametric model capable of taking intervention dates 

as covariates. The reproductive rate of COVID-19 has been fluctuating around 1 for the 

duration of the pandemic (Abbott et al. (2020)). A model that smooths transmissibility 

toward a reproductive ratio of 1 may improve forecast skill by avoiding large growth or 

decline. Further work might explore more structured models on βt that may improve forecast 

skill. While there are many potential models for βt, there is a trade-off between complexity 

and calibration. Increasing flexibility may inflate prediction intervals. Additionally, as more 

COVID-19 data streams come online, more observation models on compartments can be 

added to MechBayes and fit using the same framework. Other methods of expressing 

compartmental models (e.g., the renewal framework in Flaxman et al. (2020)) may lead 

to more efficient and flexible implementations. Modeling more characteristics of the 

surveillance system (such as weekly reporting) may also improve forecast performance.
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Through real-time and retrospective evaluation, we demonstrated the success of MechBayes 

in forecasting COVID-19, both in terms of point and probabilistic forecasts. The model 

is able to improve over the baseline model as well as reduced forms of MechBayes and 

is ranked in the top two models out of the nine considered that submitted forecasts to 

the forecast hub for a year’s worth of evaluation dates. While future pandemics may 

be unavoidable, MechBayes is a flexible framework that can be adapted to the unique 

challenges of pandemic forecasting efforts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 

Flow diagram for MechBayes. Susceptibles S  become exposed E  with a rate of βt ⋅ I
N

(proportional to the number of infected and infection probability times average number 

of contacts). Exposed individuals become infectious with a mean time of 1
σ . Infectious 

individuals can either recover or enter a D1 compartment, representing individuals who will 

eventually succumb to the disease, with probability ρ and after a mean time of 1
γ . Individuals 

in D1 then enter the final death compartment D2 with mean time 1
λ . The distinction between 

D1 and D2 aids in accounting and helps separate out a parameter governing the time between 

infectiousness and death which is useful for model parameterization.
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Fig. 2. 
A, B. Example posterior fits as well as one- to four-week ahead forecasts made on October 
18, 2020, for four selected states. Shaded regions show 95% prediction intervals for 
in-sample (before dashed vertical line) and forecast (after dashed vertical line) posterior 
predictive distributions; lines show posterior medians; points show observed data. C. 

Posterior median and 95% credible interval of time-varying contact rate βt for each of the 
four states. D. Posterior median and 95% credible interval of the time-varying ratio between 
cases and deaths parameter (pt,c).
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Fig. 3. 
A. Quantile–quantile plot of absolute error distribution for MechBayes (x-axis) vs. alternate 
models (y-axis) submitted to the forecast hub. Each point represents the absolute error for 
a combination of location, forecast date, and target for July, 25 2020 through June 6, 2021. 

MechBayes is consistently outperforming the baseline and alternate models for almost all 
quantiles of the error distribution. B. Coverage probability at the 50%, 60%, 70%, 80%, 

90%, 95%, and 98% levels for MechBayes and the alternate models. MechBayes intervals 
are slightly too wide at the lower theoretical coverage values but are well calibrated at the 
upper levels and outperform all other models considered.
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Fig. 4. 
A. Mean absolute errors for MechBayes and the baseline model averaged over all forecast 
dates and targets for each location. Notice that for states with the largest number of 
deaths, New Jersey (NJ), New York (NY), Florida (FL), Texas (TX), California (CA), 

MechBayes uniformly outperforms the baseline. B. Mean absolute errors for MechBayes 
and the baseline model averaged over all regions and targets by target end date: a point 
on panel B represents the absolute error of the one- to four-week ahead forecast made 
for that date. MechBayes has lower mean absolute error for 40 of the 46 forecast dates. 

C. Mean absolute error box plots for MechBayes and baseline model by target. Each box 
plot shows the distribution of MAE values for all forecast dates, where one data point 
is the MAE over all locations for a single date. MechBayes has lower quartiles of mean 
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absolute error across all targets. D. Prediction interval empirical coverage for MechBayes 
and the COVIDhub-baseline model for 0.1–0.98 levels of theoretical coverage. MechBayes 
has wide intervals at the levels of coverage below 0.8 but is well calibrated at higher levels 
of coverage.
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Fig. 5. 
A. Absolute error quantiles of MechBayes (y-axis) against the reduced models, MechBayes 
Death-Only and MECHBAYES FIXED-DETECTION. MECHBAYES uniformly improves over 
MECHBAYES FIXED-DETECTION and improves in all but the maximum quantile over 
MECHBAYES DEATH-ONLY. B. Percent of observations (y-axis) falling within the prediction 
interval at the given confidence level (x-axis). MECHBAYES FIXED DETECTION seems to be 
closest to the nominal level of coverage, suggesting that adding the uncertainty in the ratio 
between observed cases and observed deaths made the model slightly underconfident. In 
contrast, using only observations on deaths significantly compromised model uncertainty.
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Table 1

Mean, median, and 95% quantiles of the absolute error distribution for state-week-target specific absolute 

errors for alternate models submitted to the CDC forecast challenge for forecast dates July 25, 2020, to June 6, 

2021, across all 50 states. MechBayes has comparable performance to the ensemble model even though 

MechBayes itself is a component model of the ensemble

Mean AE Median AE 95% Quantile of AE

UMass-MechBayes 50.00 17 [0.00, 326.12]

COVID Hub-Baseline 76.62 24 [0.00, 492.12]

COVID Hub Ensemble 49.64 17 [0.00, 308.12]

UMass-MechBayes 51.00 17 [0.00, 326.12]

LANL-GrowthRate 67.67 23.88 [0.33, 438.03]

JHU_IDD-CovidSP 76.30 33.79 [0.97, 457.62]

MOBS-GLEAM_COVID 61.51 22.15 [0.411, 394.48]

UA-EpiCovDA 67.21 23 [1.00, 452.12]

Karlen-pypm 55.67 18.1 [0.40, 344.62]
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