1	Metabolite T ₂ relaxation times decrease across the
2 3 4	adult lifespan in a large multi-site cohort
5	Kathleen E. Hupfeld ^{a,b†} , Saipavitra Murali-Manohar ^{a,b†} , Helge J. Zöllner ^{a,b} , Yulu Song ^{a,b} ,
6	Christopher W. Davies-Jenkins ^{a,b} , Aaron T. Gudmundson ^{a,b,c} , Dunja Simičić ^{a,b} , Gizeaddis
7	Simegn ^{a,b} , Emily E. Carter ^d , Steve C. N. Hui ^{e,f,g} , Vivek Yedavalli ^a , Georg Oeltzschner ^{a,b} ,
8	Eric C. Porges ^{d,h} , and Richard A. E. Edden ^{a,b}
9	
10 11 12	^a Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
13 14	^b F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
15 16 17 18	[°] The Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA
19 20 21	^d Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
22 23	^e Developing Brain Institute, Children's National Hospital, Washington, D.C. USA
24 25 26	^f Department of Radiology, The George Washington University School of Medicine and Health Sciences, Washington, D.C. USA
27 28 20	^g Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, D.C. USA
30 31	^h Center for Cognitive Aging and Memory, College of Medicine, University of Florida, Gainesville, Florida, USA
32 33 34 35	[†] Kathleen E. Hupfeld and Saipavitra Murali-Manohar contributed equally to this work.
36 37 38 39 40 41 42	Corresponding Author: Richard A. E. Edden, PhD Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287-0005 <u>Email</u> : raee2@jhu.edu
43 44 45	Running Title: T2 CHANGES WITH AGE
46	Word Count: 3,915 / 5,000 words
47	Figures and Tables: 8 / 10

T2 CHANGES WITH AGE

48 Abstract (250 / 250 words)

49 Purpose

- 50 Relaxation correction is crucial for accurately estimating metabolite concentrations measured
- 51 using in vivo magnetic resonance spectroscopy (MRS). However, the majority of MRS
- 52 quantification routines assume that relaxation values remain constant across the lifespan,
- 53 despite prior evidence of T₂ changes with aging for multiple of the major metabolites. Here, we
- 54 comprehensively investigate correlations between T_2 and age in a large, multi-site cohort.

55 Methods

- 56 We recruited approximately 10 male and 10 female participants from each decade of life: 18-29,
- 57 30-39, 40-49, 50-59, and 60+ years old (*n*=101 total). We collected PRESS data at 8 TEs (30,

58 50, 74, 101, 135, 179, 241, and 350 ms) from voxels placed in white-matter-rich centrum

- 59 semiovale (CSO) and gray-matter-rich posterior cingulate cortex (PCC). We quantified
- 60 metabolite amplitudes using Osprey and fit exponential decay curves to estimate T₂.

61 *Results*

- 62 Older age was correlated with shorter T₂ for tNAA, tCr_{3.0}, tCr_{3.9}, tCho, Glx, and tissue water in
- 63 CSO and PCC; $r_s = -0.21$ to -0.65, all *p*<0.05, FDR-corrected for multiple comparisons. These
- 64 associations remained statistically significant when controlling for cortical atrophy. T₂ values did
- not differ across the adult lifespan for ml. By region, T₂ values were longer in the CSO for tNAA,
- tCr_{3.0}, tCr_{3.9}, Glx, and tissue water and longer in the PCC for tCho and ml.

67 Conclusion

- 68 These findings underscore the importance of considering metabolite T_2 changes with aging in
- 69 MRS quantification. We suggest that future 3T work utilize the equations presented here to
- 70 estimate age-specific T₂ values instead of relying on uniform default values.
- 71
- 72 Keywords: T₂ relaxation times, TE series, magnetic resonance spectroscopy (MRS),
- 73 metabolites, healthy aging

T2 CHANGES WITH AGE

3

74 **1. Introduction**

75 Understanding brain changes across the healthy adult lifespan is critical for preserving 76 brain health in the quickly aging global population and uncovering possible mechanisms of age-77 related neurological disease. Proton magnetic resonance spectroscopy (¹H MRS) is the only 78 methodology that allows non-invasive measurements of endogenous brain metabolite 79 concentrations. However, MRS data are often acquired at echo times (TEs) that are non-80 negligible compared to metabolite transverse relaxation rates (T_2). This results in T_2 -weighting of the signal, such that metabolite amplitude changes associated with normal aging might be 81 82 caused by changes in relaxation but misinterpreted as changes in metabolite concentration. 83 This confound exists even for short-TE MRS, but is particularly a concern for J-difference-edited 84 MRS¹, which relies on TEs of >65 ms (constrained by the duration of frequency-selective editing 85 pulses and the J-evolution of target metabolites). Thus, recent consensus¹⁻³ suggests that it is 86 critical to address the confound of T_2 relaxation (including for reference signals), particularly in 87 studies of aging and neurodegeneration. However, despite this, most MRS quantification procedures (likely incorrectly) use static reference values, which assume that metabolite T_2 88 89 relaxation remains constant across the adult lifespan.

90 Prior work has reported varied relationships between age and T₂, primarily for the singlet 91 resonances total N-acetyl aspartate (tNAA), creatine (tCr), and choline (tCho). A majority of prior work at 3 and 4 T has reported shorter metabolite T₂s with older age both for metabolites^{4–7} and 92 tissue water^{4,7}. A few studies^{8,9} at 1.5 T have reported the opposite effect of longer metabolite 93 T_{2} s with older age; however, one of these studies⁹ was complicated by overlap among water 94 and metabolite signals, and the other⁸ examined only the frontal lobe and included only males in 95 96 the sample. One study¹⁰, also at 1.5 T, found longer NAA T_2 in the centrum semiovale of older 97 adults; however, this study utilized a linewidth-based approach which has not been validated or 98 used again since publication in 2005. With the exception of work by Brooks and colleagues⁸, each of these prior studies involved comparison of discrete age groups (young versus older 99

T2 CHANGES WITH AGE

100	adults) rather than continuous sampling across the adult lifespan, and each used small sample
101	sizes (all $n < 20$ per age group, with the exception of work by Deelchand and colleagues ⁴ which
102	included 32 young and 26 older adults). Therefore, in the present study, we leveraged a large,
103	multi-site cohort in order to more comprehensively investigate whether metabolite and tissue
104	water T_2 values differ across the normal adult lifespan, and to provide statistical models for
105	calculating age-specific T_2 values for future integration into MRS quantification procedures.
106	
107	
108	2. Methods
109	2.1 Participants
110	101 healthy adults provided written informed consent to participate at one of two sites:
111	the Johns Hopkins University School of Medicine ($n = 51$) and the University of Florida ($n = 50$).
112	The sample included approximately 10 females and 10 males from each of the following
113	decades: 18–29, 30–39, 40–49, 50–59, and 60+ years (Table 1). The Johns Hopkins University
114	and University of Florida Institutional Review Boards approved all study procedures.
115	Participants first completed the Montreal Cognitive Assessment (MoCA) ¹¹ , followed by a 1-hour
116	MRI protocol. Of note, four individuals scored below the cut-off score of 23 out of 30 (i.e.,
117	indicative of possible mild cognitive impairment ¹²). However, MoCA score was not an <i>a priori</i>
118	exclusion criterion for this study. Moreover, each of these individuals scored 22 (just below the
119	cut-off), and 3 of these 4 reported that English was not their primary language which can
120	negatively impact MoCA performance ¹³ (and it was not feasible to conduct the MoCA in a
121	language other than English). Therefore, we presumed that cognitive impairment was not likely
122	and opted to retain these individuals in the cohort and statistical analyses.
123 124	

- 125
- 126
- 127

T2 CHANGES WITH AGE

5

128**Table 1.** Participant Demographics

Variable	18-29 years	30-39 years	40-49 years	50-59 years	60+ years
Sex, #	10 F, 13 M	10 F, 10 M	10 F, 10 M	9 F, 9 M	11 F, 9 M
Age, Mean (SD),	24.2 (3.3)	35.0 (2.9)	44.2 (3.0)	55.0 (2.9)	67.5 (4.1)
[Min, Max], years	[18.7, 29.8]	[30.3, 39.9]	[40.0, 49.2]	[50.2, 59.8]	[60.8, 75.4]
MoCA, Mean (SD)ª	27.9 (2.0)	28.0 (2.3)	27.6 (2.5)	26.3 (1.8)	27.7 (2.5)
[Min, Max]	[23, 30]	[23, 30]	[22, 30]	[23, 29]	[22, 30]

^a One point was added to the MoCA score for n = 9, as these individuals reported having completed 12 years of education or less¹¹.

132 133

130 131

134

135 Z.Z IVIRS ACQUISITION	135	2.2	MRS	Acq	uisition
---------------------------	-----	-----	-----	-----	----------

136 All scans were performed using a 32-channel head coil on either the Johns Hopkins 137 University 3 T Philips dStream Ingenia Elition MRI scanner or the University of Florida 3 T 138 Philips MR7700 MRI scanner. For voxel positioning, we first collected a T_1 -weighted structural 139 MRI scan using the following parameters: MPRAGE, TR/TE 2000 ms/2 ms, flip angle 8°, slice 140 thickness 1.0 mm, 150 slices, voxel size 1 mm³ isotropic, total time 2 min 46 sec. Next, we acquired TE series data from two 30 x 26 x 26 mm³ voxels: the white matter (WM) rich centrum 141 142 semiovale (CSO) and the gray matter (GM) rich posterior cingulate cortex (PCC; Figure 1). 143 Scan parameters for the TE series included: PRESS localization, TR 2000 ms, 8 logarithmically-144 spaced TEs 30, 50, 74, 101, 135, 179, 241, and 350 ms, 24 transients per TE sampled at 2000 145 Hz with 1024 points, and CHESS water suppression (115 Hz bandwidth). Within each series, 146 the TE steps were neither interleaved nor randomized. We also collected a separate series of 147 unsuppressed water reference data at each of the 8 TEs with the same parameters, but with 2 148 transients per TE and no water suppression. Of note, these voxel sizes and locations were 149 selected to match those collected in our recent cohort of short-TE PRESS metabolite data in 150 102 individuals ranging from their 20s to their 60s¹⁴.

T2 CHANGES WITH AGE

152

Figure 1. Voxel Placement. TE series data were acquired from the centrum semiovale (CSO) and posterior cingulate cortex (PCC). Each participant's native space binary voxel mask for their CSO and PCC voxels was normalized to standard (MNI) space and overlaid onto the spm152 template. Warmer colors indicate areas of greater overlap between participants (color bar = number of subjects overlapped).

158 2.2 MRS Data Processing

159 MRS data were analyzed within MATLAB R2021b using the open-source analysis toolbox Osprey (v2.5.0; https://github.com/schorschinho/osprey/)¹⁵. All analysis procedures 160 161 followed consensus-recommended guidelines^{1,3}. Briefly, analysis steps included: loading the 162 vendor-native raw data (which had already been coil-combined, eddy-current-corrected, and 163 averaged on the scanner at the time of data collection), removing the residual water signal using 164 a Hankel singular value decomposition (HSVD) filter¹⁶, and modeling the metabolite peaks at each TE separately as described previously^{15,17} using TE-specific custom basis sets. The basis 165 166 sets were simulated by the MRSCloud tool¹⁸ (https://braingps.mricloud.org/mrs-cloud). 167 MRSCloud using a localized 2D density-matrix simulation of a 101 x 101 spatial grid (voxel size 168 30 x 30 x 30 mm³; field of view 45 x 45 mm³) and vendor-specific refocusing pulse shape, 169 duration, and sequence timings based on the MATLAB simulation toolbox FID-A¹⁹. The basis 170 sets consisted of 18 basis functions: ascorbate (Asc), aspartate (Asp), creatine (Cr), negative 171 creatine methylene (-CrCH₂), gamma-aminobutyric acid (GABA), glycerophosphocholine (GPC),

T2 CHANGES WITH AGE

7

172 glutathione (GSH), glutamine (GIn), glutamate (Glu), lactate (Lac), myo-inositol (ml), N-acetyl aspartate (NAA), N-acetyl aspartyl glutamate (NAAG), phosphocholine (PCh), phosphocreatine 173 174 (PCr), phosphoethanolamine (PE), scyllo-inositol (sl), and taurine (Tau), as well as 5 175 macromolecule signals (MM09, MM12, MM14, MM17, MM20) and 3 lipid signals (Lip09, Lip13, 176 Lip20) included as parameterized Gaussian functions¹⁷. 177 We extracted amplitudes for 6 metabolites of interest: tNAA, tCho, tCr_{3.0} (Cr + PCr), 178 tCr_{3.9} (Cr + PCr - (-CrCH₂)), ml, and Glx (Glu + Gln). We multiplied each metabolite amplitude by 179 Osprey's internal MRSCont.fit.scale factor for each TE and participant to make the metabolite 180 amplitudes directly comparable across TEs. This scaling factor is applied to the data to ensure 181 an optimal dynamic range between the data and basis set during modeling. It is defined as the 182 ratio of the maximum of the real part of the data and the basis set in the model range. Next, we 183 used *lsqcurvefit* in MATLAB to fit monoexponential T₂ decay functions to the TE series 184 metabolite amplitudes (Equation 1) in order to obtain the T₂ decay constant and an R² value of 185 model fit for each participant for each metabolite.

186

$$y_i = A_i * e^{\left(-\frac{TE}{T_2 i}\right)}$$
^[1]

In Equation 1, y_i represents the metabolite amplitude, A_i is a scaling constant, and T_{2i} is the relaxation time to be calculated for the ith subject. Lastly, we created a binary mask of the two MRS voxels in subject space, co-registered these masks to each participant's T₁-weighted structural scan, and segmented the structural scans using SPM12²⁰, in order to calculate the volume fractions of white matter (fWM), gray matter (fGM), and cerebrospinal fluid (fCSF) in each participant's voxels in subject space (for use in statistical models to control for cortical atrophy and for estimation of tissue water T₂).

We then repeated a similar procedure for tissue water. To estimate the water
amplitudes, the unsuppressed water data at each TE was modeled using a linear combination

T2 CHANGES WITH AGE

8

model with a simulated water signal¹⁸. We used MATLAB's *lsqcurvefit* to fit a biexponential decay function (Equation 2) to obtain tissue water T_2 and R^2 values for each participant.

198
$$y_i = A_i * e^{\left(-\frac{TE}{T_{2wi,tissue}}\right)} * 0.4211 * (1 - fCSF) + A_i * e^{\left(-\frac{TE}{T_{2wi,CSF}}\right)} * 0.5789 * fCSF$$
 [2]

199 In Equation 2, y_i represents the water amplitude, A_i is a scaling constant, T_{2wi.tissue} is the tissue 200 water relaxation time, and T_{2wi,CSF} is the CSF water relaxation time to be calculated for the ith subject. fCSF is the fraction of CSF within the voxel for the ith subject; 0.4211 weights the first 201 202 term by the approximate molal concentration of water for non-CSF tissue (40/(40+55)), and 203 0.5789 weights the second term by the approximate molal concentration of water for CSF 204 (55/(40+55)). The Ai and T_{2wi,tissue} terms were unconstrained, and the T_{2wi,CSF} term was constrained to the range of 50–3000 ms^{21–23}. A data acquisition error occurred at the University 205 206 of Florida site for the water data; therefore, we included only the Johns Hopkins University 207 participants (n = 51) in statistical analyses of the water T₂ data.

208 2.3 Statistical Analyses

We conducted all statistical analyses using R 4.3.2²⁴ within RStudio²⁵. First, we 209 210 calculated descriptive statistics (mean, standard deviation) by age group for the T₂ values for 211 each of the 6 metabolites of interest and tissue water. Next, we examined the correlation 212 between T_2 and age for each metabolite and voxel separately. As multiple variables did not 213 satisfy the Pearson correlation normality assumption (Shapiro test p < 0.05), we instead report 214 nonparametric Spearman correlations. To account for multiple comparisons, we applied the 215 Benjamini-Hochberg false discovery rate (FDR) correction to the *p*-values for each voxel²⁶. 216 Secondly, we ran a series of linear models, setting each metabolite T_2 as the outcome variable and age as the predictor: $T_2 = \beta_0 + \beta_1^*$ (Age-30). We centered age around 30 years, so that the 217 218 intercept (β_0) from this model would represent the predicted metabolite T₂ value at 30 years old, 219 and the slope (β_1) would represent the change in T₂ for each year of age. The aim of this model 220 was to provide an equation to calculate predicted T_2 value for a given metabolite given the age

T2 CHANGES WITH AGE

9

of a participant. As a follow-up analysis, we reran each of these linear models controlling for the potential effects of cortical atrophy with aging: $T_2 = \beta_0 + \beta_1^*(Age-30) + \beta_2^*T$ issue. As in our recent work examining metabolite T_1 changes with aging²⁷, we calculated cortical atrophy as the relative tissue fraction within the voxel, fGM / (fWM + fGM). The purpose of this follow-up model was to ensure that cortical atrophy effects were not a major contributing factor to the observed T_2 relationships with age.

227 In addition, we conducted a series of paired t-tests (followed by FDR correction of the p-228 values²⁶) to examine differences in metabolite T_2 values between the CSO and PCC voxels. We 229 also computed one linear mixed effects model per metabolite in which we set T₂ (across both 230 the CSO and PCC voxels) as the outcome variable, age, voxel, and the interaction of age with 231 voxel as the predictors, and a random intercept (u_i) for each subject: $T_2 = \beta_0 + \beta_1 * (Age-30) + \beta_1$ 232 β_2 *Voxel + β_3 *(Age-30)*Voxel + u_i. The primary aim of this model was to test for any Age*Voxel 233 interaction effects (i.e., whether the age slope differed by brain region in any cases). The linear 234 mixed effects model and random subject intercepts were necessary because this modeling 235 approach structured the data as 'repeated measures' in which each participant had two 236 measurements (CSO T_2 and PCC T_2).

237

238

```
239 3. Results
```

240 **3.1 Data Quality**

Creatine (Cr) linewidths were well within the range of consensus-recommended standards (i.e., < 13 Hz for 3 T³) for all spectra except one individual's CSO voxel (33-year-old male, Cr linewidth = 14.1 Hz). In addition, for one participant (19-year-old male), the PCC voxel was mistakenly positioned at the wrong location. Thus, these datasets (1 CSO and 1 PCC) were excluded before any statistical analyses. Additional consensus-recommended data quality metrics are presented in Appendix A. Example single-subject spectra at each TE and decay

T2 CHANGES WITH AGE

10

- functions for each metabolite are presented in Figure 2. The mean R² value across the whole
- 248 cohort for the goodness of fit of the T₂ decay model was ≥0.80 for each of the 6 metabolites of
- 249 interest and tissue water. Table 2 presents descriptive statistics by age group for the T₂ values.

259

252 Figure 2. Single-Subject Example Spectra and CSO T₂ Decay. A PRESS spectra for each of the 8 TEs 253 for the CSO (left) and PCC (right) voxels for a representative subject (48-year-old female). This 254 representative subject was determined by averaging the R² values of model fit across the 6 metabolites and tissue water for each person in the Johns Hopkins cohort (as water data were unavailable for 255 256 University of Florida subjects) and then taking the group median of this average R^2 value. **B** Example T_2 257 decay plots for the 6 metabolites and tissue water from the CSO voxel for the same representative 258 subject. Blue points represent the metabolite amplitude at each TE, and the dark blue line represents the 259 calculated T₂ decay curve.

T2 CHANGES WITH AGE

260 261 Table 2. T₂ Descriptive Statistics by Age Group

CSO Voxel					
Metabolite	18-29 years	30-39 years	40-49 years	50-59 years	60+ years
	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)
tNAA	298.9	283.8	267.9	267.9	260.6
	(22.5)	(24.3)	(24.2)	(24.6)	(23.8)
tCr _{3.0}	159.5	153.0	147.7	148.3	147.9
	(10.6)	(8.8)	(11.5)	(8.9)	(8.6)
tCr _{3.9}	145.0	133.9	133.0	133.9	132.9
	(10.7)	(16.2)	(10.3)	(8.6)	(9.3)
tCho	230.1	216.3	203.0	204.5	207.8
	(18.6)	(24.4)	(19.7)	(17.7)	(19.7)
ml	146.7	141.5	132.7	144.8	140.6
	(14.0)	(17.2)	(11.7)	(16.0)	(19.0)
Glx	206.1	213.7	186.3	195.6	181.5
	(40.6)	(36.7)	(29.6)	(42.1)	(30.3)
Tissue Water ^a	64.8	64.1	62.7	62.5	62.4
	(2.1)	(2.3)	(2.6)	(3.1)	(2.5)
PCC Voxel					
Metabolite	18-29 years	30-39 years	40-49 years	50-59 years	60+ years
	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)
tNAA	255.2	237.1	224.0	221.1	215.6
	(22.6)	(12.8)	(15.3)	(16.7)	(14.7)
tCr _{3.0}	155.5	149.6	144	145.3	145.8
	(8.9)	(7.8)	(8.6)	(5.8)	(8.5)
tCr _{3.9}	131.1	126.4	125.8	123.6	127.6
	(9.1)	(5.2)	(9.6)	(7.4)	(10.0)
tCho	258.2	240.3	221	224.2	228.0
	(25.2)	(13.3)	(15.9)	(20.2)	(20.3)
ml	166.8	157.1	157.5	158.0	159.5
	(15.0)	(13.7)	(14.2)	(13.6)	(16.3)
01	400.0	450 7	4040	400.0	4 4 7 0

tNAA	255.2	237.1	224.0	221.1	215.6
	(22.6)	(12.8)	(15.3)	(16.7)	(14.7)
tCr _{3.0}	155.5	149.6	144	145.3	145.8
	(8.9)	(7.8)	(8.6)	(5.8)	(8.5)
tCr _{3.9}	131.1	126.4	125.8	123.6	127.6
	(9.1)	(5.2)	(9.6)	(7.4)	(10.0)
tCho	258.2	240.3	221	224.2	228.0
	(25.2)	(13.3)	(15.9)	(20.2)	(20.3)
ml	166.8	157.1	157.5	158.0	159.5
	(15.0)	(13.7)	(14.2)	(13.6)	(16.3)
Glx	166.8	156.7	164.8	162.9	147.6
	(19.2)	(21.6)	(29.3)	(23.8)	(31.2)
Tissue Water ^a	54.8	55.2	52.1	49.7	50.7
	(4.0)	(2.5)	(2.5)	(5.9)	(2.7)

262 263 264

Note. This table lists T₂ values in ms for the 6 metabolites and tissue water.

^a Tissue water includes only the n = 51 Johns Hopkins subjects.

265 266 267

269

268 3.2 T₂ Relationships with Age

Older age was significantly correlated with shorter T₂ values for tNAA, tCr_{3.0}, tCr_{3.9}, tCho,

270 Glx, and tissue water in both the CSO and PCC; Spearman r = -0.21 to -0.65, p < 0.05, FDR-

271 corrected for multiple comparisons (Figure 3; Table 3). Age was most strongly correlated with

272 tNAA T_2 . Age did not correlate with mI T_2 for either voxel.

273

274

275

T2 CHANGES WITH AGE

$\begin{array}{c} 277\\ 278 \end{array} \quad \text{Table 3. } \textbf{T}_2 \text{ Correlations with Age} \end{array}$

Metabolite	CSO		PCC	
	rs	P FDR-corr	r _s	$p_{FDR-corr}$
tNAA	-0.46	< 0.001***	-0.65	< 0.001***
tCr _{3.0}	-0.37	< 0.001***	-0.43	< 0.001***
tCr _{3.9}	-0.34	0.001**	-0.21	0.047*
tCho	-0.38	< 0.001***	-0.51	< 0.001***
ml	-0.07	0.477	-0.17	0.095
Glx	-0.34	0.001**	-0.24	0.022*
Tissue Water ^a	-0.30	0.035*	-0.46	0.001**

Note. This table presents the Spearman r values and FDR-corrected *p*-values for the correlation of age with metabolite T_2 in the CSO and PCC voxels separately; **p*<0.05, ***p*<0.01, ****p*<0.001.

^a Tissue water includes only the n = 51 Johns Hopkins subjects.

T2 CHANGES WITH AGE

13

289 290 291 292 293 294	plot indicates the Spearman correlation coefficient (r_s) and statistical significance of the FDR-corrected <i>p</i> -value for the correlation, * <i>p</i> <0.05, ** <i>p</i> <0.01, *** <i>p</i> <0.001. The gray line and shading represent the linear model and 95% confidence interval for the model using age to predict T ₂ (produced using the <i>geom_smooth</i> function in R).
295	Next, we fit linear models to predict T_2 using age for each metabolite and voxel
296	combination: $T_2 = \beta_0 + \beta_1^*$ (Age-30); Table 4. As we centered age around 30 years old, the
297	intercept (β_0) represents the predicted T ₂ value for each metabolite at 30 years of age (as
298	opposed to age 0 which would represent an unhelpful extrapolation). The slope (β_1) represents
299	the change in the predicted value of T_2 for each year of life. For example, for tNAA in the CSO,
300	the predicted T ₂ value for an individual age 30 years would be: T ₂ = $288.27 + (30-30)^*-0.81 =$
301	288.27 ms, while the predicted T_2 value for an individual age 50 years would be T_2 = 288.27 +
302	$(50-30)^*-0.81 = 272.07$ ms. (Note that these predicted T ₂ values also correspond to the gray
303	linear model lines plotted in Figure 3). The slope and intercept values listed in Table 4 can thus
304	be utilized to calculate a predicted T_2 for any age in a WM- or GM-rich voxel. Table 4 only
305 306	includes slopes for the metabolites which were significantly correlated with age.

307 Table 4. Model Coefficients for Estimating T₂

Metabolite	С	SO	Р	сс
	Intercept	Slope (β ₁)	Intercept	Slope (β ₁)
tNAA	288.27	-0.81	244.35	-0.89
tCr _{3.0}	155.21	-0.25	151.67	-0.24
tCr _{3.9}	139.88	-0.26	128.53	-0.10
tCho	220.32	-0.51	245.66	-0.73
ml	142.39		162.13	
Glx	206.54	-0.68	165.20	-0.37
Tissue Water ^a	64.11	-0.05	54.38	-0.12

Note. This table presents the intercept and slope (β_1) values for the linear model using age to predict T_2 values: $T_2 = \beta_0 + \beta_1^*$ (Age-30). Slope is listed only for the metabolites which were significantly correlated with age. As Age is centered around 30 years in the equation, the intercept (β_0) represents the predicted T_2 value for each metabolite at Age = 30 years. The slope (β_1) represents the change in the predicted value of T_2 for each 1-year increase in age beyond 30. This model can be used in future work to predict a T_2 value for a given age for these metabolites.

- ^a Tissue water includes only the n = 51 Johns Hopkins subjects.
- 320 Older age was significantly correlated with greater cortical atrophy (calculated as fGM /
- 321 (fWM + fGM)) in the PCC ($r_s = -0.25$; p = 0.010) but not the CSO ($r_s = -0.04$; p = 0.680). As a

T2 CHANGES WITH AGE

14

322	follow-up to the linear models presented in Table 4, we reran each model controlling for cortical
323	atrophy with aging: $T_2 = \beta_0 + \beta_1^*(Age-30) + \beta_2^*Tissue$ (see Supplementary Table B1). Including
324	this metric of cortical atrophy in the model did not change the statistical significance of any T_2
325	relationships with age, with the exception of $tCr_{3.9}$ in the PCC (for which the age-T2 relationship
326	became non-significant, $p = 0.094$). Independent of the associations between age and T ₂ ,
327	greater cortical atrophy was significantly associated with longer metabolite T_2 values for tNAA,
328	$tCr_{3.0}$, and $tCr_{3.9}$ (CSO only), as well as mI and tissue water (CSO and PCC).

329 3.2 T₂ Differences by Voxel

330 Paired t-tests revealed differences in T₂ values by voxel for all metabolites (as shown in Figure 4). T₂ values were higher in the CSO than in the PCC for tNAA, tCr_{3.0}, tCr_{3.9}, Glx, and 331 332 tissue water, and lower in the CSO for tCho and ml.

333 334 Figure 4. Metabolite T₂ Differences by Voxel. T₂ differences by voxel are shown for the CSO (blue) and 335 PCC (orange). Each point represents one participant. The asterisks indicate the statistical significance of 336 the FDR-corrected *p*-value for the paired t-test, **p*<0.05, ***p*<0.01, ****p*<0.001.

337

338 As a follow-up analysis, we computed one linear mixed effects model per metabolite (across

- 339 both the CSO and PCC) to test whether the age slope differed by brain region for any
- 340 metabolites or tissue water. The Age*Voxel interaction was significant only for tissue water

T2 CHANGES WITH AGE

15

(p=0.007), indicating that, in all but one case, the relationship of age with T₂ did not differ based on brain region (Supplementary Table B2). However, for tissue water, the relationship of age with T₂ was stronger for the PCC than the CSO.

344

345 4. Discussion

346 Here we present the largest analysis to date examining metabolite and tissue water T_2 347 changes across the healthy adult lifespan. Among 101 adults ages 18-75 and across two sites, 348 metabolite and tissue water T₂ values in both the CSO and PCC were generally significantly 349 shortened with age, even when controlling for age-related cortical atrophy. Moreover, T₂ values 350 were longer in the CSO, with the exception of tCho and mI which exhibited longer T_2 in the 351 PCC. Taken together, these results align with the majority of prior work which also reported T_2 352 declines with normal aging (but in much smaller cohorts). Moreover, the finding of T₂ differences 353 based on age and brain region highlights the importance of measuring subject-level T₂ during 354 data acquisition or employing estimation methods (such as the statistical models provided here) 355 for calculating age- and region-appropriate T_2 values.

356 Older age was correlated with shorter metabolite T₂ values for tNAA, tCr_{3.0}, tCr_{3.9}, tCho, 357 Glx, and tissue water in both the CSO and PCC. This aligns with most prior research in smaller 358 samples which similarly found shorter tNAA, tCr, tCho, and tissue water T_2 s with older age⁴⁻⁷. 359 As also seen in these prior studies, we identified the strongest age association for tNAA. Most 360 prior reports did not examine GIx. Deelchand and colleagues (2020) reported reduced mI T_2 in 361 CSO and PCC in older age, whereas we did not find an association between mI T_2 and age. 362 However, it should be noted that Deelchand and colleagues⁴ compared two age groups (rather 363 than treating age as a continuous variable), and their older cohort (ages 70-83 years) extended 364 beyond our upper age range.

365 The specific mechanisms underlying these observed T_2 changes with aging remain 366 unclear. With the exception of tCr_{3.9} in the PCC, each of the identified T_2 associations with age

T2 CHANGES WITH AGE

16

367 remained statistically significant when controlling for cortical atrophy, suggesting that age-368 related atrophy is not a major factor in these findings. Instead, as metabolites are largely intracellular (glial or neuronal)²⁸, their T₂ relaxation times are likely influenced by changes in the 369 370 cellular microenvironment⁴, i.e. cellular morphology, metabolism, or myelination^{4,7}. It is well 371 established that neurons undergo morphological changes during aging—such as reduction in soma size and loss or regression of dendrites and dendritic spines²⁹— alongside a parallel 372 373 metabolic shift in astrocytes associated with increased neuroinflammatory response and changes in oxidative metabolism^{30,31}. Furthermore, degeneration of myelin sheath³² and loss of 374 375 axonal fiber³² with advancing age, accompanied by debris (e.g., protein aggregates) and degraded myelin accumulation^{33,34} reported in white matter and further supported by *in vivo* 376 diffusion tensor imaging^{35,36}. 377

378 The observed T_2 changes could also be influenced by the gradual deposition of iron, 379 particularly Fe³⁺, in the brain with aging. Although iron is present in the brain in multiple forms, 380 the intracellular non-heme iron (i.e., ferritin) in tissue is thought to cause dephasing of the proton spins and thus a faster T₂ decay³⁷. Several studies observed a strong linear correlation between 381 382 iron concentrations and transverse relaxation (R₂)³⁸ values both in vivo and in post-mortem healthy and Alzheimer's disease brain tissue³⁷, suggesting that faster T₂ relaxation is related to 383 age-related iron deposition³⁹. Whilst the precise contribution of each of these mechanisms is 384 385 unclear, the observed age relationships suggest that T_2 measurements are sensitive to various 386 parallel changes in the cellular environment⁷.

In this dataset, T_2 relaxation times were predominantly longer for tNAA, tCr_{3.0}, tCr_{3.9}, Glx, and tissue water in the WM-rich CSO, whereas tCho and mI exhibited longer T_2 in the GM-rich PCC. There is relatively limited literature considering GM/WM differences in metabolite T_2 , and this prior work differs in voxel location, cohort, acquisition and quantification methodology, and statistical approach. Of the seven references we identified^{6,40-45}, five reported longer T_2 for NAA in WM as we did^{6,40-42,45}, while one revealed no significant tissue effect⁴³ and one showed the

T2 CHANGES WITH AGE

17

reverse effect⁴⁴. For tCr_{3.0}, three references found our result of longer T_2 in WM^{6,41,42}, three 393 showed no difference^{40,43,45}, and the same study showed the reverse effect⁴⁴. Only a few studies 394 395 have measured T_{2s} of tCr_{3.9} or Glx. For tCr_{3.9}, one paper showed longer T_{2s} in WM⁴⁵ (as we 396 found) and one no difference⁴²; for Glx, one study that separated Glx as Glu and Gln with J-397 PRESS found no differences by tissue type in the major component, Glu⁴². For tCho, four 398 studies found no difference^{40,41,43,45}, two found longer T_2 in GM^{42,44} (as we did), and one longer 399 T_2 in WM⁶. T_2 of mI remains less investigated, but the two studies that measured mI T_2 also found longer T₂ in GM^{42,44}. For tissue water, GM is generally found to have longer T₂ values than 400 401 WM in multi-echo MRI experiments^{46–48}, although the extent to which CSF confounds this result 402 depends on resolution. Regional T₂ differences may relate to greater micro- and macrostructural organization in myelinated WM compared to GM⁴⁹; however, further work is needed to 403 404 fully understand the mechanisms that govern metabolite T_2 relaxation. 405 We recently performed a meta-regression analysis of 75 manuscripts⁵⁰ containing 629 406 unique values to derive a general predictive T_2 model, with linear factors for: metabolite, field 407 strength, species, tissue, pulse sequence, and Carr-Purcell Meiboom-Gill filter. The average 408 bias between the (30-year-old intercept) values reported in the present study and the model 409 predicted values was +9 ms (i.e., on average the model predicts shorter T₂s than measured

410 here). The average absolute difference was 23 ms which is smaller than the average absolute 411 difference between the predicted model and the T_2 training dataset (42 ms). On this basis, we 412 assert that our results are consistent with the diverse T_2 literature.

2D modeling of interrelated MRS data has recently gained interest in the MRS
community^{51–53}. Most notably, it was found that 2D modeling of synthetic multi-TE MRS data
with overlapping peaks led to improved precision due to improved model parsimony achieved
through reparametrization⁵¹. Applying 2D modeling to our *in vivo* datasets may improve the T₂
estimation of the metabolites reported here and could potentially allow for the T₂ estimation of
additional low-SNR metabolites. However, it will also require careful reparameterization of the T₂

T2 CHANGES WITH AGE

18

relaxation constants, lineshape estimates, and baseline terms, which will be part of futurestudies.

421 There are several limitations to this work. First, we acknowledge that our T_2 422 measurement here is a complex mix of pure T_2 and some inhomogeneous broadening factors 423 that are not fully refocused by the two PRESS spin echoes. The goal of the present work was to 424 improve the accuracy of T₂ relaxation correction in quantification procedures by understanding 425 age effects on our measure of T_2 (rather than to accurately measure pure T_2). Second, future 426 work could expand upon the age range to include those younger than 18 and older than 70 427 years, as well as targeting both normal and pathological aging (e.g., Alzheimer's and other 428 neurodegenerative diseases). Given the potential of T_2 to reflect both micro- and 429 macrostructural organization, the measure may show utility as an early indicator of these 430 changes, as suggested by Kirov and Tal⁵⁴. Though this was a large cohort with systematic 431 recruitment across the adult lifespan, we only enrolled a few individuals older than age 70 years 432 (the timeframe at which aging effects drastically accelerate). Lastly, we were limited to collecting 433 only two voxels (WM-rich CSO and GM-rich PCC); however, prior evidence suggests that 434 neurochemical changes with aging are highly region-dependent⁵⁵, and therefore future work 435 might consider probing T_2 changes in other brain regions, or across the entire brain.

436

437 **5. Conclusions**

Consistent with prior literature, in a large multi-site cohort sampled systematically across the adult lifespan, we identified a clear age-related decrease in T₂ for multiple metabolites and tissue water, as well as differences in T₂ between the WM-rich CSO and GM-rich PCC. Together, these findings highlight potential changes in the brain's cellular microenvironment with normal aging and underscore the critical importance of considering metabolite T₂ differences across the adult lifespan in MRS quantification procedures. We suggest that future MRS work

T2 CHANGES WITH AGE

- 444 leverage the models presented here to estimate age- and region-specific T₂ values instead of
- 445 relying on uniform default values.

T2 CHANGES WITH AGE

446 **Competing Interests**

- 447 All authors declare that they have no competing interests.
- 448

449 Author Contributions

- 450 KH processed all data, conducted all statistical analyses, prepared all figures and supplemental
- 451 material, and prepared the manuscript. SM contributed to protocol development, manuscript
- 452 writing and led all revisions of the manuscript. HZ contributed to MRS data processing, and
- 453 developed Osprey code for the analysis. YS and EC made significant contributions to data
- 454 collection. CDJ generated the spectra figure and contributed to interpretation of results. AG, DS,
- and GS contributed to interpretation of results and drafted parts of the Discussion. VY reviewed
- 456 all structural scans to assess data quality and check for incidental findings. SH set up the scan
- 457 protocol and oversaw data quality control. GO, EP, and RAE designed the project and led
- 458 interpretation of the results. All authors participated in revision of the manuscript.
- 459

460 Funding

461 This work was supported by grants from the National Institute on Aging (K00 AG068440 to KH,

462 R00 AG062230 to GO, and K99 AG080084 to HZ) and grants from the National Institute of

463 Biomedical Imaging and Bioengineering (R21 EB033516 to GO, R01 EB023963 to RE, R01

464 EB016089 to RE, and P41 EB031771).

465

466 Acknowledgements

The authors also wish to thank all of the participants who volunteered their time, as well as
support staff at both MRI centers, without whom this project would not have been possible.

T2 CHANGES WITH AGE

469 References470

- Choi IY, Andronesi OC, Barker P, et al. Spectral editing in 1H magnetic resonance
 spectroscopy: Experts' consensus recommendations. *NMR Biomed*. 2021;34(5):e4411.
- Near J, Harris AD, Juchem C, et al. Preprocessing, analysis and quantification in single voxel magnetic resonance spectroscopy: experts' consensus recommendations. *NMR Biomed.* 2021;34(5). doi:10.1002/nbm.4257
- Wilson M, Andronesi O, Barker PB, et al. Methodological consensus on clinical proton MRS
 of the brain: Review and recommendations. *Magn Reson Med*. 2019;82(2):527-550.
- Deelchand DK, McCarten JR, Hemmy LS, Auerbach EJ, Eberly LE, Marjańska M. Changes
 in the intracellular microenvironment in the aging human brain. *Neurobiol Aging*.
 2020;95:168-175.
- Jiru F, Skoch A, Wagnerova D, et al. The age dependence of T₂ relaxation times of Nacetyl aspartate, creatine and choline in the human brain at 3 and 4T. *NMR Biomed*.
 2016;29(3):284-292. doi:10.1002/nbm.3456
- 484
 6. Kirov II, Fleysher L, Fleysher R, Patil V, Liu S, Gonen O. Age dependence of regional proton metabolites *T*₂ relaxation times in the human brain at 3 T. *Magn Reson Med*.
 486
 486
 2008;60(4):790-795. doi:10.1002/mrm.21715
- 487 7. Marjańska M, Emir UE, Deelchand DK, Terpstra M. Faster metabolite 1H transverse
 488 relaxation in the elder human brain. *PloS One*. 2013;8(10):e77572.
- Brooks JCW, Roberts N, Kemp GJ, Gosney MA, Lye M, Whitehouse GH. A Proton Magnetic
 Resonance Spectroscopy Study of Age-related Changes in Frontal Lobe Metabolite
 Concentrations. *Cereb Cortex*. 2001;11(7):598-605. doi:10.1093/cercor/11.7.598
- 492 9. Christiansen P, Toft P, Larsson HBW, Stubgaard M, Henriksen O. The concentration of N493 acetyl aspartate, creatine + phosphocreatine, and choline in different parts of the brain in
 494 adulthood and senium. *Magn Reson Imaging*. 1993;11(6):799-806. doi:10.1016/0730495 725X(93)90197-L
- 496 10. Kreis R, Slotboom J, Hofmann L, Boesch C. Integrated data acquisition and processing to
 497 determine metabolite contents, relaxation times, and macromolecule baseline in single
 498 examinations of individual subjects. *Magn Reson Med.* 2005;54(4):761-768.
 499 doi:10.1002/mrm.20673
- 11. Nasreddine ZS, Phillips NA, Bédirian V, et al. The Montreal Cognitive Assessment, MoCA:
 A Brief Screening Tool For Mild Cognitive Impairment. J Am Geriatr Soc. 2005;53(4):695 699. doi:10.1111/j.1532-5415.2005.53221.x
- 503 12. Carson N, Leach L, Murphy KJ. A re-examination of Montreal Cognitive Assessment
 504 (MoCA) cutoff scores. *Int J Geriatr Psychiatry*. 2018;33(2):379-388. doi:10.1002/gps.4756
- 13. Ng KP, Chiew HJ, Lim L, Rosa-Neto P, Kandiah N, Gauthier S. The influence of language
 and culture on cognitive assessment tools in the diagnosis of early cognitive impairment and

T2 CHANGES WITH AGE

- 507 dementia. *Expert Rev Neurother*. 2018;18(11):859-869.
 508 doi:10.1080/14737175.2018.1532792
- 509 14. Gong T, Hui SCN, Zöllner HJ, et al. Neurometabolic timecourse of healthy aging.
 510 *NeuroImage*. 2022;264:119740. doi:10.1016/j.neuroimage.2022.119740
- 511 15. Oeltzschner G, Zöllner HJ, Hui SC, et al. Osprey: Open-source processing, reconstruction &
 512 estimation of magnetic resonance spectroscopy data. *J Neurosci Methods*.
 513 2020;343:108827.
- 514 16. Barkhuijsen H, De Beer R, Van Ormondt D. Improved algorithm for noniterative time-domain
 515 model fitting to exponentially damped magnetic resonance signals. *J Magn Reson 1969*.
 516 1987;73(3):553-557.
- 517 17. Zöllner HJ, Považan M, Hui SC, Tapper S, Edden RA, Oeltzschner G. Comparison of
 518 different linear-combination modeling algorithms for short-TE proton spectra. *NMR Biomed*.
 519 2021;34(4):e4482.
- Hui SCN, Saleh MG, Zöllner HJ, et al. MRSCLOUD : A cloud-based MRS tool for basis set
 simulation. *Magn Reson Med*. 2022;88(5):1994-2004. doi:10.1002/mrm.29370
- 522 19. Simpson R, Devenyi GA, Jezzard P, Hennessy TJ, Near J. Advanced processing and
 523 simulation of MRS data using the FID appliance (FID-A)—An open source, MATLAB 524 based toolkit. *Magn Reson Med.* 2017;77(1):23-33. doi:10.1002/mrm.26091
- 525 20. Ashburner J, Barnes G, Chen CC, et al. SPM12 manual. *Wellcome Trust Cent* 526 *Neuroimaging Lond UK*. 2014;2464:4.
- 527 21. Piechnik SK, Evans J, Bary LH, Wise RG, Jezzard P. Functional changes in CSF volume
 528 estimated using measurement of water T₂ relaxation. *Magn Reson Med.* 2009;61(3):579529 586. doi:10.1002/mrm.21897
- 530 22. Daoust A, Dodd S, Nair G, et al. Transverse relaxation of cerebrospinal fluid depends on
 531 glucose concentration. *Magn Reson Imaging*. 2017;44:72-81. doi:10.1016/j.mri.2017.08.001
- 532 23. Spijkerman JM, Petersen ET, Hendrikse J, Luijten P, Zwanenburg JJM. T 2 mapping of
 533 cerebrospinal fluid: 3 T versus 7 T. *Magn Reson Mater Phys Biol Med*. 2018;31(3):415-424.
 534 doi:10.1007/s10334-017-0659-3
- 535 24. R Core Team. *R: A Language and Environment for Statistical Computing.* R Foundation for
 536 Statistical Computing; 2021. https://www.R-project.org/
- 537 25. RStudio Team. *RStudio: Integrated Development Environment for R*. RStudio, PBC; 2021.
 538 http://www.rstudio.com/
- 539 26. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful
 540 Approach to Multiple Testing. *J R Stat Soc Ser B Methodol*. 1995;57(1):289-300.
 541 doi:10.1111/j.2517-6161.1995.tb02031.x
- 542 27. Murali-Manohar S, Gudmundson AT, Hupfeld KE, et al. *Metabolite T 1 Relaxation Times* 543 *Differ across the Adult Lifespan*. Neuroscience; 2023. doi:10.1101/2023.01.06.522927

T2 CHANGES WITH AGE

- 28. Ronen I, Valette J. Diffusion-Weighted Magnetic Resonance Spectroscopy. In: Harris RK,
 Wasylishen RL, eds. *eMagRes*. John Wiley & Sons, Ltd; 2015:733-750.
 doi:10.1002/9780470034590.emrstm1471
- 547 29. Dickstein DL, Kabaso D, Rocher AB, Luebke JI, Wearne SL, Hof PR. Changes in the
 548 structural complexity of the aged brain. *Aging Cell*. 2007;6(3):275-284. doi:10.1111/j.1474549 9726.2007.00289.x
- 30. Verkerke M, Hol EM, Middeldorp J. Physiological and Pathological Ageing of Astrocytes in
 the Human Brain. *Neurochem Res.* 2021;46(10):2662-2675. doi:10.1007/s11064-02103256-7
- Jiang T, Cadenas E. Astrocytic metabolic and inflammatory changes as a function of age.
 Aging Cell. 2014;13(6):1059-1067. doi:10.1111/acel.12268
- 32. Peters A. The effects of normal aging on myelin and nerve fibers: A review. *J Neurocytol.* 2002;31(8/9):581-593. doi:10.1023/A:1025731309829
- 33. Safaiyan S, Kannaiyan N, Snaidero N, et al. Age-related myelin degradation burdens the
 clearance function of microglia during aging. *Nat Neurosci*. 2016;19(8):995-998.
 doi:10.1038/nn.4325
- 560 34. Knopman DS, Parisi JE, Salviati A, et al. Neuropathology of Cognitively Normal Elderly. J
 561 Neuropathol Exp Neurol. 2003;62(11):1087-1095. doi:10.1093/jnen/62.11.1087
- 562 35. Chad JA, Pasternak O, Salat DH, Chen JJ. Re-examining age-related differences in white
 563 matter microstructure with free-water corrected diffusion tensor imaging. *Neurobiol Aging*.
 564 2018;71:161-170. doi:10.1016/j.neurobiolaging.2018.07.018
- 36. Hupfeld KE, Geraghty JM, McGregor HR, Hass CJ, Pasternak O, Seidler RD. Differential
 Relationships Between Brain Structure and Dual Task Walking in Young and Older Adults.
 Front Aging Neurosci. 2022;14:809281. doi:10.3389/fnagi.2022.809281
- 37. House MJ, St. Pierre TG, Kowdley KV, et al. Correlation of proton transverse relaxation
 rates (*R*₂) with iron concentrations in postmortem brain tissue from alzheimer's disease
 patients. *Magn Reson Med*. 2007;57(1):172-180. doi:10.1002/mrm.21118
- 38. Mitsumori F, Watanabe H, Takaya N. Estimation of brain iron concentration in vivo using a
 linear relationship between regional iron and apparent transverse relaxation rate of the
 tissue water at 4.7T. *Magn Reson Med*. 2009;62(5):1326-1330. doi:10.1002/mrm.22097
- Schenker C, Meier D, Wichmann W, Boesiger P, Valavanis A. Age distribution and iron
 dependency of the T2 relaxation time in the globus pallidus and putamen. *Neuroradiology*.
 1993;35(2):119-124. doi:10.1007/BF00593967
- 40. Tsai S, Posse S, Lin Y, et al. Fast mapping of the *T*₂ relaxation time of cerebral metabolites
 using proton echo-planar spectroscopic imaging (PEPSI). *Magn Reson Med*.
 2007;57(5):859-865. doi:10.1002/mrm.21225
- 580 41. Träber F, Block W, Lamerichs R, Gieseke J, Schild HH. ¹ H metabolite relaxation times at
 581 3.0 tesla: Measurements of T1 and T2 values in normal brain and determination of regional

T2 CHANGES WITH AGE

- differences in transverse relaxation. *J Magn Reson Imaging*. 2004;19(5):537-545.
 doi:10.1002/jmri.20053
- 42. Wyss PO, Bianchini C, Scheidegger M, et al. In vivo estimation of transverse relaxation time
 constant (T₂) of 17 human brain metabolites at 3T: T₂ of 17 Human Brain Metabolites at
 3T. Magn Reson Med. 2018;80(2):452-461. doi:10.1002/mrm.27067
- 43. Hetherington HP, Mason GF, Pan JW, et al. Evaluation of cerebral gray and white matter
 metabolite differences by spectroscopic imaging at 4.1T. *Magn Reson Med.* 1994;32(5):565571. doi:10.1002/mrm.1910320504
- 44. An L, Li S, Shen J. Simultaneous determination of metabolite concentrations, *T*₁ and *T*₂
 relaxation times. *Magn Reson Med.* 2017;78(6):2072-2081. doi:10.1002/mrm.26612
- 45. Mlynárik V, Gruber S, Moser E. Proton T₁ and T₂ relaxation times of human brain
 metabolites at 3 Tesla: METABOLITE T₁ AND T₂ IN HUMAN BRAIN AT 3 T. *NMR Biomed*.
 2001;14(5):325-331. doi:10.1002/nbm.713
- 46. Deoni SCL, Peters TM, Rutt BK. High-resolution T₁ and T₂ mapping of the brain in a
 clinically acceptable time with DESPOT1 and DESPOT2. *Magn Reson Med.*2005;53(1):237-241. doi:10.1002/mrm.20314
- 598 47. Schmitt P, Griswold MA, Jakob PM, et al. Inversion recovery TrueFISP: Quantification of *T*₁
 599 , *T*₂, and spin density. *Magn Reson Med*. 2004;51(4):661-667. doi:10.1002/mrm.20058
- 48. Fujita S, Hagiwara A, Hori M, et al. Three-dimensional high-resolution simultaneous
 quantitative mapping of the whole brain with 3D-QALAS: An accuracy and repeatability
 study. *Magn Reson Imaging*. 2019;63:235-243. doi:10.1016/j.mri.2019.08.031
- Knight MJ, McCann B, Tsivos D, Couthard E, Kauppinen RA. Quantitative T1 and T2 MRI
 signal characteristics in the human brain: different patterns of MR contrasts in normal *Magn Reson Mater Phys Biol Med.* 2016;29(6):833-842. doi:10.1007/s10334-0160573-0
- 50. Gudmundson AT, Koo A, Virovka A, et al. Meta-analysis and open-source database for in
 vivo brain Magnetic Resonance spectroscopy in health and disease. *Anal Biochem*.
 2023;676:115227. doi:10.1016/j.ab.2023.115227
- 51. Tal A. The future is 2D : SPECTRAL-TEMPORAL fitting of dynamic MRS data provides
 exponential gains in precision over conventional approaches. *Magn Reson Med*.
 2023;89(2):499-507. doi:10.1002/mrm.29456
- 52. Zöllner HJ, Davies-Jenkins C, Simicic D, Tal A, Sulam J, Oeltzschner G. Simultaneous
 multi-transient linear-combination modeling of MRS data improves uncertainty estimation.
 Published online November 4, 2023. doi:10.1101/2023.11.01.565164
- 53. Clarke WT, Ligneul C, Cottaar M, Ip IB, Jbabdi S. Universal dynamic fitting of magnetic
 resonance spectroscopy. *Magn Reson Med*. 2024;91(6):2229-2246.
 doi:10.1002/mrm.30001

T2 CHANGES WITH AGE

- 54. Kirov II, Tal A. Potential clinical impact of multiparametric quantitative MR spectroscopy in neurological disorders: A review and analysis. *Magn Reson Med.* 2020;83(1):22-44.
 doi:10.1002/mrm.27912
- 55. Eylers VV, Maudsley AA, Bronzlik P, Dellani PR, Lanfermann H, Ding XQ. Detection of
 Normal Aging Effects on Human Brain Metabolite Concentrations and Microstructure with
 Whole-Brain MR Spectroscopic Imaging and Quantitative MR Imaging. *Am J Neuroradiol.*2016;37(3):447-454. doi:10.3174/ajnr.A4557