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Abstract

Various mathematical models have been formulated to describe the changes in
synaptic strengths resulting from spike-timing-dependent plasticity (STDP). A
subset of these models include a third factor, dopamine, which interacts with
spike timing to contribute to plasticity at specific synapses, notably those from
cortex to striatum at the input layer of the basal ganglia. Theoretical work to
analyze these plasticity models has largely focused on abstract issues, such as
the conditions under which they may promote synchronization and the weight
distributions induced by inputs with simple correlation structures, rather than
on scenarios associated with specific tasks, and has generally not considered
dopamine-dependent forms of STDP. In this paper we introduce three forms of
dopamine-modulated STDP adapted from previously proposed plasticity rules.
We then analyze, mathematically and with simulations, their performance in
three biologically relevant scenarios. We test the ability of each of the three mod-
els to maintain its weights in the face of noise and to complete simple reward
prediction and action selection tasks, studying the learned weight distributions
and corresponding task performance in each setting. Interestingly, we find that
each plasticity rule is well suited to a subset of the scenarios studied but falls
short in others. Different tasks may therefore require different forms of synaptic
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plasticity, yielding the prediction that the precise form of the STDP mechanism
present may vary across regions of the striatum, and other brain areas impacted
by dopamine, that are involved in distinct computational functions.

Keywords: Dopamine, Synaptic plasticity, STDP, Basal ganglia, Reward prediction,
Action selection

1 Introduction

Learning and memory are critical features of cognition in both humans and non-

human animals, and a number of neural learning mechanisms have been described. One

important mechanism is spike-timing-dependent plasticity (STDP) Markram et al.

(1997); Bi and Poo (1998), a class of Hebbian plasticity rules in which the relative

timing of pre- and postsynaptic spikes determines the changes in synaptic connection

strength. Typically, a presynaptic spike before a postsynaptic spike – that is, a causal

ordering of the spikes – leads to synaptic potentiation, whereas the reverse order

leads to depression. In many cases, though, synaptic plasticity depends not just on

the timing of pre- and postsynaptic spikes but also on some third factor, such as a

neuromodulatory signal or other input Frémaux and Gerstner (2016); Gerstner et al.

(2018). These additional factors may act as gating signals, and their strength and

timing may impact both the magnitude and the direction of synaptic changes.

A prominent example of neuromodulatory impact on synaptic plasticity occurs at

the cortical inputs to the basal ganglia. The neuromodulator dopamine is released

by midbrain dopamine neurons when unexpected reward is received Schultz (1998);

Schultz and Romo (1990) and plays a crucial role in modulating plasticity of cor-

ticostriatal synapses Surmeier et al. (2010). Experimental evidence and theoretical

modeling suggest that dopamine serves as a reward prediction error signal Montague

et al. (1996); Schultz et al. (1997), enabling the brain to learn to favor behaviors that

lead to reward and disfavoring behaviors that do not; such findings have been recently
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reviewed Lerner et al. (2021). Theoretical analysis of action selection and modulation

by cortico-basal ganglia-thalamic (CBGT) circuits posits a role for these dopaminer-

gic reward prediction error signals both in updating value estimates associated with

available choices and, through their impact on corticostriatal synaptic strengths, in

altering the likelihood that a particular action will be selected in the future Gurney

et al. (2015); Mikhael and Bogacz (2016); Baladron and Hamker (2020); Vich et al.

(2020). These distinct functions are likely performed by different neurons in different

regions of the basal ganglia, however, which raises the possibility that distinct plastic-

ity rules are involved. Unfortunately, despite some exciting experimental investigations

of long-term plasticity properties in specific striatal regions and task settings Perez

et al. (2022); Smith et al. (2001); Wang (2008), relatively little is known about the

details of these plasticity mechanisms, especially in striatal regions thought to encode

value.

These considerations lead to the question of how well particular implementations

of dopaminergic plasticity can perform the kinds of tasks or fulfill the kinds of roles

that the corticostriatal system is believed to execute in the brain. If a plasticity model

is capable of supporting biologically-relevant tasks, then that serves as some evidence

in favor of the model; conversely, if it fails to do so, then we may want to modify

it or look for other alternatives. While many analyses of different reward-modulated

learning rules have been performed Izhikevich (2007); Xie and Seung (2004); Legen-

stein et al. (2008); Porr et al. (2007); Frémaux et al. (2010), prior work has generally

focused on particular sets of tasks or particular classes of plasticity models, rather than

examining the range of tasks that the striatum may have to perform and which plas-

ticity rules are best suited for which tasks. To fill this gap, we describe three models of

dopaminergic plasticity, two derived by extending more general models of STDP learn-

ing to incorporate dopaminergic modulation and one designed specifically to model

corticostriatal plasticity, as well as some variations on these models. We consider their
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performance in several different task settings relevant to the striatum, illustrated in

Figure 1. As a baseline, we study synaptic weight evolution in a neuron receiving ran-

dom, uncorrelated inputs and dopamine; this is meant to model a neuron uninvolved

in whatever task the animal is performing. We also study simple models of reward pre-

diction and action selection, two tasks in which the basal ganglia are believed to play

major roles Schultz et al. (1998); Surmeier et al. (2009); Chakravarthy et al. (2010);

Kravitz and Kreitzer (2012); Grillner et al. (2013); Hikosaka et al. (2014); Orsini et al.

(2015); Mikhael and Bogacz (2016); Mink (2018). Finally, we examine some more com-

plex variants of these settings in which the reward contingencies or the task changes

periodically. We find that although each model does well in some, no model is able to

succeed in all of the scenarios we consider. Thus, our results suggest that the brain

may need to employ distinct, specialized plasticity mechanisms to learn different tasks.

Fig. 1 Schematic of the three main task settings. In the random dopamine setting, the neuron of
interest receives stochastic cortical inputs not related to its primary function and dopamine signals
resulting from activity elsewhere in the basal ganglia. In the reward prediction setting, the output
firing rate is interpreted as a predicted reward and the dopamine signal is the reward prediction error.
In the action selection setting, an action is chosen based on which of two competing channels has
a higher output firing rate. A reward is then received based on the action taken and the dopamine
again represents reward prediction error
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2 Models

2.1 Plasticity Models

Here we introduce three models of dopaminergic spike-timing-dependent plasticity.

The additive and multiplicative models are based on incorporating dopamine into

existing models of STDP (without dopamine) described in Abbott and Blum (1996);

Gerstner et al. (1996) (for the additive model) and Kistler and Hemmen (2000); Rubin

et al. (2001); van Rossum et al. (2000) (for the multiplicative model); we mainly follow

the presentation in Gütig et al. (2003). What we call the corticostriatal model is based

on a computational model of the corticostriatal connections, specifically connections

onto striatal spiny projection neurons that express the D1 dopamine receptor, some-

times referred to as direct pathway SPNs, as described in Clapp et al. (2024). This

model incorporates recent experimental findings about synaptic plasticity and eligi-

bility traces in these neurons Richfield et al. (1989); Shen et al. (2008); Dreyer et al.

(2010); Keeler et al. (2014); Shan et al. (2014); Fisher et al. (2017); Shindou et al.

(2019) and builds on other recent modeling studies Gurney et al. (2015); Mikhael and

Bogacz (2016); Baladron and Hamker (2020); Vich et al. (2020).

We consider linear Poisson neurons: presynaptic spike trains are modeled as Pois-

son processes ρprei (t) with constant rate ri = ⟨ρprei (t)⟩t (where i = 1, 2, . . . , N), and

likewise spike trains of the single postsynaptic neuron are Poisson processes ρpost(t)

with instantaneous firing rate functions R(t) given by a linear combination of the

presynaptic spike trains:

R(t) =
1

N

N∑
i=1

wi(t)ρ
pre
i (t− ϵ) (1)

where ϵ > 0 is a small synaptic delay and wi are the synaptic efficacies, which we

will also call weights, which we normalize to [0, 1]. (We will write the vectors of input
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firing rates and weights as r, w ∈ RN .) This can be implemented by first generating

input spike trains ρprei (t), and then, whenever a presynaptic spike from input unit i

occurs, say at time tpre, adding a postsynaptic spike at time tpost = tpre + ϵ to the

postsynaptic spike train ρpost with probability 1
Nwi(tpre). We assume that the input

spike trains are uncorrelated.

Rather than modifying each synapse immediately with the occurrence every spike

pair, as in a classical two-factor STDP rule, we instead assume that an eligibility trace

Houk et al. (1994); Sutton and Barto (2018) for that synapse is incremented, which

decays exponentially between spike pairs. Then the weight change is proportional to

both the current value of the eligibility trace and the value of the dopamine signal,

described below.

We base our implementation of this model on the implementation described in

Vich et al. (2020) and use a set of trace variables to track the influences of pre- and

postsynaptic spikes and spike pairs. We define Apre
i (t) and Apost(t) to track the pre-

and postsynaptic spiking:

dApre
i

dt
= ρprei (t)− 1

τ
Apre

i (t)

dApost

dt
= ρpost(t)− 1

τ
Apost(t)

(2)

with decay constant τ > 0. We also define eligibility traces to track spike pairs. An

important assumption in our analysis, made by Gütig et al. (2003); Rubin et al. (2001)

and others, is that changes in weight from individual spike pairs can be summed

independently. To realize this, we define two eligibility traces, E+
i (t) and E−

i (t), to

track pre-before-post and post-before-pre spike pairs, respectively:

dE+
i

dt
= ρpost(t)Apre

i (t)− 1

τeli
E+

i (t)

dE−
i

dt
= ρprei (t)Apost(t)− 1

τeli
E−

i (t)

(3)
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with decay constant τeli > 0. We use two independent traces in part because exper-

imental results have suggested that this independence is present in cortical synapses

He et al. (2015). Moreover, using a single trace, as done previously Vich et al. (2020),

allows spike pairs to interact nonlinearly and partially cancel each other out, while

using two traces ensures that different spike pairs do not interact, which is conve-

nient for analysis. In Section E we show that using a modified plasticity model with

a single eligibility trace gives qualitatively similar results in most cases, and does not

meaningfully improve performance on the tasks we study here.

We assume that dopamine is released at fixed intervals of length 1/rdop for constant

rdop > 0; otherwise, it decays exponentially:

dD

dt
=
∑
k

Dkδ
(
t− k/rdop

)
− 1

τdop
D

The value of the dopamine increment Dk depends on the task setting; see Section 2.2.

(We will treat this signal as the dopamine level relative to some baseline, rather than

the raw dopamine concentration itself; so, in the absence of any signal, D equals zero,

and we allow Dk < 0.) Note that while the dopamine concentration may depend on

the postsynaptic spike train, we assume for analytical convenience that the timing of

dopamine delivery is independent of the spiking activity. Here we assume the dopamine

is simply delivered periodically for simplicity; the precise form of the dopamine process

is irrelevant as long as it has mean rate rdop, is independent of the spike trains,

and yields dopamine signals that are far enough apart that their interactions can be

neglected.

Finally, the weights in equation (1) are updated using the values of the dopamine

signal and the eligibility traces in a way that depends on the choice of plasticity model.
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The additive and multiplicative models use the following rule:

dwi

dt
= λD(t)

(
f+(wi(t))E

+
i (t)− f−(wi(t))E

−
i (t)

)
(4)

where f+(w) = (1 − w)µ and f−(w) = αwµ apply different scaling factors to weight

updates from positive and negative eligibility. λ > 0 is the learning rate, α tunes

how strongly negative eligibility is weighted relative to positive eligibility (typically

α ≥ 1), and µ ∈ [0, 1] selects from a family of different possible update functions. We

will only consider the cases µ = 0, known as the additive model, and µ = 1, known as

the multiplicative model. (See Gütig et al. (2003) for an exploration of the effects of

varying µ in a simpler two-factor STDP setting.)

The corticostriatal model is broadly similar, but modifies the functional form of

the weight update depending on the sign of the weight change. Rather than using the

f+/f− functions defined above, we use f(w) = 1 − w when the sign of the overall

weight change (including the sign of the dopamine signal and the sign of the eligibility)

is positive, and f(w) = αw when it is negative. This convention is described by the

formula:

dwi

dt
=


λD(t)

(
(1− wi(t))E

+
i (t)− αwi(t)E

−
i (t)

)
if D(t) ≥ 0

λD(t)
(
αwi(t)E

+
i (t)− (1− wi(t))E

−
i (t)

)
if D(t) < 0

(5)

In all three models, synapses become stronger with above-baseline dopamine sig-

nals (and weaker with below-baseline dopamine signals) when the postsynaptic neuron

has recently participated in a pre-before-post spike pairing, and weights change in the

opposite direction following post-before-pre spike pairs. These properties are imple-

mented to match the observed behaviors of cortical synapses onto striatal spiny

projection neurons expressing specifically D1 dopamine receptors Gurney et al. (2015);

Baladron and Hamker (2020); Vich et al. (2020); Clapp et al. (2024); Shen et al. (2008);
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Shan et al. (2014). Neurons expressing D2 receptors show the opposite behavior, but

we do not consider those here.

Table 1 shows how the scaling factors used by each of the three models depends

on the signs of the dopamine and eligibility. The additive and multiplicative models

only depend on the sign of the eligibility, while the corticostriatal model uses the sign

of the product of dopamine and eligibility to determine which scaling factor to use.

This means that when using the corticostriatal model, the scaling factor corresponds

to the direction in which the weights will change: 1 − w for increasing weights and

αw for decreasing weights. In contrast, the scaling factors used by the additive and

multiplicative models do not correspond to the direction of weight change.

Table 1 Scaling factors for the three main models for positive and negative
dopamine and eligibility

Additive Multiplicative Corticostriatal

Ei(t)
D(t) − + − + − +

− α α αw αw 1− w αw
+ 1 1 1− w 1− w αw 1− w

Blue cells correspond to scenarios in which the weights will increase, while orange
indicates that the weights will decrease.

While we primarily focus on the additive, multiplicative, and corticostriatal models

in this paper, we will also explore some variations on these models. In Section E we

describe versions of these three models using a single eligibility trace, rather than the

two traces we use elsewhere. In Section 3.4 we also explore a new model, which we

term the symmetric model, meant to alleviate some of the issues we find with the other

three plasticity rules.

For all of the models, weights are kept bounded between 0 and 1; for the additive

and multiplicative models, this necessitates clipping weights that would go beyond

these limits based on equation (4) alone.
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2.2 Task Settings

The plasticity models described above are agnostic as to how exactly the dopamine

signal is computed. We consider three different task settings, corresponding to three

different scenarios or functional roles that may arise with striatal neurons (see

Figure 1). The first is what we will refer to as the random dopamine setting : dopamine

is sampled from a normal distribution centered at zero, D ∼ N (0, σ2
dop), indepen-

dently of the spiking activity. This models a neuron that is uninvolved in whatever

task the animal is performing; it may receive some spurious inputs and dopamine due

to activity elsewhere, but its inputs and output are statistically independent of the

dopamine release. We would like a plasticity model that yields zero net weight drift

under random dopamine, so that previous learning is not erased. While the stochastic

inputs and dopamine may perturb the weights somewhat, ideally it should not cause

them to move consistently in one direction or another.

The second scenario that we will consider is the reward prediction setting. In this

model, we assume that the dopamine signal takes the form of an error signal between

the firing rate of the postsynaptic neuron and some target firing rate R∗. We mainly

view this as a reward prediction error Montague et al. (1996); Schultz et al. (1997),

as evidence suggests that the ventral striatum plays a major role in processing value

estimates Daniel and Pollmann (2014); Pagnoni et al. (2002); Schultz et al. (1992). But

this framework can also be applied more generally, as long as we assume that there

is some optimal firing rate R∗ for whatever task the animal may be performing and

that the error signal is proportional to the difference between R∗ and the actual firing

rate. For simplicity we do not explicitly model the neural mechanisms that govern

dopamine release, instead simply computing its value as follows:

D = R∗ −R (6)
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where

R =
1

Twin

∫ tdop−Tdel

tdop−Twin−Tdel

ρpost(t) dt (7)

is an estimate of the current firing rate. Here Twin is the length of the time window

over which the spike train is averaged (e.g., to produce a value estimate) and Tdel is a

delay term between when the output firing rate is measured and when the dopamine

is actually released (Figure 2a). This delay could be due to biological constraints, such

as the speed of neural signal propagation or motor response, or to experimentally

imposed delays; it has a significant impact on our analysis, as will be discussed below.

For this model, we would like a plasticity mechanism that can learn to match the

target firing rate R∗ on average, so that R∗ = E[R].

Fig. 2 Schematic of the sequence of events in the reward prediction and action selection models.
Output spikes are counted in a window of length Twin to estimate the average output firing rate; then,
after a delay of length Tdel (which may be zero), dopamine is released. For the action selection model
there are two channels, colored black and gray, corresponding to the two actions being considered.
We examine two versions of the action selection model: one in which the cortical input is suppressed
outside of the spike count window, and one in which activity is maintained in the selected channel
(here channel 1). These two variants are most similar when Tdel = 0 (although they still differ due
to spikes occurring after dopamine is released), and we often will consider that case, but we will also
compare it to results with Tdel > 0 as shown in the figure

The final model that we will consider is the action selection setting, as the basal

ganglia including dorsal regions of striatum are hypothesized to play a critical role in

action selection Kropotov and Etlinger (1999); Mink (1996). We implement this as a

competition between two action channels Bogacz (2007); Bogacz and Gurney (2007);
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Mink (1996); Vich et al. (2022). Two neurons with weight vectors w1 and w2 (with

entries wj
i for i ∈ {1, 2, . . . , N} and j ∈ {1, 2}) receive independent input spike trains

generated from identical rate vectors r corresponding to shared presynaptic input

sources. We compute estimates of their current firing rates R1, R2 as in equation (7),

although unlike in the reward prediction setting we will usually set Tdel = 0 (see the

discussion in Section 3.3). The animal then randomly chooses one of two actions, A1

or A2, using the output firing rates to determine the selection probabilities:

Pj = P (A = Aj) =
eβRj

eβR1 + eβR2

for j ∈ {1, 2}, where β is an inverse temperature parameter. (For simplicity, we take

β to be an arbitrary large number in simulations, so that actions are chosen deter-

ministically based on which channel has more spikes, with ties broken randomly.) The

animal receives a reward R∗ depending on which action is taken: R∗
1 if A1 is chosen,

R∗
2 if A2 is chosen. Finally, we compute the dopamine signal as the reward prediction

error:

D = R∗ − E[R∗] = R∗ − (R∗
1 E[P1] +R∗

2 E[P2]) , (8)

which is used to update the synaptic weights and hence ρpost(t) and R̄, thus impact-

ing future action selection. We would like a plasticity model that can learn to more

frequently take the action that gives the higher reward. Note that like in the reward

prediction setting, we do not model the neural mechanisms that may implement this

process, instead simply computing P1, P2, and D explicitly.

In equation (8), P1 and P2 are now treated as random variables; we take the average

value of P1 and P2 over instantiations of the spike trains with the given rates. That

12

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 4, 2024. ; https://doi.org/10.1101/2024.06.24.600372doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.24.600372
http://creativecommons.org/licenses/by/4.0/


is, we sum over the possible postsynaptic spike counts in each channel:

E[P1] =

∞∑
i=0

∞∑
j=0

eiβ/Twin

eiβ/Twin + ejβ/Twin

ni
1e

−n1

i!

nj
2e

−n2

j!

where

nk = Twin
⟨wk, r⟩

N
, k ∈ {1, 2}

is the expected number of postsynaptic spikes in a window of length Twin; E[P2] is

similar.

This definition assumes that the agent’s state-value function Sutton and Barto

(2018) is accurate. In other words, the animal has learned the reward it receives on

average when performing this task with its current policy (as defined by the weights

w1 and w2). The idea that value estimates are available to neurons that drive action

selection is commonly used in models and has ample experimental support (e.g., Same-

jima et al. (2005); Seo et al. (2012)). In practice these value estimates have to be

learned, and as the animal’s policy changes, the value estimates will have to evolve

along with it. We assume that the value estimates remain accurate (i.e., are learned

instantaneously relative to the timescale of decision policy changes) as a simplification

to allow us to focus on the action selection task without the added complication of a

separate value learning circuit.

In the action selection setting, we silence all input to the striatal neuron between

the end of one spike count window and the beginning of the next (i.e. for the duration

of the delay if Tdel ̸= 0 as well as the period after dopamine is released). This step is

designed to represent typical experimental settings in which the input stimulus does

not persist after an action is taken in response to the stimulus. For instance, in a task

in which a rodent must choose which branch of a maze to follow to receive a reward,
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the stimulus – the sight of the junction – necessarily cannot persist after the animal

has made a choice and gone down one of the branches. However, we also consider

a modification in which the cortex maintains some level of activity in the channel

corresponding to the selected action Cisek and Kalaska (2005); Rubin et al. (2021)

to help correctly assign credit for rewards to actions when they are separated by

significant delays. We discuss this modification in more detail in Section 3.3. Figure 2

shows an illustration of the two versions of the action selection model as well as a

comparison to the reward prediction model.

We also consider two variations on these basic scenarios. The first is reward con-

tingency switching Vich et al. (2020); Bond et al. (2021), a variation of the action

selection setting in which the mapping between actions and rewards is swapped peri-

odically. The plasticity model should be able to update the learned weights based on

the new reward schedule and switch which action it takes. The second is task switching,

in which not only the rewards but also the input firing rate vector r switches between

two (or more) possible values. Task switching can be applied to both the reward pre-

diction setting and the action selection setting. In contrast to contingency switching,

in which the neuron must switch which action it selects, in the task switching setting

the neuron would ideally learn to perform both tasks using the same set of weights.

(Of course, this is only possible in non-degenerate cases if the input dimension N is

at least equal to the number of tasks to be learned.) This variant models the fact that

a neuron will generally not be restricted to performing a single task, but rather may

be active in a variety of different contexts.

One important simplification that we make in all settings is that the timing of

dopamine release is independent of the spiking activity, and is simply treated as coming

at some random time with mean rate rdop. We also assume that dopamine releases

are far enough apart that the dopamine level decays approximately to zero between

them; in simulations, we implement this by simply using a fixed time interval between
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dopamine releases. These conventions contrast with models like the one described in

Vich et al. (2020), which count the number of output spikes in a moving window and

take an action (and subsequently release dopamine) as soon as the number crosses some

threshold, and with models in which the CBGT circuit performs a process of evidence

accumulation up to some threshold to make a decision Bogacz et al. (2006); Bogacz

and Larsen (2011); Dunovan and Verstynen (2016); Dunovan et al. (2019); Vich et al.

(2022). We opted to use a simpler mechanism here for analytical tractability. Although

this may at first seem like a major simplification, in reality, if the neurons’ inputs in

our tasks are statistically similar throughout the decision or reward estimation process

as spikes are accumulated, then the output spiking characteristics preceding dopamine

release on average are not related to the actual timing of dopamine release, only to its

magnitude.

2.3 Simulations

We use the parameters listed in Table 2 as the defaults in our simulations for each of the

three main task settings; any other parameters or changes to the defaults are listed in

figure captions. “Steps” refers to the number of dopamine signals in an experiment; the

number of steps used as well as λ were chosen to balance noise level with computation

time and to illustrate phenomena of interest. winit = 0.5 was chosen arbitrarily; in

some plots we instead use winit = 0.33 to illustrate time dynamics of weights because

0.5 would be too close to values that weights converge to. We chose input firing

rates r to roughly match the frequency of cortical input to the striatum. As the

random dopamine setting is meant to model neurons receiving spurious inputs, we

use a lower input firing rate there. R∗, R∗
1, and R∗

2 are arbitrary and were chosen for

illustrative purposes. We use α = 1 as the default scaling parameter in our weight

update equations (equations (4) and (5)) for simplicity. For the choice of τ = 0.02

s in equation (2), see Bi and Poo (1998); Gütig et al. (2003); note that Bi and Poo
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(2001) give values of τ = 0.0168 s for long-term potentiation (LTP) and τ = 0.0337

s for long-term depression (LTD), but as we do not distinguish between LTP and

LTD in our model, we use the intermediate value of τ = 0.02 s used in other sources.

The half-life of dopamine has been estimated as 0.72 s in the dorsolateral striatum

Riley et al. (2024); translating the half-life into an exponential time constant we get

τdop ≈ 1 s. The choice of eligibility time constant τeli = 1 s reflects experimentally

derived estimates Fisher et al. (2017); Yagishita et al. (2014) (but see Shindou et al.

(2019), which finds a somewhat larger value). In the reward prediction setting, the

delay time for dopamine release, Tdel, was chosen to be long enough that any spikes

occurring before the delay have minimal impact on the weight changes. In the action

selection setting we generally use Tdel = 0. rdop was likewise chosen to be small

enough that the effects of any interactions between adjoining dopamine signals would

be negligible. The reward prediction and action settings use a longer period between

dopamine signals than that used in the random dopamine setting to allow for the

window Twin. The constant β = 105 in the probability calculations is an arbitrary

choice; other sufficiently large values would give similar results.

Table 2 Default simulation parameters for the three main task settings

Random Dopamine Reward Prediction Action Selection

Samples 1000 1000 1000
Steps 100 100 1000

λ 0.01 0.0033 0.025
winit 0.5 0.33 or 0.5 0.5

N 1 2 1
r 5 s−1 (15, 10) s−1 10 s−1

R∗ N/A 7.5 N/A
R∗

1 , R
∗
2 N/A N/A (2, 1)
α 1 1 1
τ 0.02 s 0.02 s 0.02 s

τdop 1 s 1 s 1 s
τeli 1 s 1 s 1 s
Tdel N/A 3 s 0 s
Twin N/A 1 s 1 s

ϵ 0.001 s 0.001 s 0.001 s
rdop 1/6 s−1 1/7 s−1 1/7 s−1

β N/A N/A 105

σdop 1 N/A N/A
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All figures use a sample size of 1000 for numerical results; error bars and bands show

standard deviations. In some phase portraits we include fixed points; these were found

analytically when possible, otherwise they were computed using the scipy.optimize

library Virtanen et al. (2020). Note that some of the fixed points found on the bound-

aries are not “true” fixed points in the sense that they are not zeros of the dynamical

equations. Rather, they are the result of the weights being clipped at 0 and 1. All code

needed to run the simulations and reproduce the figures in the paper is available on

GitHub at https://github.com/bsosis/DA-STDP.

3 Results

3.1 Random Dopamine Setting

When the dopamine signal is independent of spiking activity and has mean zero,

the additive and multiplicative models in theory should exhibit zero net weight drift.

This result arises because the dopamine is independent of the other terms in the

weight update equation (4), so when taking the average weight drift we can factor

out the average dopamine level, which is zero. This is not the case, however, for the

corticostriatal model; here, the form of the weight update equation (5) depends on

the sign of the dopamine signal, so the terms are not independent. It can be shown

(see Section D) that on average the weights for the corticostriatal model converge to

1/(α+ 1).

These outcomes are illustrated in Figure 3. In practice, the weights for the additive

and multiplicative models do show some fluctuations about their means, which grow

over time, as well as some boundary effects where clipping the weights to 0 and 1 pushes

the mean weight values away from the boundaries. This is most visible for the additive

model. In this case, the weight drift is proportional to w, so the upper curve will

experience larger fluctuations than the lower curve; moreover, since weight increases

are being truncated, there is a bias that causes a net downward drift. However, motion
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away from the initial conditions for both models is generally fairly slow. In contrast,

the mean weight values for the corticostriatal model quickly converge to 1/(α + 1).

Thus, under the corticostriatal model without any supplementary weight maintenance

mechanism, any noise will tend to erase previously learned weights.

Fig. 3 Weight evolution over time in the random dopamine setting. Columns show the additive (a,
d), multiplicative (b, e), and corticostriatal (c, f) models. (a-c) the initial weight winit is varied while
α = 1 is fixed. (d-f) α is varied while winit = 0.5 is fixed

3.2 Reward Prediction Setting

Under suitable assumptions it is possible to derive a formula for the average weight

drift over time for the additive and multiplicative models under the reward prediction

framework:

ẇi =

(
R∗ − 1

N
⟨w, r⟩

)
rdopτdopτeli

λ

N
(τ∆f(wi)ri⟨w, r⟩+ f+(wi)wiri) (9)
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where ∆f = f+ − f−. (See Section A.1 for the derivation. An important assumption

here is that the delay Tdel is large relative to τeli; this assumption will be discussed

below.) The terms in this expression have a simple interpretation: τ∆f(wi)ri⟨w, r⟩

corresponds to independent pairs of pre- and postsynaptic spikes (both pre-before-

post and post-before-pre), f+(wi)wiri corresponds to a pre-post spike pair in which

the presynaptic spike directly causes the postsynaptic neuron to fire, and R∗− 1
N ⟨w, r⟩

is the average dopamine level, which is the difference between the target firing rate

and the mean output firing rate.

The average weight drift equation (9) is fairly easy to analyze. Its most important

feature is what we will call the solution plane: the hyperplane of weight values such

that 1
N ⟨w, r⟩ = R∗. These are weights such that the output firing rate equals the

target firing rate R∗ and hence they are solutions to the task the neuron has to learn.

It is clear from equation (9) that any point on this plane is a fixed point, which

corresponds to the average dopamine signal being zero. However, the solution plane

is not necessarily stable. We give a sufficient condition for the existence of a stable

solution (that is, a stable fixed point on the solution plane) in the following theorem.

Theorem 1. Pick r ∈ RN and R∗ ≤ 1
N ∥r∥1, and let w′ = NR∗/∥r∥1. If

f−(w
′) <

(
1 +

1

τ∥r∥1

)
f+(w

′), (10)

then there exists a stable point on the solution plane, given by w = (w′, . . . , w′).

Proof. See Section B.2.

For the additive model, condition (10) can be rewritten as

τ(α− 1) <
1

∥r∥1
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whereas for the multiplicative model, it can be written as

R∗ <
w0

N
∥r∥1

where

w0 =
τ∥r∥1 + 1

τ(1 + α)∥r∥1 + 1
.

See Section B for derivations and more details on the stability of the solution plane.

The additive model in general has no other equilibria besides the solution plane

(and points on the boundary). However, when τ(α − 1) = 1/∥r∥1, points on the

line wi = wj for all i ̸= j are also equilibria. Points on the line are stable when

R∗ − 1
N ⟨w, r⟩ < 0; that is, the line is stable on one side of the solution plane. This

statement can be proven using a similar approach to that used in Section C.1.

The multiplicative model has an extra fixed point at w = (w0, . . . , w0). We can

characterize its stability as follows:

Theorem 2. For the multiplicative model, if

R∗ <
w0

N
∥r∥1

then the Jacobian at the fixed point w = (w0, . . . , w0) is positive definite (and so the

point is unstable); if

R∗ >
w0

N
∥r∥1

then the Jacobian is negative definite (and so the point is stable).

Proof. See Section C.2.
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The corticostriatal model, however, is more difficult to analyze. Because the form

of the plasticity rule depends on the sign of the dopamine signal, in general it is not

possible to factor out the average dopamine level R∗ − 1
N ⟨w, r⟩ like we can for the

additive and multiplicative models. We analyze this model further in Section A.2; in

general, points on the solution plane will not be fixed points under this model.

Figure 4 shows phase portraits for the averaged models for three different values

of α. To generate each plot, we ran a set of simulations of the fully stochastic imple-

mentation (see Section 2.3) of the appropriate model with N = 2 weights and initial

conditions (w1, w2) = 0.33 as marked by the × symbol. In each simulation, from this

starting point, w1 and w2 evolved over 100 time steps, and the position of (w1, w2) at

certain time steps was plotted as a point of the time-dependent color indicated by the

color bar; this process resulted in a cloud of points over many simulations, representing

the distribution of weights. Each plot also includes the solution plane (here, a line),

any relevant fixed points, and vector field arrows for the averaged model. The orien-

tations of these arrows indicate the directions that trajectories would move over time

under the flow of the averaged model, while their lengths represent the magnitudes of

the weights’ rates of change.

We see that as α increases, a larger fraction of the solution plane becomes unstable

for the additive and multiplicative models. Figure 4g includes the additive model’s

extra line of fixed points that exists for certain parameter values, as mentioned above.

For the multiplicative model, the isolated extra fixed point crosses the solution plane

and exchanges stability with it (Figure 4b, e, h). The solution plane does not consist

of equilibria for the corticostriatal model; as can be seen, it does not play a role in

shaping the model’s dynamics like it does for the additive and multiplicative models.

In general, the averaged models capture the dynamics well, as can be seen from the

dispersal patterns of trajectories in relation to the averaged model vector field and
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Fig. 4 Distribution of weights over time in the reward prediction setting as α is varied. The color
code indicated in the color bar shows the simulation step. Columns show the additive (a, d, g),
multiplicative (b, e, h), and corticostriatal (c, f, i) models. α is varied across rows: (a-c) α = 1; (d-
f) α = 2; (g-i) α = 3. Each panel includes arrows showing the vector field of the averaged model
as well as the solution plane, which is the negatively sloped line. For the corticostriatal model, the
solution plane is dashed because it does not govern the dynamics for this model. Red coloring of
the solution plane and points off of the plane indicates unstable fixed points; black indicates stable.
We use winit = 0.33 here, marked by the “×” in each plot. (g) has an extra line of equilibria where
w1 = w2 (dotted). Note that in (g) most of the sample paths end up being driven to the upper left
and lower right corners

their convergence to stable fixed points, although depending on the model and the

choice of parameters there can be substantial variability across these trajectories.

These results show that while the additive and multiplicative models can perform

reward prediction tasks under suitable choices of the parameters, the corticostriatal

model cannot. In the latter case, weights in general do not converge to the solution
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plane, so the postsynaptic neuron’s output firing rate will not match R∗ except by

coincidence. In contrast, with the appropriate parameters, most or all of the solution

plane may be stable for the additive and multiplicative models. The additive model

in fact performs best here, because it does not have the extra fixed point of the

multiplicative model; even when the solution plane is stable, the unstable extra fixed

point can drive trajectories from some initial conditions away from the solution plane

towards the boundaries, as occurs for initial conditions with large enough w1, w2 in

Figure 4b. Meanwhile, most trajectories under the additive model appear to converge

to the solution plane, although for large enough α the convergent proportion drops as

more of the plane becomes unstable. Our mathematical results serve to characterize the

ranges of parameter values where stable points on the solution plane exist. Specifically,

they highlight the important role that α and τ play in the dynamics: increasing either

parameter reduces the range of r and R∗ values that support stable solutions.

Next, we consider task switching in which the rewards and input firing rates switch

between two values. In this scenario, the average model dynamics can be quite complex,

as there are two solution planes, one per set of rewards and input rates, each of which

may have stable and unstable regions. Moreover, depending on the length of time

between task switches, the weights may either bounce between the fixed points for

the different tasks (if they do not coincide) or approximately follow the average of the

weight drift equations of the tasks. If the solution planes intersect, then we would like

the weights to converge to their intersection, so that the neuron can accomplish both

tasks. If they do not intersect, then ideally the weights should converge to some point

close to both of them, which would constitute an approximate solution to both tasks.

Figure 5 shows the densities of trajectories of the additive and multiplicative mod-

els performing task switching in two example settings: one in which the solution planes

intersect and one in which they do not. The upper row uses a long interval between
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switches, while the lower row switches after each step. (We do not include the corticos-

triatal model since, as discussed above, it cannot accomplish reward prediction tasks.)

As can be seen, if the solution planes intersect, then (for suitable initial conditions)

much of the density ends up concentrated at their intersection. If the planes do not

intersect then the weights are generally driven to regions close to both planes, although

results are less ideal in the multiplicative model due to complications such as an unsta-

ble solution plane segment (Figure 5d), an off-plane stable fixed point (Figure 5h), and

regions of initial conditions that are impacted by an unstable fixed point (Figure 5h,

upper right corner). Overall, while the precise details depend strongly on the choice

of inputs and other parameters, the additive and multiplicative models do generally

seem able to perform well at reward prediction in a task switching settings.

All of these results, however, depend on a key assumption: that the delay Tdel is

long relative to τeli. By imposing a large gap between when the firing rate is measured,

using equation (7), and when dopamine is actually released, the delay ensures that the

dopamine signal is statistically independent of the other terms in the weight update

equation. This is what allows us to factor out the dopamine term R∗− 1
N ⟨w, r⟩ in the

average drift formula, equation (9). Without this term, we can no longer guarantee

that points on the solution plane R∗ = 1
N ⟨w, r⟩ are equilibria for any of the three

plasticity models. In Figure 6 we plot the change in weight after a single dopamine

release as a function of winit in an N = 1 setting. When Tdel = 3 s the simulations obey

the predictions of the averaged models, and in the additive and multiplicative cases

they intersect the x-axis at w = 0.6, the point at which R∗ = wr for these parameters.

(While the plots may appear fairly noisy, keep in mind that they only display the

change in weight after a single dopamine signal. Figure 4 shows that although there

is some dispersion, over the course of many trials trajectories still tend to follow

the averaged dynamics.) When Tdel = 0 s the simulations do not exactly match the

predictions, but the differences are fairly small. In most cases the Tdel = 0 s curves
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Fig. 5 Distribution of weights over time in the reward prediction setting with task switching. First
and third columns (a, c, e, g) show the additive model; second and fourth columns (b, d, f, h) show
the multiplicative model. For (a, b, e, f) the task switches between r = (15, 5) s−1, R∗ = 6 and
r = (10, 20) s−1, R∗ = 6, which yields a solution plane intersection at w = (0.72, 0.24). For (c, d, g,
h) the task switches between r = (15, 5) s−1, R∗ = 7 and r = (10, 20) s−1, R∗ = 4, which does not
give a solution plane intersection in [0, 1]2. In the upper row (a-d) switching is infrequent (every 20
steps out of 100), while in the lower row (e-h) switching is frequent (every step). For the infrequent
switching plots we include the solution planes to demonstrate their relation to where the trajectories
converge, but because switching between the two forms of dynamics is infrequent, we cannot display
a meaningful vector field illustration. For the frequent switching plots we include the vector field
for the dynamics computed by averaging the dynamical equations for the two tasks; as switching
is frequent, averaging approximately captures the behavior of the system. We also plot the solution
planes here for illustrative purposes, but they are dashed because they do not control the trajectories.
Fixed points are estimated numerically: red indicates unstable fixed points; black indicates stable;
green indicates saddle points. The “×” indicates the initial point, in this case (w1, w2) = (0.5, 0.5)

are below the curves for Tdel = 3 s. This undershoot may occur because there is a

source of negative correlation between the dopamine value and the eligibility at the

time that dopamine is released. Specifically, the dopamine value D from equation (6)

is negatively correlated with the number of postsynaptic spikes in the spike count

window, while the eligibility will in most cases (depending on the plasticity model and

the parameters) be positively correlated with the number of recent spikes. If there is

no delay, then this will include the spikes in the spike count window used to compute

the dopamine value. While these plots show that for realistic parameter values our

model is not very sensitive to the delay or its absence, it should be noted that for
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other sets of parameters, for instance smaller values of τdop, τeli, and Twin, the lack of

a delay can have a significant effect.

Fig. 6 Weight drift after a single dopamine release in the reward prediction setting with variable
Tdel. Plots show results for the additive (a), multiplicative (b), and corticostriatal (c) models, with
Tdel = 0 s and Tdel = 3 s, as well as the predicted weight drift based on the averaged models, as winit

is varied for N = 1. Here r = 10 s−1 and R∗ = 6; we also use λ = 0.0005. Note that when winit = 1
there are some deviations from predictions even for Tdel = 3 s due to boundary effects not taken into
account by the averaged models

Another assumption in our analysis is that ϵ, the time between presynaptic spikes

and any postsynaptic spikes they cause, is small relative to τ , the time constant of

synaptic plasticity. Specifically, we assume following Gütig et al. (2003) that e−ϵ/τ ≈ 1;

using our default values of ϵ = 0.001 s and τ = 0.02 s, this quantity is e−ϵ/τ = 0.95. In

Figure 7 we show the result of increasing ϵ to 0.005 s, in which case e−ϵ/τ = 0.78. The

main effect of increasing ϵ is to reduce the magnitude of the changes in weight. τ defines

the duration of the window of synaptic plasticity; as ϵ increases, pre- and postsynaptic

spikes grow farther apart relative to τ , and so weight changes due to presynaptic

spikes directly causing postsynaptic spikes (corresponding to the f+(wi)wiri term in

equation (9) for the additive and multiplicative models; the other terms correspond

to spike pairs that are close together only by chance) are reduced by a factor of e−ϵ/τ .

Overall, though, for realistic values of ϵ the differences between the two curves are

small, and the qualitative behavior is largely unchanged.
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Fig. 7 Weight drift after a single dopamine release in the reward prediction setting with variable
ϵ. Plots show results for the additive (a), multiplicative (b), and corticostriatal (c) models, with
ϵ = 0.001 s and ϵ = 0.005 s, as well as the predicted weight drift based on the averaged models, as
winit is varied for N = 1. Here r = 10 s−1 and R∗ = 6; we also use λ = 0.0005. Note that when
winit = 1 there are some deviations from predictions even for ϵ = 0.001 s due to boundary effects not
taken into account by the averaged models

3.3 Action Selection Setting

We next consider a task of selecting between two actions, in which action 1 gives a

higher reward than action 2. (We do not have expressions for the averaged dynamics

on this task, so our results in this section will rely on simulations.) In this setting, all

three models successfully learn to take action 1 more often than action 2, but major

differences arise among the values to which the weights converge across the three

models (Figure 8). The additive model drives w1 towards one and w2 towards zero. The

multiplicative model likewise drives w2 towards zero, but w1 only reaches around 0.73±

0.05 after 1000 steps. Meanwhile under the corticostriatal model, w1 and w2 converge

to limits of around 0.56 ± 0.04 and 0.41 ± 0.04, respectively. (These values depend

on the particular parameters chosen.) All three models can therefore accomplish this

task, although the additive and multiplicative models choose the correct action more

consistently than the corticostriatal model does (Figure 8).

The delay plays an important role in this model, too. Figure 9 shows the weight

distributions after 1000 steps for the three models as a function of Tdel; with too long

of a delay, the models are unable to learn (i.e., the difference between w1 and w2
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Fig. 8 Model performance in the action selection setting. Plots show weights (a-c) and probability
of taking the correct action (d-f) versus time for the additive (a, d), multiplicative (b, e), and cor-
ticostriatal (c, f) models. Shaded envelopes show standard deviations while solid lines show means
over 1000 trials

becomes too small) because the dopamine signal becomes uncorrelated with eligibility

at the time dopamine is released. This is an instance of the credit assignment problem

Houk et al. (1994). Rubin et al. (2021) propose that the brain solves this problem via

sustained cortical activity in the selected action channel and reduced activity in the

unselected channel, building off of experimental results showing this pattern of activity

Cisek and Kalaska (2005). The corresponding sustained corticostriatal input ensures

that while the spikes that directly caused an action to be selected do not themselves

contribute to the weight changes, there will still be a correlation between the dopamine

signal and the spiking activity at the time dopamine is released due to the differences

in firing rates (see Figure 2). As can be seen in Figure 9, with sustained activity in the

selected channel the models are able to successfully produce large differences between

w1 and w2, and hence learn the task, even when Tdel is large.
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Fig. 9 Performance in the action selection setting as delay is varied with and without sustained
activity. Plots show weights after 1000 steps for additive (a), multiplicative (b), and corticostriatal (c)
models. With no sustained activity, both input channels are silenced during the delay period, while
with sustained activity, the input to the selected channel is maintained at a level of 70% (see Figure 2)

Figure 8 and Figure 9 show results for learning of a single relation between action

and reward. In some situations, both in experiments and in natural settings, relations

between actions and subsequent rewards can change over time, an effect that we refer

to as contingency switching. To simulate these tasks, we swap which action is mapped

to the higher reward value every 1000 steps. In this situation, we find that substantial

differences arise in performance among the three models. Figure 10 shows that the

additive and multiplicative models are unable to perform these tasks well, because

the weights get stuck near the widely spread values that they attain for the first

contingency scenario. Running the simulations with longer intervals between switches

would not help as the weights take just as much time to escape from these values as

they spend approaching them; that is, longer intervals lead to stronger convergence and

hence more time needed to move away after a contingency switch. The corticostriatal

model, in contrast, is able to quickly react to the contingency switches and swap which

action it takes, resulting in only brief drops in accuracy when switches occur.

We also tested model performance in task switching in the action selection task.

Figure 11 shows model trajectories and proportion of trials on which the more reward-

ing action is chosen under infrequent switching, where the inputs and rewards are

swapped every 1000 steps. All three models are able to switch which action they take
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Fig. 10 Model performance in the action selection setting with contingency switching. Plots show
weights (a-c) and probability of taking the correct action (d-f) versus time for the additive (a, d),
multiplicative (b, e), and corticostriatal (c, f) models. Here r = 10 s−1 and the reward contingencies
switch between R∗

1 = 2, R∗
2 = 1 and R∗

1 = 1, R∗
2 = 2 every 1000 steps; we use λ = 0.05 for illustrative

purposes

when the state switches. But whereas the additive and multiplicative models are able

to learn a set of weights that can yield high probabilities of selection of the more

rewarded action in both states, the corticostriatal model struggles to do so because of

the more limited range of values the weights take under its dynamics. The corticostri-

atal model is able to recover its prior performance after a task switch, but it does not

seem to learn one set of weights that have above-chance performance on both tasks.

When switching is frequent (every step), the corticostriatal model learns weights that

give performance only slightly better than chance, while the additive and multiplica-

tive models successfully learn weights that perform well in both states (see Figure 12).

(Note that in both Figures 11 and 12, the weights under the corticostriatal model

stay near the initial value of winit = 0.5 because of the presence of equilibria nearby;

had we used different initial conditions the weights would still quickly converge to the

values shown in the figures.)
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Fig. 11 Model performance in the action selection setting with infrequent task switching. Plots
show weights (a-f) and probability of taking the correct action (g-i) versus time for the additive (a,
d, g), multiplicative (b, e, h), and corticostriatal (c, f, i) models. The input switches every 1000 steps
between r = (15, 5) s−1, R∗

1 = 2, R∗
2 = 1 and r = (5, 15) s−1, R∗

1 = 1, R∗
2 = 2. Channel 1 is displayed

in (a-c) and channel 2 in (d-f); each one consists of two weights. The optimal weight vectors are
w1 = (1, 0) and w2 = (0, 1), which would, by design, allow the model to preferentially choose action
1 in state 1 and action 2 in state 2. In these plots λ = 0.005

3.4 Symmetric Model

None of the models we have considered can accomplish every task we set for them.

Can we use our findings to design a plasticity model that can? Here we consider one

possibility. Rather than switching whether we scale weight changes by w or 1 − w

depending on pre-post spike timing, as we do in the multiplicative and corticostriatal

models, we simply use w(1− w) irrespective of the direction of the weight update; in
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Fig. 12 Model performance in the action selection setting with frequent task switching. Plots show
weights (a-f) and probability of taking the correct action (g-i) versus time for the additive (a, d, g),
multiplicative (b, e, h), and corticostriatal (c, f, i) models. Parameters are the same as in Figure 11
except that task switching occurs at every simulation step

other words, rather than equations (4) or (5) we use

dwi

dt
= λD(t)wi(t)(1− wi(t))

(
E+

i (t)− E−
i (t)

)
.

We will refer to this model as the symmetric model. This model fixes the issue with

the multiplicative model where w may be used when weights are increasing and 1−w

used when weights are decreasing, which may occur if the dopamine signal is negative.

Moreover, the dopamine signal can be factored out of the update equation for the
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symmetric model, unlike with the corticostriatal model; it is therefore to be expected

that the symmetric model will perform well in the random dopamine and reward

prediction settings where the corticostriatal model does poorly.

Experimentally, we see that the symmetric model maintains the good performance

of the additive and multiplicative models in the random dopamine and reward predic-

tion settings as well as the basic action selection setting (Figure 13). However, it does

not do as well as the corticostriatal model in the action selection setting with infre-

quent contingency switching. In this setting the weights for the corticostriatal model

converge to fixed points some distance from the boundaries and contingency switching

seems to swap the locations of the stable fixed points, allowing the model to respond

quickly to switches (see Figure 10c). Under the symmetric model, weights still get

driven towards the boundaries. While they go to the boundaries much more slowly

than under the additive and multiplicative models due to the w(1−w) term, they also

take correspondingly longer to leave once they get there (Figure 14). So while the sym-

metric model may be an improvement over the additive and multiplicative models in

some ways, it does not seem to provide a panacea for the other models’ shortcomings.

4 Discussion

Accurately modeling learning in the cortico-basal ganglia-thalamic circuit requires the

use of an appropriate synaptic weight update rule for the dopamine-dependent STDP

in the corticostriatal connections. In this paper we examine three plasticity models

that combine dopamine, eligibility, and spike timing signals in different ways – the

additive, multiplicative, and corticostriatal models – and evaluate their performance

in a number of different task settings. We find that the additive and multiplicative

models do well in many cases: they are able to maintain weights in the presence of

random inputs and dopamine release events, they can learn to predict a reward, and

they can accomplish a simple action selection task. They do not perform well on action
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Fig. 13 Weight evolution in the three main settings for the symmetric model. This model requires
the use of relatively large values of λ: (a) in the random dopamine setting, λ = 0.02; (b) in the reward
prediction setting, λ = 0.0066; (c) in the action selection setting, λ = 0.05 (double their default
values)

selection tasks in which the reward contingencies occasionally switch, however, because

they tend to get stuck at or near the boundaries of the weight domain. In contrast, the

corticostriatal model, while performing poorly in the random dopamine and reward

prediction settings, is able to rapidly relearn swapped reward contingencies in the

action selection setting. This rapid learning matches the results seen in experiments

with animals Beron et al. (2022) and humans Bond et al. (2021). When tasks instead

of contingencies switch, however, the success of the corticostriatal model is hindered

somewhat by the restricted range of synaptic weight values that it induces. Overall,

we find that the choice of which plasticity model to use can have a large impact on

the dynamics of synaptic weights and hence on both the learning achieved by the
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Fig. 14 Performance of the symmetric model in the action selection setting with contingency switch-
ing. Plots show weights (a) and probability of taking the correct action (b) versus time. Here λ = 0.1,
and the other parameters are the same as those used in Figure 10

circuit and the ability of the model to perform a given task. Which plasticity model

is appropriate depends strongly on the tasks it will be asked to perform. Ultimately,

these results suggest that different synaptic plasticity mechanisms may be at play

at corticostriatal synapses involving different regions of the striatum with distinct

functions, as well as at corticocortical synapses with dopamine-dependent plasticity

Otani et al. (2003), and that additional experimental and theoretical work is needed

to pin down the precise forms of plasticity that occur at corticostriatal synapses and

how they should be modeled.

Our mathematical analysis of the random dopamine and reward prediction set-

tings shows how the choice of parameter values impacts model performance on these

tasks. Specifically, we found that in the random dopamine setting that under the cor-

ticostriatal model, weights evolve to 1/(α+1); in the reward prediction setting under

the additive and multiplicative models, we characterized how the existence of stable

points on the solution plane (and therefore the ability of the model to solve the task)

depends on the parameters α, τ , r, and R∗. In general, increasing α, the strength of

negative eligibility relative to positive, and τ , the STDP time constant, will reduce the

ranges of r and R∗ values that feature stable solutions. Therefore, these parameters
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are particularly important for practitioners using these models to understand and to

select judiciously.

Why exactly do the three plasticity models run into difficulties in some settings? An

important issue with the additive model is that it does not prevent weights from being

driven to the boundaries (or past them, if the weights are not artificially cut off). The

original multiplicative model without dopamine avoids this complication by scaling

the weight drift by w if weights are decreasing and by 1−w if they are increasing. Our

version of the model with dopaminergic modulation disrupts this property, though:

because the w and 1− w terms are tied to the sign of the eligibility but not the sign

of the dopamine signal, if the dopamine signal is negative, then the wrong term is

applied (w for increasing weights and 1 − w for decreasing weights). This effect can

lead to weights being driven to zero in the action selection setting. The corticostriatal

model solves this problem by selecting w or 1 − w depending on the sign of the

product of the dopamine signal term with the eligibility trace term. In other words,

it ensures that even with dopamine the correct scaling term will be chosen: w for

decreasing weights and 1 − w for increasing weights (see Table 1). The cost of this

modification, from an analytical perspective, is that the dopamine signal can no longer

be factored out of the weight drift equation. Consequently the corticostriatal model

features nonzero mean weight drift even when the mean dopamine signal is zero,

leading to its failure to maintain pre-learned weights under random dopamine and

its failure to converge to the solution plane in the reward prediction setting. Recent

experimental results on local control of dopamine release within the striatum Cachope

and Cheer (2014); Nolan et al. (2020); Holly et al. (2024) suggest that neurons may

express more complicated mechanisms that we have not modeled that allow them to

avoid spurious weight changes when not involved in task performance, which may

ameliorate the difficulties of the corticostriatal model in the random dopamine setting.

On the theoretical side, we introduced the symmetric model considered in Section 3.4
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as an attempt to have the best of both worlds: a model that properly scales weight

updates near the boundaries while allowing the dopamine signal to be factored out of

the weight drift equation. Unfortunately, it does not significantly improve on the poor

performance of the additive and multiplicative models in the action selection setting

with contingency switching.

The corticostriatal model has another problem: its weights tend to remain in a rel-

atively narrow band, leading to a fairly low probability of taking the correct action in

the action selection setting. This probability is determined by the number of postsy-

naptic spikes in each channel, and if the weights are close together, then spiking noise

will sometimes lead to more spikes being counted in the incorrect channel, causing the

wrong action to be taken. This outcome occurs despite the fact that we use a large

value of β, the temperature parameter in our action selection probability function.

We believe that this problem is not a fundamental one, however, as it can be easily

solved through downstream integration over the outputs of multiple striatal neurons

to obtain a clearer signal.

One important issue that we have highlighted throughout this work is the impact

that delays have on the weight dynamics. In the reward prediction setting, we need

to ensure that there is a sufficiently long delay between when we estimate the post-

synaptic firing rate and when dopamine is actually delivered; without this delay, we

cannot guarantee convergence to the solution plane due to correlations between terms

(although in practice this does not substantially affect our results). On the other hand,

we need to use short delays in the action selection setting without sustained activ-

ity in the selected channel, because these correlations are required for the model to

learn which action to take. A complicating factor that we have not addressed is that

experimental results consistently show that dopamine release immediately upon pre-

post spike pairing does not lead to a change in weight; rather, the dopamine must
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come some time after the spiking activity to effect significant synaptic changes Shin-

dou et al. (2019); Yagishita et al. (2014). Moreover, dopamine is not released instantly,

but rather takes some time to ramp up to its peak value Riley et al. (2024). These

findings raise important questions about how to best understand and model delays

within a synaptic plasticity framework. Although we considered both the dopamine

concentration and the eligibility trace as jumping up immediately and then decaying

exponentially, for the sake of analytical tractability and for consistency with prior com-

putational work, an important extension of these results would be to represent them

as slowly ramping up and then ramping down over time and to study how these more

realistic time-courses interact with delays and the computational roles that they play.

Our additive and multiplicative models are based on the plasticity rules described

in Gütig et al. (2003), but our plasticity rules differ from theirs in that we incorporate

dopaminergic modulation of the synaptic plasticity. The random dopamine setting is

closest to the one they use, and indeed by fixing the mean dopamine level to some

positive constant (rather than drawing it from a normal distribution centered at zero)

we can reproduce their setting very closely, the only difference being that our model

only undergoes plasticity during the periodic dopamine signals rather than after every

spike pair. Our goals are quite different from those of the earlier work, however: while

they study conditions under which symmetry breaking in the weight distributions

occurs and when the models can learn to represent correlations in a set of inputs, we

instead use the random dopamine setting to investigate the stability of learned weights

under perturbation.

The corticostriatal model in this paper is based on the plasticity model used in

Clapp et al. (2024) but differs from their model in a number of important ways. We

make several simplifications to the model, including setting the scaling factors and

time constants for pre- and postsynaptic spike traces equal to each other (in their

notation, τPRE = τPOST and ∆PRE = ∆POST = 1), as well as considering a single

38

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 4, 2024. ; https://doi.org/10.1101/2024.06.24.600372doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.24.600372
http://creativecommons.org/licenses/by/4.0/


class of striatal neurons rather than taking into account the existence of multiple stri-

atal neuron subpopulations with different plasticity properties. They also employ their

plasticity model in a more biologically realistic setting, incorporating many compo-

nents of the basal ganglia circuitry that we leave out. The most interesting difference

between our models is that they use a single eligibility trace summing up both positive

(corresponding to pre-before-post spike pairs) and negative (post-before-pre) contri-

butions, while we use two different traces for the positive and negative components.

The use of two traces is justified by experimental evidence suggesting that the brain

uses two distinct eligibility traces for LTP and LTD He et al. (2015). (Note, however,

that the computational model introduced in He et al. (2015) differs considerably from

the models used here, as it does not use αw or 1 − w factors to rescale the positive

and negative traces, instead simply adding them together without modification.) We

find in Section E that altering our models to employ a single eligibility trace leads to

qualitatively similar results in most cases, although they are much more difficult to

analyze.

A number of other three-factor plasticity rules have been explored in the literature.

One important model can be found in Xie and Seung (2004); while our learning rules

are generally built off of simpler two-factor rules modified to incorporate dopamin-

ergic feedback, they derive their learning rule directly from gradient ascent applied

to a reward signal. Another work modeling dopamine-dependent STDP is Izhikevich

(2007). The plasticity rule in that work closely resembles our additive model. However,

while we focus on the corticostriatal synapses and employ a simple setting consisting

of a population of cortical neurons connected to a single striatal neuron, they instead

use a mixed population of excitatory and inhibitory neurons with random connectiv-

ity meant to model part of a cortical column. The scenarios that they use to test their

model also differ from ours. For a more detailed review of other work on three-factor

plasticity rules, see Frémaux and Gerstner (2016); Gerstner et al. (2018).
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What are the implications of our findings for models of the basal ganglia? We

showed that each model has some settings in which it does well and some settings

where it fails to accomplish the given task. There are several potential explanations

for these outcomes. It is possible that the plasticity mechanism used in the corticos-

triatal synapses incorporates features that are not well-captured by any of the models

considered here. It is also possible that the simplified models that we consider omit

aspects of the computational structure of the basal ganglia that are crucial for func-

tional performance. For instance, we do not model the competition between direct and

indirect pathways through the basal ganglia, nor the differing effects of dopamine on

the two pathways (spiny projection neurons in the direct pathway primarily express

the D1 receptor, for which higher dopamine levels lead to LTP and lower dopamine

levels lead to LTD and which form the basis for the corticostriatal plasticity model

considered here, while in the indirect pathway they primarily express the D2 recep-

tor, for which higher dopamine levels lead to LTD and lower dopamine levels lead to

LTP Shan et al. (2014); Shen et al. (2008)). There may also be more complexity to

dopaminergic feedback than the simple model we use; for example, recent work sug-

gests that the dopamine signal may be better modeled as multidimensional rather

than scalar-valued Wärnberg and Kumar (2023). An exciting future direction would

be to extend our analysis to take more of these subtleties into account. Nevertheless,

we believe that the settings we studied are general enough that our results will apply

to more detailed models.

An interesting possible implication of our work is that different regions of the

striatum may feature different plasticity mechanisms specialized to their particular

roles. For instance, the ventral and dorsal striatum, which primarily contribute to

reward prediction and action selection, respectively O’Doherty et al. (2004), may use

distinct plasticity rules tuned to the specific tasks that they perform, as suggested by

experimental evidence Perez et al. (2022); Wang (2008). More generally, while we have
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focused in this paper on the corticostriatal connections, our settings are broad enough

that they may apply to any other region of the brain that receives dopaminergic

signals, such as the prefrontal cortex where dopamine-dependent plasticity also occurs

Otani et al. (2003). The random dopamine setting should be relevant whenever the

dopamine signal is independent of a neuron’s output, the reward prediction setting

applies to any task in which a neuron must match a target firing rate in order to

minimize a dopamine error signal, and the action selection setting is a fairly broad

model of learning dynamics under competition between two channels. Thus, the fact

that no plasticity rule performed well in every setting in our study may simply be due

to the specialization of different regions for the specific computational functions that

they perform.
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Appendix A Averaged Model, Reward Prediction

Setting

A.1 Additive and Multiplicative Models

Here we derive an averaged model that adds up all pre-post spike pairs and takes

the average over realizations of the pre- and postsynaptic spike trains and over the

dopamine signal, focusing on the additive and multiplicative models in the reward

rate setting. (The presentation here largely follows that in Gütig et al. (2003).) We
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first give an expression for the total change in weight induced by a single triplet of a

presynaptic spike at tpre, a postsynaptic spike at tpost, and a dopamine signal D at

tdop. This can be found by integrating over the time since the largest of tpre, tpost,

and tdop, because prior to tpre or tpost, the eligibility trace is zero, and prior to tdop,

the dopamine trace is zero. The result is given here for the additive and multiplicative

models:

∆w = λD

∫ ∞

max{tdop,tpre,tpost}
e
−

t−tdop
τdop e

− t−max{tpre,tpost}
τeli e−

|tpost−tpre|
τ

×



−f−(w) if tpost ≤ tpre

f+(w) if tpost > tpre

 dt

= λD
τdopτeli

τdop + τeli
e−

|tpost−tpre|
τ



−f−(w) if tpost ≤ tpre

f+(w) if tpost > tpre



×



e
−

|tdop−max{tpre,tpost}|
τdop if tdop ≤ max{tpre, tpost}

e
−

|tdop−max{tpre,tpost}|
τeli if tdop > max{tpre, tpost}

 . (A1)

We restate here the definition of the dopamine signal for the reward prediction setting:

D = R∗ −R (A2)

where

R =
1

Twin

∫ tdop−Tdel

tdop−Twin−Tdel

ρpost(t) dt. (A3)

Following Gütig et al. (2003), we will define the cross-correlation functions

Γi,post(∆t) = ⟨ρprei (t)ρpost(t+∆t)⟩t, where ⟨·⟩t denotes averaging over time. These will
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arise in our derivation of the averaged weight dynamics. We also define the point pro-

cess ρdop indicating when a dopamine signal is delivered, with rate ⟨ρdop(t)⟩t = rdop.

(As noted previously, in simulations we assume for simplicity that dopamine is deliv-

ered periodically, but the precise form of the dopamine process does not matter as

long as it has the given mean rate, it is independent of the spike trains, and dopamine

signals are far enough apart that their interactions can be neglected.) Treating ∆w as

a function of tpre, tpost, and tdop, we can write the mean weight drift as follows:

ẇi =

〈∫ ∞

−∞

∫ ∞

−∞
∆wi(t, t+∆t, t+∆t+∆s)

ρprei (t)ρpost(t+∆t)ρdop(t+∆t+∆s) d∆s d∆t

〉
t

(A4)

where t = tpre, ∆t = tpost − tpre, and ∆s = tdop − tpost.

Note that ρdop is independent of the other terms. Also, if Tdel is large enough, we

can assume that R (and hence D) is independent of ρpost (and hence also of ρprei , as

R only depends on ρprei through ρpost), because any postsynaptic spikes counted by

the integral in equation (A3) must occur at least Tdel before the dopamine signal, and

consequently, either the negative exponential in |tdop −max{tpre, tpost}| or the one in

|tpost − tpre| in equation (A1) will be very small. Thus, assuming D is independent of

the other terms provides a very good approximation if Tdel is large enough. Another

simplifying assumption we will make is that the weights change only a small amount

on each dopamine release, so that we can treat wi as constant in these expressions.

Under these assumptions, we can substitute equations (A1) to (A3) into equation (A4)

and split it into the tpost ≤ tpre and tpost > tpre cases as follows:

ẇi = −λf−(wi)

∫ 0

−∞

∫ ∞

−∞

(
R∗ − 1

Twin

∫ Twin

0

〈
ρpost(u+ t+∆t+∆s− Tdel − Twin)

〉
t
du

)
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× τdopτeli
τdop + τeli

e−
|∆t|
τ



e
− |∆s+∆t|

τdop if ∆s+∆t ≤ 0

e
− |∆s+∆t|

τeli if ∆s+∆t > 0


×
〈
ρprei (t)ρpost(t+∆t)

〉
t

〈
ρdop(t+∆t+∆s)

〉
t
d∆s d∆t

+ λf+(wi)

∫ ∞

0

∫ ∞

−∞

(
R∗ − 1

Twin

∫ Twin

0

〈
ρpost(u+ t+∆t+∆s− Tdel − Twin)

〉
t
du

)

× τdopτeli
τdop + τeli

e−
|∆t|
τ



e
− |∆s|

τdop if ∆s ≤ 0

e
− |∆s|

τeli if ∆s > 0


×
〈
ρprei (t)ρpost(t+∆t)

〉
t

〈
ρdop(t+∆t+∆s)

〉
t
d∆s d∆t.

(A5)

Recall that the postsynaptic firing rate is given by

R(t) =
1

N

N∑
i=1

wi(t)ρ
pre
i (t− ϵ).

It follows that for any x,

〈
ρpost(t+ x)

〉
t
=

1

N

N∑
i=1

wi⟨ρprei (t+ x− ϵ)⟩t (A6)

=
1

N

N∑
i=1

wiri,

in particular this applies to ⟨ρpost(u+ t+∆t+∆s− Tdel − Twin)⟩t in equation (A5).

Additionally,
〈
ρdop(t+∆t+∆s)

〉
t
= rdop is a constant. We can therefore make the

change of variables ∆s ← ∆s + ∆t to combine the positive and negative integrals,
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arriving at the formula:

ẇi =

(
R∗ − 1

N

N∑
i=1

wiri

)
rdop

τdopτeli
τdop + τeli

∫ ∞

−∞



e
− |∆s|

τdop if ∆s ≤ 0

e
− |∆s|

τeli if ∆s > 0

 d∆s

×
∫ ∞

−∞
e−

|∆t|
τ



−λf−(wi) if ∆t ≤ 0

λf+(wi) if ∆t > 0

Γi,post(∆t) d∆t

=

(
R∗ − 1

N

N∑
i=1

wiri

)
rdopτdopτeli

×
∫ ∞

−∞
e−

|∆t|
τ



−λf−(wi) if ∆t ≤ 0

λf+(wi) if ∆t > 0

Γi,post(∆t) d∆t.

Note that the remaining integral is exactly the one found in Gütig et al. (2003). Using

equation (A6) and following Gütig et al. (2003), we decompose Γi,post as

Γi,post(∆t) =
1

N

N∑
j=1

wj⟨ρprei (t)ρprej (t+∆t− ϵ)⟩t

and define the normalized cross-correlation function

Γ0
ij(t

′) =
⟨ρprei (t)ρprej (t+ t′)⟩t

rirj
− 1.

(Note that Gütig et al. (2003) assumes all presynaptic firing rates are identical, and

so uses r2 in the denominator instead.) We also define the effective cross-correlation

matrices C± with elements

C+
ij =

∫ ∞

0

1

τ
e−

|∆t|
τ Γ0

ij(∆t− ϵ) d∆t
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and similarly for C−
ij (which integrates from −∞ to 0). Then we can rewrite the

integrals in terms of C±
ij :

λf+(wi)

∫ ∞

0

e−
|∆t|
τ Γi,post(∆t) d∆t = λf+(wi)

1

N

N∑
j=1

wjτrirj

×
(
1 +

∫ ∞

0

1

τ
e−

|∆t|
τ Γ0

ij(∆t− ϵ) d∆t

)
= λf+(wi)

1

N

N∑
j=1

wjτrirj
(
1 + C+

ij

)

and similarly for the negative terms. Like in Gütig et al. (2003), we assume Γ0
ij(t

′) =

1√
rirj

cijδ(t
′) for some constants cij ≥ 0 (again extending their formula to non-identical

presynaptic firing rates). Since the argument of Γ0
ij(∆t−ϵ) is never zero when ∆t < 0,

it follows that C−
ij = 0 and C+

ij = 1
τ
√
rirj

cije
−ϵ/τ ≈ 1

τ
√
rirj

cij . (We assume, as in Gütig

et al. (2003), that ϵ is small enough that e−ϵ/τ ≈ 1.) For Possion spike trains, the

constants cij equal 1 if the spike trains are identical (because the autocorrelation is

⟨ρ(t)ρ(t+ t′)⟩t = r2 + rδ(t′) for a Poisson spike train ρ with rate r) and are otherwise

less than 1. We will assume that the presynaptic spike trains are uncorrelated, so

cij = 0 for i ̸= j. Therefore the formulas simplify as follows:

λf+(wi)
1

N

N∑
j=1

wjτrirj
(
1 + C+

ij

)
= λf+(wi)

1

N

(
wiri +

N∑
j=1

wjτrirj

)

and

−λf−(wi)
1

N

N∑
j=1

wjτrirj
(
1 + C−

ij

)
= −λf−(wi)

1

N

N∑
j=1

wjτrirj .

46

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 4, 2024. ; https://doi.org/10.1101/2024.06.24.600372doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.24.600372
http://creativecommons.org/licenses/by/4.0/


Substituting these results back in, we obtain the formula for ẇi:

ẇi =

(
R∗ − 1

N

N∑
i=1

wiri

)
rdopτdopτeli

λ

N

(
τ∆f(wi)ri

(
N∑
j=1

wjrj

)
+ f+(wi)wiri

)

where ∆f = f+ − f−. In vector notation, this can be written as:

ẇ =

(
R∗ − 1

N
⟨w, r⟩

)
rdopτdopτeli

λ

N
(τ⟨w, r⟩∆f(w)⊙ r + f+(w)⊙ w ⊙ r) (A7)

where ⊙ is the entrywise or Hadamard product and we treat f±(w) as applying

entrywise.

A.2 Corticostriatal Model

The analogous expression to equation (A1) for the corticostriatal model is:

∆w = λ
τdopτeli

τdop + τeli
e−

|tpost−tpre|
τ



−α|D|w if D(tpost − tpre) ≤ 0

|D|(1− w) if D(tpost − tpre) > 0



×



e
−

|tdop−max{tpre,tpost}|
τdop if tdop ≤ max{tpre, tpost}

e
−

|tdop−max{tpre,tpost}|
τeli if tdop > max{tpre, tpost}

 .

To derive an averaged form of the corticostriatal model, we need to decompose the

expected dopamine signal into E[D] = D+ +D−, where

D+ = E[D | D ≥ 0]P (D ≥ 0)

D− = E[D | D < 0]P (D < 0).

These can be computed by counting the number of postsynaptic spikes to fall inside

the window in equation (A3), using the cumulative distribution function of the Poisson
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distribution; on the D ≥ 0 side,

D+ =

⌊R∗Twin⌋∑
n=0

(
R∗ − n

Twin

)
(rpostTwin)

n
e−rpostTwin

n!

= R∗
⌊R∗Twin⌋∑

n=0

(rpostTwin)
n
e−rpostTwin

n!
− rpost

⌊R∗Twin⌋∑
n=1

(rpostTwin)
n−1

e−rpostTwin

(n− 1)!

= R∗Γ (⌊R∗Twin⌋+ 1, rpostTwin)

Γ (⌊R∗Twin⌋+ 1)
− rpost

Γ (⌊R∗Twin⌋, rpostTwin)

Γ (⌊R∗Twin⌋)

where rpost = 1
N ⟨w, r⟩ is the postsynaptic firing rate. Since E[D] = R∗−rpost, it follows

that D− = R∗ − rpost − D+. Then an analogous derivation to that in Section A.1,

treating the D ≥ 0 and D < 0 cases separately, gives the following average drift

formula:

ẇ = rdopτdopτeli
λ

N

(
D+ (τ⟨w, r⟩ (1− (1 + α)w)⊙ r + (1− w)⊙ w ⊙ r)

−D− (τ⟨w, r⟩ (1− (1 + α)w)⊙ r − αw ⊙ w ⊙ r)
)

(A8)

Appendix B Stability of Solution Equilibria,

Reward Prediction Setting

B.1 Stability Condition

In the reward prediction setting the additive and multiplicative models have equilibria

along the solution plane, defined as the set of weights such that 1
N ⟨w, r⟩ = R∗. How-

ever, these equilibria are not necessarily stable. We will now describe the conditions

under which some or all of the solution plane is stable. We are particularly interested

in conditions under which for any pair r,R∗ there exists some weight w such that

1
N ⟨w, r⟩ = R∗ is a stable equilibrium. (Note that if R∗ > 1

N

∑N
i=1 ri then this condition

is impossible to satisfy, as the weights are restricted to [0, 1]. We will therefore always
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assume that 0 ≤ R∗ ≤ 1
N

∑N
i=1 ri.) We will first derive a general stability condition for

the additive and multiplicative models and describe its application to these models.

For the additive and multiplicative models, the Jacobian on the plane 1
N ⟨w, r⟩ = R∗

is simple to calculate, as the derivatives of the second term in equation (A7) are

multiplied by R∗ − 1
N ⟨w, r⟩ and therefore go to zero. The Jacobian is then given by:

J = − 1

N
× rdopτdopτeli

λ

N
(τ⟨w, r⟩∆f(w)⊙ r + f+(w)⊙ w ⊙ r) rT

= −rdopτdopτeli
λ

N

(
τR∗∆f(w)⊙ r +

1

N
f+(w)⊙ w ⊙ r

)
rT .

The Jacobian has the eigenvalue 0 with multiplicity N − 1 corresponding to the sub-

space orthogonal to r, that is, parallel to the solution plane. The remaining eigenvalue

is given by

Λ = −rdopτdopτeli
λ

N

〈
τR∗∆f(w)⊙ r +

1

N
f+(w)⊙ w ⊙ r, r

〉

with associated eigenvector

τR∗∆f(w)⊙ r +
1

N
f+(w)⊙ w ⊙ r.

To determine the stability of the solution plane we therefore simply need to examine

the sign of Λ, giving the following stability condition:

0 <

〈
τR∗∆f(w)⊙ r +

1

N
f+(w)⊙ w ⊙ r, r

〉
(B9)

=

N∑
i=1

r2i

(
τR∗∆f(wi) +

1

N
f+(wi)wi

)
.
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Note that in equation (B9) we can substitute R∗ = 1
N ⟨w, r⟩ as long as we are on the

solution plane, giving the equivalent condition

0 < ⟨τ⟨w, r⟩∆f(w)⊙ r + f+(w)⊙ w ⊙ r, r⟩ . (B10)

Equations (B9) and (B10) define different subsets of [0, 1]N but identical sets when

restricted to the plane R∗ = 1
N ⟨w, r⟩. We can therefore use either condition depending

on which is more convenient for any particular calculation.

B.2 Sufficient Condition for a Stable Solution

We can derive a general sufficient condition for the existence of a stable solution for

both the additive and multiplicative models, restating and proving Theorem 1. In all

of the following analysis we assume at least one ri is nonzero, as the r = 0 case is

trivial.

Theorem 1. Pick r ∈ RN and R∗ ≤ 1
N ∥r∥1, and let w′ = NR∗/∥r∥1. If

f−(w
′) <

(
1 +

1

τ∥r∥1

)
f+(w

′), (10)

then there exists a stable point on the solution plane, given by w = (w′, . . . , w′).

Proof. First note that w = (w′, . . . , w′) clearly lies on the solution plane, because

1
N ⟨(w

′, . . . , w′), r⟩ = 1
Nw′∥r∥1 = R∗. A sufficient condition for equation (B10) to hold

at the point (w′, . . . , w′) is that for all i,

0 < r2i (τ⟨(w′, . . . , w′), r⟩ (f+(w′)− f−(w
′)) + f+(w

′)w′)

= r2i (τw
′∥r∥1 (f+(w′)− f−(w

′)) + f+(w
′)w′)

⇐⇒ 0 < τ∥r∥1 (f+(w′)− f−(w
′)) + f+(w

′)
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and rearranging the terms gives equation (10).

In the case of the additive model, f+(w) = 1 and f− = α, so rearranging

equation (10) gives the following condition:

τ(α− 1) <
1

∥r∥1
. (B11)

We can also derive a condition for the multiplicative model, where f+(w) = 1−w and

f−(w) = αw, by plugging the definition of w′ into equation (10):

α
NR∗

∥r∥1
<

(
1 +

1

τ∥r∥1

)(
1− NR∗

∥r∥1

)
⇐⇒ R∗ <

1

N
∥r∥1

1 + 1/τ∥r∥1
α+ 1 + 1/τ∥r∥1

=
w0

N
∥r∥1

where

w0 =
τ∥r∥1 + 1

τ(1 + α)∥r∥1 + 1
. (B12)

The point w = (w0, . . . , w0) is in fact a fixed point of the multiplicative model, as

can be seen by plugging it into equation (A7), and will be discussed in more detail in

Section C.2.

B.3 Additive Model

For the additive model we can also derive a necessary condition for the existence of

a stable solution. Here, f+(w) = 1 and f−(w) = α, so we can write the stability
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condition (equation (B10)) as follows:

0 < ⟨τ(1− α)⟨w, r⟩r + w ⊙ r, r⟩

= τ(1− α)⟨w, r⟩⟨r, r⟩+ ⟨w, r ⊙ r⟩

= ⟨w, τ(1− α)⟨r, r⟩r + r ⊙ r⟩

where we have used the fact that ⟨x ⊙ y, z⟩ = ⟨x, y ⊙ z⟩ for real vectors. Note that

this defines a half-space within the space of weights with the origin on the boundary;

we would like to find conditions under which at least some part of the solution plane

in [0, 1]N lies inside this half-space. A very simple necessary condition for this to

take place is that the intersection of this half-space with [0, 1]N is non-empty. This is

equivalent to requiring that the vector τ(1 − α)⟨r, r⟩r + r ⊙ r (the normal vector to

the boundary of the half-space) has at least one positive entry. In other words, there

exists some index i such that

0 < τ(1− α)⟨r, r⟩ri + r2i

⇐⇒ 0 < τ(1− α)⟨r, r⟩+ ri

if ri ̸= 0. Since ri ≥ 0 for all i, this is equivalent to a condition on the infinity norm

of r:

τ(α− 1) <
∥r∥∞
∥r∥22

. (B13)

Note that the right-hand-side of equation (B13) goes to zero as r grows, so if α > 1,

then we cannot put a condition on the parameters α and τ guaranteeing that the

necessary condition holds for all r; however, we can do so if we restrict ourselves to
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input rate vectors r with bounded norm. Suppose ∥r∥1 ≤ rmax. Then we have:

∥r∥∞
∥r∥22

=
1∑N

i=1
r2i

maxj{rj}

≥ 1∑N
i=1 ri

≥ 1

rmax
.

(This lower bound is achieved at r =
(

1
N rmax, . . . ,

1
N rmax

)
and at r = rmaxei for any

coordinate vector ei.) Thus the best bound on τ(α− 1) that applies to all r such that

∥r∥1 ≤ rmax is 1
rmax

. Combining this with equation (B11), we can state this result as

follows:

Proposition 3. For the additive model, there exists some stable solution w (i.e. R∗ =

1
N ⟨w, r⟩ and the stability condition holds) for all r,R∗ such that R∗ ≤ 1

N ∥r∥1 and

∥r∥1 ≤ rmax if and only if

τ(α− 1) <
1

rmax
.

Appendix C Other Dynamics Results, Reward

Prediction Setting

C.1 Stability of the Origin

For all three models, the origin w = 0 is a fixed point in the reward prediction setting.

Here we study its stability, focusing on the additive model for simplicity.
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Proposition 4. For the additive model, the Jacobian at the fixed point w = 0 is

positive definite (and so the point is unstable) if and only if

τ(α− 1) <
1

∥r∥1
. (C14)

Proof. The Jacobian at w = 0 can be calculated as follows, using equation (A7) and

plugging in f+(w) = 1 and f−(w) = α:

∂ẇi

∂wj

∣∣∣∣
w=0

= − 1

N
rjr

dopτdopτeli
λ

N
(τ(1− α)ri⟨r, w⟩+ wiri)

+

(
R∗ − 1

N
⟨w, r⟩

)
rdopτdopτeli

λ

N
(τ(1− α)rirj + δijri)

∣∣∣∣
w=0

= R∗rdopτdopτeli
λ

N
(τ(1− α)rirj + δijri)

or in vector notation,

J0 = R∗rdopτdopτeli
λ

N

(
τ(1− α)rrT + diag(r)

)
.

Since J0 is symmetric, we can apply Sylvester’s criterion to derive conditions under

which J0 is positive definite. If we assume ri ̸= 0 for each i so that diag(r) is invertible,

then the determinant of J0 can be computed using Sylvester’s determinant theorem:

det(J0) =

(
R∗rdopτdopτeli

λ

N

)N

det
(
τ(1− α)rrT + diag(r)

)
=

(
R∗rdopτdopτeli

λ

N

)N

det diag(r) det
(
τ(1− α)rT diag(r)−1r + I1

)
=

(
R∗rdopτdopτeli

λ

N

)N
(

N∏
i=1

ri

)
(τ(1− α)∥r∥1 + 1) .
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This is positive if and only if τ(1 − α)∥r∥1 + 1 > 0. But note that every upper left

submatrix of J0 has the exact same structure, so analogous calculations show that the

kth leading principal minor of J0 is positive if and only if 1 + τ(1− α)
∑k

i=1 ri > 0. If

α ≤ 1 then this clearly holds for all k = 1, . . . , N ; if α > 1 then τ(1 − α)
∑k

i=1 ri >

τ(1 − α)
∑N

i=1 ri (because ri ≥ 0 for all i), so we only need to check the N th term.

Thus by rearranging this criterion, we see that J0 is positive definite (and thus the

fixed point w = 0 is unstable) if and only if equation (C14) holds.

C.2 Extra Fixed Point in the Multiplicative Model

As noted above, the point w = (w0, . . . , w0) is a fixed point of the multiplicative model,

where w0 is defined in equation (B12). We can use a similar approach to that used

previously to give conditions on its stability, stated in the main text as Theorem 2:

Theorem 2. For the multiplicative model, if

R∗ <
w0

N
∥r∥1

then the Jacobian at the fixed point w = (w0, . . . , w0) is positive definite (and so the

point is unstable); if

R∗ >
w0

N
∥r∥1

then the Jacobian is negative definite (and so the point is stable).

Proof. The Jacobian can be computed as follows, using equation (A7) and plugging

in f+(w) = 1− w and f−(w) = αw:

∂ẇi

∂wj

∣∣∣∣
w=(w0,...,w0)

= − 1

N
rjr

dopτdopτeli
λ

N
(τ(1− (1 + α)wi)ri⟨r, w⟩+ (1− wi)wiri)
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+

(
R∗ − 1

N
⟨w, r⟩

)
rdopτdopτeli

λ

N

(
τ(1− (1 + α)wi)rirj

+ δij ((1− 2wi)ri − τ(1 + α)ri⟨w, r⟩)
)∣∣∣∣

w=(w0,...,w0)

=

(
R∗ − 1

N
w0∥r∥1

)
rdopτdopτeli

λ

N

(
τ(1− (1 + α)w0)rirj

+ δij ((1− 2w0)ri − τ(1 + α)w0ri∥r∥1)
)

or in vector notation,

Jw0
=

(
R∗ − 1

N
w0∥r∥1

)
rdopτdopτeli

λ

N

(
τ(1− (1 + α)w0)rr

T

+ (1− 2w0 − τ(1 + α)w0∥r∥1) diag(r)
)
.

Like we did in Section C.1, we can compute the determinant of the kth upper left

submatrix Jw0
, which we will denote Jk

w0
:

det(Jk
w0

) =

(
R∗ − 1

N
w0∥r∥1

)k (
rdopτdopτeli

λ

N

)k

(1− 2w0 − τ(1 + α)w0∥r∥1)k

×

(
k∏

i=1

ri

)(
1 +

τ(1− (1 + α)w0)

1− 2w0 − τ(1 + α)w0∥r∥1

k∑
i=1

ri

)
. (C15)

(Note that the ∥r∥1 terms that come from the definition of Jw0
are sums over all

N elements of r, while the sum that we get from computing rT diag(r)−1r in the

determinant only includes the first k elements.)

To check the signs of these determinants, first observe that 1−(1+α)w0 is negative,

as can be seen by using the definition of w0, equation (B12):

1− (1 + α)w0 = 1− τ(1 + α)∥r∥1 + 1 + α

τ(1 + α)∥r∥1 + 1

= − α

τ(1 + α)∥r∥1 + 1

56

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 4, 2024. ; https://doi.org/10.1101/2024.06.24.600372doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.24.600372
http://creativecommons.org/licenses/by/4.0/


< 0.

Next, observe that 1− 2w0 − τ(1 + α)w0∥r∥1 is also negative:

1− 2w0 − τ(1 + α)w0∥r∥1 = 1− w0 − (τ(1 + α)∥r∥1 + 1)w0

= 1− w0 − (τ∥r∥1 + 1)

= −w0 − τ∥r∥1

< 0.

Thus, the last term in equation (C15) is positive. In addition, this implies that Jk
w0

has

a factor of (−1)k. If R∗ < 1
Nw0∥r∥1, then we get a second factor of (−1)k canceling the

first, so det(Jk
w0

) > 0 for all k, and then by Sylvester’s criterion, Jw0
is positive definite

(and thus the fixed point is unstable). On the other hand, if R∗ > 1
Nw0∥r∥1, then

the sign of det(Jk
w0

) is (−1)k. But this means that det(−Jk
w0

) > 0, so by Sylvester’s

criterion, −Jw0
is positive definite, or equivalently, Jw0

is negative definite (and thus

the fixed point is stable).

Appendix D Averaged Model, Random Dopamine

Setting

The analysis described in Section A can be easily extended to the random dopamine

setting, the only difference being the treatment of the dopamine signal. For the additive

and multiplicative models, the mean dopamine signal can be factored out of the drift

equation; since in the random dopamine setting D ∼ N (0, σ2
dop), which has zero mean,

it follows that the additive and multiplicative models have zero mean weight drift.

For the corticostriatal model, it is clear from the symmetry of the normal distribu-

tion that D+ = 1
2 E[|D|] and D− = −D+, where E[|D|] = σdop

√
2/π. Plugging these
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into equation (A8), we get:

ẇ =
1

2
E[|D|]rdopτdopτeli

λ

N

(
τ⟨w, r⟩ (1− (1 + α)w)⊙ r + (1− w)⊙ w ⊙ r

+ τ⟨w, r⟩ (1− (1 + α)w)⊙ r − αw ⊙ w ⊙ r
)

=
1

2
E[|D|]rdopτdopτeli

λ

N
(2τ⟨w, r⟩r + w ⊙ r)⊙ (1− (1 + α)w) .

This equation has a single fixed point at wi = 1/(α+1) for all i. The Jacobian at this

point is a diagonal matrix with negative diagonal elements:

J = −1

2
(1 + α)E[|D|]rdopτdopτeli

λ

N
diag (2τ⟨w, r⟩r + w ⊙ r) .

Consequently, this fixed point is stable.

Appendix E Single Eligibility Trace

We now revisit the question of whether to use a single eligibility trace summing up

both positive (corresponding to pre-before-post spike pairs) and negative (post-before-

pre) contributions, as is done in Clapp et al. (2024), or to use two different traces for

the positive and negative components, as we do elsewhere in the paper. We had several

reasons for focusing on models with two different eligibility traces. One was analytical

convenience: the use of two traces is necessitated by the assumption, made by Gütig

et al. (2003); Rubin et al. (2001) as well as in this paper, that the contributions

to the weight changes made by individual spike pairs sum independently, a natural

assumption that greatly simplifies analysis. With only one eligibility trace, different

spike pairs may cancel each other out, rendering this independence assumption invalid.

We therefore cannot derive averaged forms of the single-trace models like we did for

the two-trace models. A second justification for the focus on two-trace models is that

there is experimental evidence suggesting that the brain in fact uses two different
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traces, one for LTP and one for LTD He et al. (2015). These findings describe cortical

pyramidal cells, rather than corticostriatal synapses, but similar mechanisms may be

at play here too.

We test a single-trace version of our model that replaces equation (3) with

dEi

dt
= ρpost(t)Apre

i (t)− γρprei (t)Apost(t)− 1

τeli
Ei(t) (E16)

where γ ≥ 1 is a scaling parameter controlling the strength of negative eligibility terms

relative to positive terms. The single-trace differential equation for the weights in the

additive and multiplicative cases is given by

dwi

dt
=


λD(t)f+(wi(t))Ei(t) if Ei(t) ≥ 0

λD(t)f−(wi(t))Ei(t) if Ei(t) < 0.

(E17)

and for the corticostriatal model is given by

dwi

dt
=


λD(t)(1− wi(t))Ei(t) if D(t)Ei(t) ≥ 0

λD(t)αwi(t)Ei(t) if D(t)Ei(t) < 0.

The single-trace version of the corticostriatal model is largely equivalent to the model

in described in Clapp et al. (2024), although they use different scaling factors and

time constants for pre- and postsynaptic activity.

One important characteristic of the single-trace versions of the additive and mul-

tiplicative models (equation (E17)) is that they are largely insensitive to variations in

α. This insensitivity arises because Ei(t) is usually positive, since presynaptic spikes

directly cause postsynaptic spikes after a delay of ϵ and not vice versa, which tilts the

balance to favor positive eligibility. Hence, the α-dependent f− term is only rarely used.

The α parameter is therefore not an effective way of adjusting the relative strengths of
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the positive and negative components of the eligibility trace. This observation moti-

vates the introduction of the parameter γ in equation (E16) to provide a better means

of controlling the relative strengths of the two components in the single-trace models.

(The single-trace corticostriatal model is still sensitive to α because it depends on the

sign of the product D(t)Ei(t), rather than just Ei(t), so the term with α will have an

impact when Ei(t) > 0 and D(t) < 0.)

We show simulations of the single-trace models in the random dopamine, reward

prediction, and action selection settings in Figure 15, Figure 16, and Figure 17, as

well as for action selection with contingency switching in Figure 18. In the random

dopamine setting (Figure 15) we vary γ in addition to α; in the reward prediction

setting (Figure 16) we vary γ and keep α = 1 fixed. The single-trace and two-trace

versions of the additive model behave identically when α = γ = 1, because in this case

positive and negative eligibility are treated the same. In the random dopamine setting

all three models behave qualitatively similarly to the two-trace versions (Figure 3),

and they appear largely insensitive to γ. In the action selection setting results again

qualitatively match those found with the two-trace models (Figures 8 and 10). In the

reward prediction setting, on the other hand, some differences between single-trace

and two-trace model dynamics are visible (cf. Figure 4), especially for larger values of

γ. While the solution planes become increasingly unstable as γ increases, similar to

the effect seen in the two-trace models as α increases, the precise form of the dynamics

appears to differ considerably (e.g. in Figure 16h, trajectories seem to spread out

rather than converge to a fixed point under the multiplicative model). Overall, using

a single eligibility trace does not seem to significantly improve performance on these

tasks and makes the dynamics much more difficult to analyze.
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