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Abstract 25 

Cancers evolve in a dynamic ecosystem. Thus, characterizing cancer’s ecological dynamics is crucial to 26 

understanding cancer evolution and can lead to discovering novel biomarkers to predict disease 27 

progression. Ductal carcinoma in situ (DCIS) is an early-stage breast cancer characterized by abnormal 28 

epithelial cell growth confined within the milk ducts. In this study, we show that ecological habitat 29 

analysis of hypoxia and acidosis biomarkers can significantly improve prediction of DCIS upstaging. 30 

First, we developed a novel eco-evolutionary designed approach to define habitats in the tumor intra-31 

ductal microenvironment based on oxygen diffusion distance. Then, we identified cancer cells with 32 

metabolic phenotypes attributed to their habitat conditions, such as the expression of CA9 indicating 33 

hypoxia responding phenotype, and LAMP2b indicating the acid adaptation. Traditionally these markers 34 

have shown limited predictive capabilities for DCIS upstaging, if any. However, when analyzed from an 35 

ecological perspective, their power to differentiate between pure DCIS and upstaged DCIS increased 36 

significantly. Second, using eco-evolutionary guided computational and digital pathology techniques, we 37 

discovered distinct niches with spatial patterns of these biomarkers and used the distribution of such 38 

niches to predict patient upstaging. The niches patterns were characterized by pattern analysis of both 39 

cellular and spatial features. With a 5-fold validation on the biopsy cohort, we trained a random forest 40 

classifier to achieve the area under curve (AUC) of 0.74. Our results affirm the importance of using eco-41 

evolutionary-designed approaches in biomarkers discovery studies in the era of digital pathology by 42 

demonstrating the role of tumor ecological habitats and niches. 43 

Keywords: 44 

Tumor ecology and evolution, DCIS, Eco-evolutionary biomarkers, Metabolic phenotypes, Habitat 45 

analysis, Niche analysis, Pathomics, Machine learning, Digital pathology 46 
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Introduction: 47 

In recent years, the understanding that cancer is a dynamic ecological and evolutionary process has 48 

become deeply entrenched (1,2,3). To date, several evolutionary approaches have been adapted and 49 

applied in cancer biology, such as diversity measures to predict disease progression; however, tumor 50 

ecosystem and ecological habitat and niche studies are still overlooked (3,4). Within the human body and 51 

much like organisms in the natural world, cancer cells follow evolutionary principles, utilizing resources 52 

and establishing habitats and niches within tissues (5,6). This ecological perspective of cancer is crucial 53 

for discovering the natural selection driving cancer evolution. Recognizing the parallels between 54 

organismal ecology and the tumor microenvironment opens up untapped opportunities to incorporate 55 

ecological measures, improving our understanding of both tumor dynamics and selective pressures 56 

shaping tumors’ evolutionary landscapes. Such insights may potentially lead to improved cancer 57 

prognosis, progression prediction, risk stratification, and therapeutic strategies. If tumor evolutionary 58 

state and/or its evolutionary trajectories could be reliably achieved using a single biopsy tissue, clinical 59 

translation would be comparatively more manageable. Nevertheless, studies have yet to determine 60 

whether measures of tumor evolvability derived from a single biopsy sample are adequate, or if the 61 

inclusion of multiple samples significantly enhances predictions of clinical outcomes (7). 62 

Breast cancer incidence in the US has been increasing over the past decade at a rate of 0.5% per year(8). 63 

With increased mammographic screening, there has been a substantial increase in detecting the early non-64 

invasive forms of breast cancer, such as ductal carcinoma in situ (DCIS)(2,9). About one-third of breast 65 

cancers detected by mammography are DCIS (10). As the most common pre-cancer state, DCIS can 66 

progress to  invasive disease in a linear evolution pattern, or can be part of other clonal evolutionary 67 

dynamics such as branching, punctuated, or neutral evolution (2,9,11). Since DCIS and IDC (invasive 68 

ductal carcinoma) are indistinguishable by (epi-)genetic mutations, gene expression, or protein 69 

biomarkers, and because it is not possible to predict whether DCIS will remain indolent or progress  to 70 

more aggressive disease, almost all early tumors are treated with aggressive interventions(2,12–14). To 71 

avoid such over treatment, more research is needed to fully understand evolution from pre-cancer to 72 

indolent DCIS or progress to IDC(9). 73 

DCIS is a heterogeneous group of neoplastic lesions confined to the mammary ducts. The confinement 74 

of proliferating neoplastic cells inside the duct and growth of pre-cancer cells toward the center of the 75 

duct, which is far from vasculature, causes limitations in oxygen and nutrients. This intraductal oxygen 76 

microenvironment is also influenced by complex ecosystems surrounding the duct, such as vascular 77 

activity(15), stiffness of extracellular matrix (ECM) (16), and metabolites (6,17,18,19) (Figure 1A) . 78 

Local microinvasion is the main difference between DCIS and IDC and might also be the first 79 

evolutionary step of progressing in the case of linear evolution(11). Microinvasion consists of cohorts of 80 

cancer cells that breach the basement membrane into the surrounding ECM. Recently, genomic analysis 81 

of matched DCIS and IDC samples has revealed that in 75% of cases, the invasive recurrence was found 82 

to be clonally related to the initial DCIS. This implies that tumor cells derived from DCIS could evolve 83 

in a linear or branching fashion with 18% new transformations and/or clonogenesis (11).  These new 84 

findings emphasize the extraordinary heterogeneity in genotype and phenotypic plasticity in breast cancer 85 

that must be studied in the light of evolution and ecological studies. Thus, we designed our study to 86 

capture the phenotypic heterogeneity of cancer cells in their selective microenvironments. We 87 

hypothesize that non-genetic ecological factors, such as intra-ductal microenvironmental conditions, may 88 
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be responsible for transitioning from a DCIS to IDC phenotype, in the case of linear and branching 89 

evolution, or may select clones with pre-existing IDC phenotypes in the case of the other evolutionary 90 

trajectories, including punctuated and neutral evolution(6,11,18,20).  91 

To validate this hypothesis, we propose a novel method to study DCIS evolution, by capturing and 92 

characterizing “tumor habitats” and “cell niches” and their interactions in the tumor ecosystem. Natural 93 

selection requires phenotypic diversity within a population undergoing microenvironmental selection 94 

forces (21). Cells that adapt in response to natural selection may present similar phenotypes, 95 

corresponding to the microenvironment exerting the selection.  We started by defining the habitats based 96 

on availability of oxygen into: a) oxygenated habitat and b) hypoxic habitat. Following previous 97 

theory(18,22), these habitats are defined by distance from the duct boundary. However, a uniform 98 

distance threshold hardly captures the true oxidate/hypoxic states of cells. Therefore, we further proposed 99 

to fine-tune these habitats using protein expression indicative of phenotypes resulting from cancer cell 100 

adaptation to variation in oxygen availability. Therefore, we defined intraductal DCIS niches inside 101 

habitats as clusters of cells with similar phenotypic behavior responding to hypoxia. Through analysis 102 

via these niches, we can identify more aggressive phenotypes leading to microinvasion and DCIS 103 

upstaging to IDC or possible direct evolution to IDC without going through DCIS sub-stages.  104 

Our biomarkers are designed based on prior biological knowledge. Oxygen availability determines the 105 

source of energy production as of either mitochondrial respiration or glycolysis. Hypoxic cells switch to 106 

glycolysis, causing lactic acid production that can lead to acidosis when lactic acid is not cleared from 107 

the tumor space. Peri-luminal cells will experience hypoxia if they are far (>0.125 - 0.160 mm) from a 108 

blood supply.  These cancer cells inhabit a microenvironment of hypoxia, acidosis, and severe nutrient 109 

deprivation (18,22). These environmental properties exert a strong selection pressure upon the cancer 110 

cells, which in turn feeds back to the microenvironment, creating a dynamically changing tumor 111 

ecosystem containing several habitats. We have shown that cancer cells within breast ducts subjected to 112 

chronic hypoxia and acidosis evolve mechanisms of adaptations to survive in this harsh 113 

microenvironment (17,18,20). We have also shown that cells adapted to hypoxic and/or acidic niches 114 

have developed specific metabolic vulnerabilities that can be targeted to push them back to a more 115 

physiologically normal state(17). Both these studies strengthen the acid-induced evolution model of 116 

breast cancer and our proposed evolutionary designed biomarkers including CA9 and LAMP2b in this 117 

research(6,17,20,23,24). Here we examined the role of these biomarkers within an eco-evolutionary 118 

concept as a predictor of DCIS upstaging for the first time. We used these markers as representative of 119 

the cancer cell metabolic states to define niches inside habitats that can select for more aggressive 120 

phenotypes, leading to microinvasion and DCIS upstaging to IDC or possible direct evolution to IDC 121 

without going through DCIS sub-stages.  122 

To perform our analysis, we curated a retrospective cohort of DCIS patients, with specimens collected 123 

from Biopsy (Bx) samples before surgery and after Excision (Ex).  All the patients had histologically 124 

confirmed DCIS on core biopsy, followed by diagnosis confirmed on surgical excision specimens with 125 

either DCIS or IDC (Figure 1B). Our niche-based prediction model is trained and tested on the Bx 126 

samples. These best fits future clinical applications that machine learning model can be subsequently 127 

applied to predict upstaging at Bx for future patients. We then stained 3 sequentially sectioned slides for 128 

hematoxylin and eosin (HE), CA9 and LAMP2b. We manually annotated ducts bigger than 400 μms in 129 

diameter. The 200 μms in radius annotation ensures each duct has both oxygenated and hypoxic habitats 130 

to build a balanced cohort for analysis. We developed a novel algorithm to detect intra-ductal DCIS cell 131 
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niches based on biomarker expression similarity. Then, we studied the spatial organization of CA9- and 132 

LAMP2b-positive cells as the eco-evolution markers of cancer cells in hypoxic and acidic habitats at 133 

three different scales: whole slide, duct, and oxygen habitats (normoxic and hypoxic). We also applied 134 

multiple spatial functions and spatial entropies were used to define niche and micro-niches describing 135 

the spatial patterns of the cell groups. After a systematic and comprehensive analysis, we observed that 136 

the spatial features at the finest habitat level possess the most predictive power where the micro-niches 137 

were defined by the expression of CA9 and LAMP2b in hypoxic habitats. By characterizing these niches 138 

and micro-niches with spatial and pathomics features, we then developed a risk scoring system by 139 

integrating principles of ecological-evolutionary dynamics with pathological imaging and molecular 140 

features of early-stage breast tumors (Figure 1C).  We show that quantitative analyses of immuno-141 

histological images combined with the tumor’s eco-evolution dynamics and underlying molecular 142 

pathophysiology can significantly improve predicting if the neoplasm has already evolved to invasive 143 

disease and cancer. We developed a machine learning model fine-tuning the tumor habitats into micro-144 

niches using specific molecular signatures of resident cancer cells to provide informed decision support.  145 

In summary, we show that specific habitats containing micro-niches of cells with similar phenotypes 146 

responding to hypoxia and acidosis, or adaptation to long term exposure of these conditions, are 147 

responsible for DCIS progression, and hence would be correlated to upstaging. To test this hypothesis, 148 

we applied machine learning techniques to calculate the niches inside the tumor to define spatial and 149 

temporal distribution of habitats in solid tumors of DCIS patients with pure DCIS and upstaged disease. 150 

By deploying eco-evolutionary principles and machine learning techniques, our work proposes a novel 151 

consilient approach - as opposed to the traditional single biomarker studies - to stratify DCIS patients  152 

Materials and Methods 153 

Method overview 154 

Our evolutionary analysis pipeline takes 3 consecutive slides of each patient sample, detects intra-ductal 155 

cell niches, characterizes these niches with their spatial and morphological features, and then predicts 156 

whether the patient will be pure DCIS or upstaged based on the distribution of these niches. In particular, 157 

the pipeline has 4 modules. First, we annotate and align ducts from different whole slide images (WSIs) 158 

of the same patient sample. This ensures cells of different slides are aligned and we can characterize their 159 

interactions. In the second module, we detect and map all eco-evo positive cells (i.e., cells activated with 160 

the selected stains) into the same duct and detect different clusters of cells as niches. In the third module, 161 

we characterize these niches with comprehensive spatial statistical features, as well as their 162 

morphological features as observed in HE. Finally, we categorize these niches into different subclasses 163 

through deep learning-based dimension reduction and clustering based on their features. We use the 164 

distribution of different niche subclasses to characterize different samples/patients. We demonstrate the 165 

discriminative power of this niche-based characterization in predicting whether a patient will be pure 166 

DCIS or upstaged in the future. Figure 1C illustrates the overview of our pipeline. 167 

Data preparation and usage 168 

The data used in this study is the biopsy samples collected after mammography and before surgery. 84 169 

samples including 68 pure DCIS and 16 progressed to IDC were analyzed. This study complied with the 170 

Health Insurance Portability and Accountability Act and was approved by the institutional review board, 171 

with a waiver of the requirement for informed consent. Women with a core biopsy diagnosis of DCIS 172 

between 2012 and 2022 who consented to at Moffitt Cancer Center Total Cancer Care protocol were 173 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 24, 2024. ; https://doi.org/10.1101/2024.06.23.600274doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.23.600274
http://creativecommons.org/licenses/by-nd/4.0/


 

5 

included in this analysis. Cases were excluded if surgical excision was performed more than 6 months 174 

after the core biopsy, if there was concurrent ipsilateral invasive breast cancer or metastatic malignancy, 175 

or if neoadjuvant chemotherapy (for a concurrent contralateral breast malignancy) or chemotherapy for 176 

a non-breast primary malignancy was administered between the dates of the DCIS core biopsy and 177 

surgery. Additional exclusions included a personal history of invasive breast cancer or DCIS within 12 178 

months preceding the core biopsy or a concurrent diagnosis of Paget disease in the ipsilateral breast. 179 

After applying these inclusion and exclusion criteria, 84 cases of biopsy-proven DCIS were identified, 180 

of which 16 were upgraded at surgery and 68 remained non-upgraded. 181 

Pure DCIS and upstaged patients were matched across clinical features, including age, race, ethnicity, 182 

grade, ER status, and PR status, to minimize their influence on the analysis (Figure S1). To validate the 183 

comparability of these groups, we conducted a Wilcoxon rank-sum test for the continuous variable (age) 184 

and chi-square tests for the categorical variables (race, ethnicity, grade, ER status, and PR status). None 185 

of these tests showed significant differences between the two groups, with all p-values larger than 0.1, 186 

indicating that the groups were well-matched. 187 

For each sample, we obtained 3 whole slide images, including 1 HE and 2 IHC slides. We conducted 5-188 

fold stratified cross validation, where 4 folds are used for niche clustering and for the training of the pure 189 

DCIS/upstaged classifier and 1-fold is used for validation. This fits the clinical application we are aiming 190 

for; we would like our model to estimate the risk based on biopsy samples, which are much less invasive 191 

and can be used for patient stratifications before surgery and hopefully decrease over treatment. Further 192 

details on HE and IHC acquisition are provided below. 193 

Sample selection, immunohistochemistry and HE staining. Patients' tumor blocks were selected by 194 

pathologists using the archived HE stained slides. The blocks were sequentially sectioned 4 μms and de-195 

identified for research use. 3 slides were stained with primary antibodies of 1:100 dilution of anti-LAMP2 196 

(#ab18529, Abcam), and 1 ug/ml concentration of anti-CA9 (#AF2188, R&D), and HE staining using 197 

standard hematoxylin and eosin protocol. Positive and negative controls were used. Normal placenta was 198 

used as a positive control for LAMP2b and clear cell renal cell carcinoma was used as a positive control 199 

for CA9. For the negative control, an adjacent section of the same tissue was stained without application 200 

of primary antibody and any stain pattern observed was considered as non-specific binding of the 201 

secondary. Primary immunohistochemical analysis was conducted using digitally scanning slides. The 202 

scoring method used by the pathologist reviewer to determine (a) the degree of positivity scored the 203 

positivity of each sample ranged from 0 to 3 and was derived from the product of staining intensity (0–204 

3+). A zero score was considered negative, score 1 was weak positive, score 2 was moderate positive, 205 

and score 3 was strong positive. (b) The percentage of positive tumors stained (on a scale of 0-3). Whole 206 

slide imaging (WSI) of IHC and HE slides were obtained by scanning at 20X magnification (of 0.5022 207 

micrometer per pixel) using Aperio AT2 from Leica Biosystems. Images were transferred to cloud 208 

storage and locally to be uploaded in QuPath software for analysis. QuPath software was used to detect 209 

the positive pixels for each IHC marker (CA9 and LAMP2b) and to segment the HE images into hypoxic 210 

and normoxic tumor habitats based on their distance from the basement membrane. The ‘Positive Cell 211 

Detection’ function from Qupath was used to automatically classify the positivity of CA9 and LAMP2b 212 

markers and validated by the study pathologist. 213 

MODULE 1: Duct annotation and alignment 214 

Manual annotation of ducts in the Bx cohort. We annotate and align ducts within all input slides (1 215 

HE + 2 IHCs per sample). After annotating ducts, we align the ducts from the three modalities via co-216 
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registration. This alignment enables us to map cells into the same spatial domain and analyze their 217 

interaction. Details are provided below. QuPath was used as the interface to annotate ducts by the 218 

pathologist (Dr. Bai) and the trained students and reviewed by D. Damaghi. We annotate ducts from 219 

WSIs of all three modalities. To ensure best characterization, we only identify ducts of >400 μms 220 

diameter, with visible myoepithelial layer and basement membrane. Following this, based on distance, 221 

each duct was annotated with four layers: adjacent stroma, oxidative/normoxia, hypoxic/hypoxia, and 222 

necrosis. Adjacent stroma was defined as the stroma up to 125 μms outside a given duct. Within the duct, 223 

necrosis was defined as any area containing dead cells, as identified by a lack of nuclei. Oxidative layer 224 

was defined as the area containing cells inside the duct within 125 μms of the basement membrane. 225 

Hypoxia was defined as the area containing cells inside the duct further than 125 μms from the basement 226 

membrane. The annotations were done for all 84 samples in the Bx cohort, and then were exported as 227 

standard GeoJSON files.  228 

Co-registration. To characterize the interactions of different modalities from single-plexed slides, an 229 

alignment strategy was utilized. We register both CA9 and LAMP2b IHC slides towards the HE slides. 230 

A direct co-registering at the whole slide level with manual landmarks does not give us satisfactory 231 

alignment at each duct, due to the variable deformations across slides. We further co-register the slides 232 

in a duct-by-duct fashion. Using initially registered whole slides, and spatial proximity, we identify the 233 

corresponding ducts at the HE and 2 IHC slides. Next, we register both the CA9 duct and LAMP2b duct 234 

into the corresponding HE ducts. We use Virtual Alignment of pathology Image Series (VALIS), which 235 

provides a fully automated pipeline to register whole slide images (WSI) using rigid and/or non-rigid 236 

transformations (34). For each sample, we chose non-rigid registration and registered the ducts from CA9 237 

and LAMP2b towards the reference HE ducts. The co-registration procedure and the qualitative results 238 

are shown in Figure S4 and S5. The co-registration provides a mapping of any cells detected in CA9 or 239 

LAMP2b towards a shared spatial domain, enabling the analysis of their interactions.  240 

MODULE 2: Cell and niche detection  241 

Cell detection. With the duct annotations in place, we automatically detect cells from the 2 IHCs and 242 

determine if they are positive in CA9 or LAMP2b based on their intensities. As we are only interested in 243 

intra-ductal cell niches, we only detect cells within each duct. For each IHC duct, we detect cells using 244 

Qupath watershed cell detection algorithm (25). Based on the intensity level, we categorize the cells into 245 

4 groups: ‘Negative’, ’1+’, ’2+’, and ’3+’. The detection of cells within a duct is done by starDist (25,35) 246 

extension in Qupath on HE slide.  247 

Graph construction for niche detection. After annotating all of the positive cells (i.e., CA9 or LAMP2b 248 

positive cells), they were mapped on HE slides, enabling us to detect niches on HE slides. Since there is 249 

a large amount of positive cells within each duct, with diverse spatial context and morphological features, 250 

we construct a graph with these cells by connecting cells whose distances are smaller than a certain 251 

threshold and detect connected components of the graph as representatives of cells living in “niches”. 252 

Multiple thresholds have been experimented and an optimum value is selected based on performance. 253 

Each positive cell niche is supposed to have a similar eco-evo phenotype and be spatially coherent. 254 

Therefore, we overlay both CA9 positive and LAMP2b positive cells into the same domain as an 255 

approximation of the local eco-evo cell distribution (Figure S6). This gives us the opportunity to measure 256 

their interaction via spatial statistical functions as defined later. Based on the same principle, we use cell 257 

morphological features extracted from HE within the region of each niche to characterize the niche. 258 
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MODULE 3: niche characterization and feature extraction 259 

Once niches are detected. We extracted both spatial and morphological features to characterize them. To 260 

describe the spatial interaction patterns, we utilized various spatial functions as features. We also extract 261 

cell features consisting of morphology features and texture features that are commonly adopted in HE 262 

image analysis.  263 

Cellular features. For cellular features we measured both morphological and texture features. The 264 

morphological features include area, eccentricities, circularity, elongation, extent, major axis length, 265 

minor axis length, solidity and curvature. The texture features include angular second moment (ASM) of 266 

co-occurrence matrix, contrast, correlation, entropy, homogeneity and intensity. All features were 267 

calculated following the implementations in the sc-MTOP(36) package.   268 

Although we do not have exact cell-to-cell correspondence between the cells within a niche and cells 269 

detected in HE, we still can aggregate morphological and texture features within the proxy of the cells 270 

part of a niche to characterize the niche. For each niche, we identify the concave hull region enclosing its 271 

eco-evo positive cells within a duct on HE slide. Next, we aggregate cell features across all HE-detected 272 

cells within the corresponding region. For each cell feature dimension, we calculated its mean, standard 273 

deviation, maximum, minimum, kurtosis and skewness. 274 

Spatial features. We extract various spatial statistical functions (37) to characterize residingcells and 275 

their interactions inside habitats to define niches. These functions are listed below: 276 

G Function: The G function, denoted as G(r), is the cumulative distribution function of nearest-neighbor 277 

distance. The G function provides insights into the clustering or dispersion behavior of the point pattern. 278 

𝐺(𝑟)  =  𝑃{𝑑(𝑢, 𝑋\𝑢)  ≤  𝑟| 𝑢 ∈  𝑋}, 𝑑(•) 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 279 

 280 

F Function: The F function, known as the empty space function, is the cumulative distribution 281 

function of the empty-space distance. The F function is commonly used to assess the regularity 282 

or inhibition patterns in point patterns. 283 

𝐹(𝑟)  =  𝑃{𝑑(𝑢, 𝑋)  ≤  𝑟}, 𝑑(•) 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 284 

 285 

K Function: Ripley's K function, denoted as K(r), is a measure of second-order intensity or spatial 286 

interaction. It assesses whether points tend to be more clustered or dispersed within a certain distance r 287 

compared to a CSR process. It considers both the distance and intensity of points to capture the clustering 288 

behavior of the point pattern. 289 

𝐾(𝑟)  =
|𝑊|

𝑛(𝑛 − 1)
∑ ∑ 𝟏{𝑑𝑖𝑗 ≤ 𝑟}𝑒𝑖𝑗(𝑟), 𝑒𝑖𝑗(•) 𝑖𝑠 𝑡ℎ𝑒 𝑒𝑑𝑔𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑤𝑒𝑖𝑔ℎ𝑡

𝑛

𝑗=1,𝑗≠𝑖

𝑛

𝑖=1

 290 

 291 

L Function: L function is a variance stabled version of K function. 292 

𝐿(𝑟)  =  
√𝐾(𝑟)

𝑟
 293 

We calculated G, F, and L functions in both univariate and multivariate fashions. For each of the 294 

functions, the distances between source cell and the target cells are considered. Univariate spatial 295 

functions sample source cells and target cells from the same type of cells while multivariate counterparts’ 296 

sample from different types of cells. Univariate G, F, and L are calculated for the single-marker cell 297 

subsets, and multivariate G_cross and L_cross for different subsets such as CA9-LAMP2b. ‘Gest’ 298 
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function and ‘Fest’ function from ‘spatstat’ R package were used with Kaplan-Meier estimator(38), and 299 

‘Lest’ function was used with isotropic correction(39,40).  300 

MODULE 4: Diagnostic risk estimation with pattern proportion 301 

In the last module, we train a classifier using these niches to predict whether a patient will be “upstaged” 302 

or “pure DCIS”. This establishes the diagnostic power of these niches. A direct aggregation of niche 303 

information within each sample/patient is not sufficient. Tumor microenvironment is heterogeneous, and 304 

niches demonstrate diverse spatial and morphological behavior. To account for the diversity, we will 305 

focus on how different niches are distributed across a sample. We show that the distributions of different 306 

niches essentially characterize the tumor ecology in a much more refined manner compared with previous 307 

distance-based definitions of hypoxia/oxidative layers.  308 

One technical challenge is that the niche features computed in the previous module are high dimensional 309 

and the niche features are diversely distributed. We propose to first find a simplified distributional 310 

description of the niches, and then use the simplified description for prediction. First, we cluster the 311 

niches into different sub-classes based on their features. The clustering is carried out using K-means 312 

clustering with a tunable parameter k. Once the niche sub-classes are determined. We use their 313 

distribution on each sample to predict its upstaged/pure DCIS status. The prediction power of the 314 

classifier sheds light on the diagnostic power of the niches and their spatial and cellular features. Five-315 

fold cross-validation was employed, with one fold designated as the test set in each run. This approach 316 

prevents\s data leakage and helps mitigate overfitting. 317 

To understand the contribution of each feature to the prediction model, we employed SHAP (SHapley 318 

Additive exPlanations) analysis. SHAP is a unified approach to interpreting machine learning models by 319 

assigning each feature an importance value for a particular prediction. In our study, SHAP values were 320 

computed for the features representing the proportions of different patterns within the niches. By 321 

calculating the SHAP values, we could determine the impact of each feature on the model’s output, 322 

thereby identifying the most influential patterns that contribute to predicting DCIS upstaging. This step 323 

is crucial for ensuring the transparency and interpretability of the machine learning model. 324 

Furthermore, we select features that are highly relevant to the sub-classes using different approaches 325 

including covariance, mutual information scoring and maximum relevance minimum redundancy 326 

(mRMR)(41) and choose the features identified by both approaches. Figure 4C shows the gradient map 327 

of each of these features on niches in the latent space. 328 

Niche distribution for diagnosis. After assigning each duct to its sub-class, we aggregate across all 329 

niches of each sample and use its sub-class distribution to characterize this sample. Assuming k niche 330 

sub-classes, each sample has a k dimensional histogram to describe its niche sub-class distribution. We 331 

call this the niche distributional (Nbd-Dist) feature. We trained a classifier to predict whether a sample 332 

is pure DCIS or upstage. Repeating the iteration 10 times and comparing the mean area under curve 333 

(AUC) on the test set. The classifier types experimented include lightGBM, soft vector machine (SVM), 334 

logistic regression and random forest, and the random forest classifier yields the best performance. 335 

 336 

Data Availability 337 

The data generated in this study are available within the article and its supplementary data files. All the 338 

staining and annotations are also deposited in the physical sciences in oncology network (PSON). 339 
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Results: 340 

Sample curation and cohort building 341 

We built a retrospective cohort from 84 patients with histologically confirmed DCIS on core biopsy, 342 

followed by surgical excision, with available FFPE blocks at both Bx and Ex from Moffitt Cancer Center 343 

Biobank. The cohort has two arms: the first one is pure DCIS including the patient diagnosed with DCIS 344 

at both Bx and Ex. The second arm includes the upstaged group with DCIS at Bx and IDC at Ex (Figure 345 

1B). HE stained slides of DCIS biopsy cores were retrieved from both the biobank core at the Moffitt 346 

Cancer Center tissue core and reviewed by a study pathologist (49). Then the selected blocks were pulled 347 

and sequentially cut for HE staining, CA9, and LAMP2b IHC staining. The HE and subsequent 2 IHC 348 

slides are digitally scanned using the Aperio XT® high-throughput slide scanner and housed on the web-349 

based Aperio server/Spectrum database package. Upstage status was pulled from the electronic medical 350 

record and confirmed by our study pathologist from the Ex tissues (Figure 1C). All images were then 351 

segmented and annotated using Qupath supervised by study pathologist (25,49). 352 

 353 

Annotation and eco-evolutionarily mapping of habitats at the individual duct level 354 

We have shown previously that peri-luminal cells that are far (>0.125 - 0.160 mm) from a blood supply 355 

inhabit a microenvironment of hypoxia and acidosis (18,20,26). Thus, we created two simple annotation 356 

zones on HE slides based on oxygen diffusion distance representing oxygen defined habitats: i) hypoxic 357 

zone or habitat that is above 125 μms from the duct boundary, basement membrane, and ii) normoxic 358 

habitat that is the outer regions adjacent to the basement membrane (Figure 2A). We used the basement  359 

membrane as our zero point of reference. We also annotated necrotic zones inside the hypoxic habitats 360 

that also represent the anoxic habitat falling perfectly above 0.160 mm distance from basement 361 

membrane. Since adjacent stroma is also of interest to our group and others, we annotated adjacent stroma 362 

for each duct with binary scoring of 1 for having adjacent stroma or 0 for lacking it (Supplementary 363 

Table 1). To ensure a balanced representation of hypoxic and normoxic habitats, we excluded small ducts  364 

by establishing a duct size threshold of minimum 400 μms in diameter (or 200 μms radius) for manual 365 

annotation (Figure S2). After annotating all the ducts bigger than 200 μms of radius on HE slides, we 366 

expanded our annotations to other 2 consecutive IHC slides stained with CA9 and LAMP2b antibodies 367 

(Figure 2B). Subsequently, our pathologist, Dr. Bai, manually scored each duct for hypoxic and 368 

normoxic habitats based on CA9 and LAMP2b positivity using a scoring scale of 0–3 (Supplementary 369 

Table 1). Following this, positive cells in IHC slides were counted using Qupath (25), habitats were 370 

categorized into different classes based on the count of positive cells. The distribution of these habitat 371 

categories was compared between pure DCIS and upstaged groups (Figure 2C, 2D, and S3). Using the 372 

Wilcoxon test, it was shown that there existed significant differences between pure DCIS and Upstaged 373 

group when habitats considered at the duct level. The tests were carried out for both hypoxic and 374 

oxidative layers for both CA9 (Figure 2C and 2D), and for LAMP2b (Figure S3) as well as architecture, 375 

grade, lymphocytes, microcalcifications, and necrosis (Supplementary Table 1). As shown in Figure 376 

2D, CA9 scoring within hypoxic habitats provides a much clearer distinction between pure DCIS and 377 

upstaged groups compared to the normoxic zone. Interestingly, CA9 did not show significant differences 378 

between the groups when analyzed at the whole duct or whole-slide level, as is traditionally done (Figure 379 

S2B). However, focusing on hypoxic or oxidative habitats revealed that CA9-positive cells are distributed 380 

differently between the two patient groups. This analysis underscores the value of examining fine-scale 381 
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habitats within ducts. The improved performance of habitat-level scoring compared to whole-duct 382 

scoring highlights the necessity and significance of exploring the cellular composition and interactions 383 

within these microhabitats. 384 

 385 

Mapping Metabolic Niches Within Habitats to Enhance Spatial Machine Learning Models 386 

Previous analyses of hypoxic and normoxic habitats in breast cancer ducts were limited to scoring each 387 

biomarker individually, focusing solely on the count of positive cells within each habitat. To broaden the 388 

scope and incorporate interactions and relationships between these two eco-evolutionary marker-positive 389 

cells, a co-registration step was essential. This step enabled the creation of a virtual multiplex IHC 390 

(mIHC) by mapping cells onto a unified 2D reference space. HE slides were selected as the reference, 391 

and all IHC slides were registered onto this common framework. (Figure S4). Note that since our analysis 392 

is carried out duct-by-duct, it is not necessary to register the whole slide. Instead, for each duct, we 393 

register its IHC stainings to its HE staining. This ensures all the downstream analyses could be performed 394 

on the same HE slide coordinates system, providing consistency and precision in the spatial data 395 

integration. Then we used these mIHC images to define niches of cells that are positive for CA9, 396 

LAMP2b, or both. We hypothesized that niches within habitats characterized by both markers together 397 

would provide greater biological insight than analyzing each marker individually, given the established 398 

correlation between hypoxia and acid phenotypes. Then, we focus on the cell features such as nuclear 399 

morphology and texture and cell spatial features inside these niches to explore their predictive power on 400 

DCIS upstaging. As illustrated in Figure 3, we first map each positive cells to the reference HE slide 401 

using the co-registration described above. Then, by treating each positive cell as a node and connecting 402 

the cells within a distance threshold, we construct a cell-proximity graph out of mIHC positive cells 403 

whereby each connected component of this graph represents a continuous region or niche that is hypoxic, 404 

acidic, or both. The threshold is a tunable parameter that is optimized by the classifying power of the 405 

downstream analysis. And depending on the selection of the eco-evo markers, there can be CA9 positive 406 

niches, LAMP2b positive niches, or both CA9 and LAMP2b positive niches. We then developed a pattern 407 

differential analysis pipeline, which comprises two stages: First, the samples are clustered based on the 408 

features and classified into one of the clusters or patterns. Then for each patient, we calculate the 409 

proportion of each pattern, forming a distribution profile of the patterns.  410 

By using these proportion features, we train a classifier aiming to predict the upstaging status. From this 411 

pipeline, we are able to predict the clinical outcome of a patient based on his/her spatially defined pattern 412 

distributions (Figure 1C). Then, to test the hypothesis that finer regions with biological meanings could 413 

provide better predictive power, we conduct a multi scale analysis performing a series of experiments 414 

using the same set of features and with the same pattern differential analysis pipeline at 3 different scales: 415 

duct, habitat, and niche (Figure 1C). At the habitat level, normoxic and hypoxic zones are analyzed 416 

independently. At the niche level, analyses are further refined to separately examine CA9-positive cells, 417 

LAMP2b-positive cells, and cells co-positive for both CA9 and LAMP2b. 418 

For all the experiments, the biopsy dataset underwent 5-fold stratified cross-validation, where in each 419 

round, 4 folds served as the training dataset and 1-fold as the test dataset, with the goal of predicting the 420 

patients’ clinical outcome at the time of biopsy. Upon comparing the mean accuracy score and the mean 421 

AUC score of all the classifiers, the niche level classifier yielded the best predictive results particularly 422 

under both metrics (Table 1). This result confirms that niche-based analysis outperforms our primary 423 

habitat analysis. The higher accuracy of the niche measurements may be implying the phenotype-based 424 
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niche measurement is better than inferring habitat from oxygen diffusion rate measure based on the 425 

distance of the cells from basement membrane. Also, it is worth mentioning that oxygen habitat analysis 426 

is a rough estimate in our analysis since we do not know the exact location of the vasculature and their 427 

activity. 428 

Table 1. Performance scores of multi scale classifiers. While habitat-level analysis enhanced 429 

performance, the niche-level classifier produced the most accurate predictive results. 430 

 431 

Post analysis to reveal contributing features and prototype visualization on mIHC. 432 

After identifying the best-performing classifier based on the AUC metric we employed SHAP (48) 433 

(Shapley Additive exPlanations) analysis to interpret the model by calculating SHAP values for each 434 

feature, specifically on the proportions of distinct patterns (Figure 4b). The pattern with the maximum 435 

SHAP value, identified as the most impactful, underwent further differential analysis to uncover features 436 

that significantly differentiated this pattern from others. This differential analysis employed methods 437 

including correlation analysis, mutual information (MI), and maximum relevance minimum redundancy 438 

(MRMR), which together identified Area_min, Perimeter_min, AreaBbox_min, and F_0 <= r < 10 as the 439 

top distinguishing features for Pattern 5 (Figure 4c). A prototype for Pattern 5, selected based on its 440 

alignment with the mean values of these features, was visualized to illustrate its characteristics (Figure 441 

4d). Using a multi-scale analytical approach, we integrated spatial interactions of CA9-positive and 442 

LAMP2b-positive cells into the machine learning pipeline to distinguish between pure DCIS and 443 

progressed DCIS. Niche-level analysis yielded the highest accuracy and AUC, emphasizing the 444 

importance of fine-scale regions in predicting clinical outcomes. The use of SHAP analysis and 445 

differential analysis provided an interpretable framework to highlight influential patterns and features, 446 

such as Area_min and Perimeter_min, offering insights into the tumor microenvironment. This approach 447 

not only advanced our understanding of key spatial and morphological features but also demonstrated 448 

significant potential for precise diagnostic tools in clinical applications. 449 

 450 

 451 

Discussion: 452 

Ductal carcinoma in situ is the most prevalent type of precancer that can range from indolent to 453 

aggressive. DCIS lesions are highly heterogeneous in their intra- and inter- ductal physical 454 

microenvironments, genetics, and molecular expression patterns. They can be described as complete 455 

ecosystems containing habitats and niches including normal epithelial cells, pre-cancer cells, stromal 456 

cells, vasculature, structural proteins, signaling proteins and physical factors such as pH and oxygen 457 

concentration (18). These habitats and niches of micro-domains can contain unique mixtures of cells with 458 

 Duct Habitat Niche 

Normoxia Hypoxia CA9 LAMP2b CA9 & LAMP2b 

Accuracy 0.78 ± 0.06 0.86 ± 0.03 0.83 ± 0.06 0.82 ± 0.06 0.90 ± 0.03 0.90 ± 0.03 

AUC 0.61 ± 0.08 0.67 ± 0.03 0.66 ± 0.10 0.64 ± 0.10 0.72 ± 0.07 0.74 ± 0.13 
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physical and biochemical characteristics, with differential evolutionary potential and trajectories (27). 459 

The niches with similar mixtures of cells usually are also similar in their physiology and phenotypes 460 

mainly due to living in similar habitats. Our hypothesis is that knowledge of these niches and their 461 

habitats can potentially provide patient benefit by stratifying their tumor progress and therapeutic choices. 462 

However, tools and techniques are lacking to distinguish them. Proper tools and techniques can identify 463 

and define habitats and niches to map (pre-)cancer ecosystems to discriminate between the different types 464 

of DCIS to design the right treatment for breast cancer patients. 465 

In this study, we argue that the overdiagnosis and overtreatment of DCIS stem from conventional 466 

frameworks that focus primarily on genetic signatures while neglecting the phenotypic heterogeneity 467 

within tumor ecosystems. Thus, we interpreted complex eco-evolutionary data of cancer cells within their 468 

niche using machine learning and pathomics, all framed within an innovative ecological and evolutionary 469 

dynamic model. Oxygen habitats are identified based on varying levels of perfusion and oxygenation, 470 

which are believed to play a crucial role in driving ecological diversity by changing cancer cells 471 

metabolism, creating new habitats, and enhancing tumor heterogeneity, ultimately leading to diverse 472 

evolutionary trajectories. (28, 29). Solid tumors often exhibit an impaired vascular system, leading to 473 

habitats within tumors that vary in hypoxia, nutrient deficiency, and acidity. These habitats can 474 

significantly influence the spatial selection of cellular phenotypes in distinct subregions. Inhabiting 475 

hypoxia, acidosis, and severe nutrient deprived habitats, face (pre-)cancer cells to strong selective 476 

pressures leading to divergence to novel phenotypes in population. These new phenotypes can 477 

reciprocally influence the microenvironment reshaping due to their new metabolic phenotypes resulting 478 

in a dynamically changing tumor ecosystem with multiple habitats. Therefore, the phenotype of the cells 479 

residing in these habitats can also be leveraged to define the habitats with a certain degree of accuracy. 480 

Previous research from our group and others demonstrated that cancer cells within breast ducts, exposed 481 

to chronic hypoxia and acidosis, develop adaptive mechanisms for survival in this challenging 482 

microenvironment including expression of CA9 or LAMP2b at the cell surface (18,20,30).  However, 483 

none of these findings were used in a relevant translational study for biomarker discovery. In this study, 484 

we explore these biomarkers within an eco-evolutionary framework for the first time, using them as 485 

indicators of the metabolic state of cancer cells residing in a niche as part of oxygen habitats that may 486 

favor the selection of more aggressive phenotypes to predict the upstaging of DCIS. While a longitudinal 487 

study would indeed be a better study design for direct observation of evolutionary changes over time, our 488 

current cross-sectional approach enables us to capture a snapshot of the tumor microenvironment at two 489 

near time points, providing valuable insight into the conditions that distinguish DCIS from IDC. We 490 

recognize the assumption that the synchronous IDC microenvironment may contribute to the progression 491 

from DCIS to IDC. However, our study design allows us to test whether specific microenvironmental 492 

factors and related habitats and niche correlate with the presence of IDC, which can provide strong 493 

hypotheses for future longitudinal investigations. A future prospective or retrospective longitudinal 494 

(multiple long time points) study would indeed help distinguish whether these microenvironmental 495 

changes in tumor ecosystem locally belonged to habitats or niches can drive progression from DCIS to 496 

IDC or if IDC-induced those changes in the tumor ecosystem contribute to the synchronous DCIS 497 

phenotype. 498 

In our curated retrospective cohort of 84 DCIS patients with histologically confirmed DCIS on core 499 

biopsy, we manually annotated 916 single ducts and more than 3000 habitats on all three slides and scored 500 

them at habitat levels. This unique detailed eco-evolutionary annotation can be used for future similar 501 
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eco-evolutionary designed studies including stroma habitats. Our risk scoring system integrating 502 

principles of ecological-evolutionary dynamics with pathological imaging and molecular features of 503 

early-stage breast tumors showed improvement on prediction power of biomarkers alone and in 504 

combination. 505 

We employed a 5-fold stratified cross-validation approach to ensure robust internal validation of our 506 

model. While this method helps mitigate overfitting and provides reliable performance estimates, we 507 

acknowledge the absence of an independent validation set, which is crucial for assessing the model's 508 

generalizability. The unique design of our cohort, which integrates specific ecological and 509 

microenvironmental factors, limits the availability of comparable external datasets for validation. As 510 

such, there is no current dataset with similar characteristics for cross-validation. We recognize this as a 511 

key limitation and emphasize that future studies should aim to validate the model on independent cohorts 512 

when such datasets become available. Furthermore, although our model achieved an AUC of 0.74, this 513 

performance is not yet sufficient for clinical translation. Additional efforts to refine the model and test it 514 

in larger, independent cohorts will be essential before its use in clinical practice can be considered. 515 

Interestingly, a recent approach using multiplex IF on DCIS cohort reached the same AUC(2). While 516 

both our study and the Risom et al. paper aim to leverage spatial relationships to predict DCIS 517 

progression, we would like to emphasize that the two approaches are fundamentally different in terms of 518 

the markers used. Risom et al. focused on a broad panel of markers, including those related to the stroma, 519 

immune cells, and tumor cells, which provide a comprehensive view of the tumor microenvironment. In 520 

contrast, our approach centers on eco-evolutionary markers derived from adaptation of cancer cells to 521 

physical microenvironment, specifically CA9 and LAMP2b, which are associated with hypoxia and 522 

tumor acidity and their spatial distribution, respectively. These differences reflect divergent hypotheses 523 

about the key drivers of DCIS progression. The fact that both studies report a similar AUC of 0.74, with 524 

the distinct marker sets and biological processes, suggests that our findings offer complementary insights 525 

into DCIS progression and combination of approaches might increase the accuracy.  526 

Our study demonstrates the utility of eco-evolutionary principles in understanding DCIS progression. In 527 

our study, we proposed that specific tumor microenvironmental conditions, such as hypoxia and acidosis, 528 

are associated with phenotypic changes that may indicate DCIS progression. However, although we have 529 

shown previously that these microenvironments can cause aggressive phenotypes, we acknowledge that 530 

our findings here do not conclusively demonstrate that these environmental factors are causative agents 531 

in the transition from DCIS to IDC. Instead, our data suggest that these conditions could serve as 532 

biomarkers for identifying lesions that are more likely to be upstaged. However, the ability to define 533 

more refined cell phenotypes within each region of interest (ROI) could further enhance our analysis. If 534 

we can identify and characterize more detailed phenotypes, it would allow us to extract additional features 535 

that describe the spatial interactions of these phenotypes. This, in turn, could potentially improve the 536 

classifier's performance and make the results more interpretable. By capturing the intricate interactions 537 

between various cell types and their microenvironments, we could gain deeper insights into the ecological 538 

dynamics driving DCIS progression and improve predictive models for patient outcomes. 539 

In recent years, there has been a growing trend towards adopting a "watchful waiting" approach for certain 540 

cases of DCIS, rather than immediate surgical excision(31,32). This strategy aims to reduce overtreatment 541 

by closely monitoring DCIS lesions that may not progress to invasive cancer. In this context, our upstaging 542 

predictions become particularly relevant. Identifying microenvironmental and phenotypic factors that 543 

indicate a higher likelihood of progression to IDC could help clinicians make more informed decisions 544 
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about when to intervene and when to adopt a more conservative, observational approach. The ability to 545 

predict which DCIS cases are at higher risk of progressing to invasive disease would provide critical 546 

information for optimizing patient management, minimizing unnecessary treatments, and reducing the 547 

psychological and physical burdens associated with overtreatment(33). Further validation of these 548 

predictive models could therefore have important implications for guiding treatment strategies in the 549 

context of DCIS. 550 

Lead contact 551 

Further information and any related requests should be directed to and will be fulfilled by the lead contact 552 

Mehdi Damaghi (Mehdi.Damaghi@stonybrookmedicine.edu).  553 
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  569 

Figure Captions 570 

 571 

Figure 1. Ecological and evolutionary designed biomarkers of DCIS upstaging. A) Model of 572 

microenvironment-driven evolution of breast cancer from normal breast tissue to DCIS and IDC: Our schematic 573 

is overlaid on HE staining of breast cancer specimens at different stages of DCIS and IDC. Different patients may 574 

experience various types of evolutionary trajectory following different evolutionary models, including linear and 575 

branched progression from DCIS to IDC shown here. Note that these events are not sequential or stepwise. B) The 576 

patient cohort was curated from retrospective DCIS samples, with two sample collections at biopsy and excision. 577 

The main criterion was the diagnosis of DCIS at the biopsy stage. C) Eco-evolutionary designed- machine learning 578 

assisted pipeline to define cancer cell niches inside oxygen habitats in DCIS. i) Data preprocessing steps including 579 

duct annotation, cell detection and classification for HE and IHC slides, followed by co-registration to map IHC-580 

identified cells onto the HE slides. ii)The analysis is carried out at multiple scales, namely duct, habitat and niche, 581 

from the largest to smallest. At each scale the nucleus morphology texture feature and spatial features are extracted. 582 

iii) The pattern differential analysis approach where the patterns are firstly identified and then the proportions of 583 

such patterns are used as features to predict the upstaging status of a patient. 584 

 585 
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Figure 2. Eco-evolutionarily designed biomarker discovery to predict upstaging in DCIS. A) 586 

Illustration of normoxic, hypoxic and necrotic habitats in a duct. B) Illustration of annotation and scoring 587 

on 2 IHCs and how cells are scored in each habitat. C) and D) Dot plots of counts of CA9 expression in 588 

each habitat per duct. Cells are scored 0 for ‘negative’ or ’1+’,’2+’,’3+’ for positive cells based on their 589 

intensity. Scoring was performed and analyzed separately for normoxic (oxidative) habitat (C) or hypoxic 590 

habitat (D). In the dot plot, each dot is a single duct. The color of dots reflects their score as follows: Blue 591 

= 0, yellow =’1+’, orange =’2+’, and red = ’3+’. The number of dots reflects how many ducts were 592 

detected in each patient’s biopsy with size bigger than 400 μms in diameter. The distribution in hypoxic 593 

habitat is significantly different between pure DCIS and upstaged groups in hypoxic habitats and not in 594 

oxygenated habitat. Data was analyzed using the Wilcoxon signed-rank test. The same graph is created 595 

for LAMP2b (supplementary fig. 2). 596 

 597 

Figure 3. Niches are defined inside habitats from the hypoxia and acidosis markers expression. A) 598 

One sample duct from CA9 slide. Top: The original IHC slide. Middle: Cell detection and intensity-based 599 

classification using Qupath overlaid on the slide. Bottom: the graph constructed from the CA9 positive cells and 600 

the connected components of the graph (Niches) highlighted in different colors. B) The HE staining of the same 601 

duct as A. Top: The original HE slide. Middle: Duct annotation overlaid on the HE slide. Bottom: Co-registered 602 

CA9-positive niches mapped and overlaid on HE slides as mIHC to be able to extract HE features from CA9 603 

positive niches. Note the orientation of HE and CA9 slide was opposite, and our co-registration technique 604 

successfully created a mIHC of the ducts with similar coordinates.  The same approach was used for LAMP2b and 605 

the combination. 606 

 607 

Figure 4. Post Analysis reveals the top contributing patterns and features. A) UMAP of the features 608 

of the niches, different colors represent different clusters(patterns) B) Top: The impact of each pattern 609 

on the classifying result, blue and red colors represent impact on pure DCIS and progressed predictions 610 

respectively, the proportion of pattern 5 has the greatest impact for both categories. Bottom: Using 611 

correlation, MI, and MRMR to obtain the most contributing features in the pattern 5 clustering phase, 612 

identifying a common feature set that includes 4 features: Area_min, Perimeter_min, AreaBbox_min, 613 

and F_0<=r<10. C) UMAP showing the value of the 4 identified features for different samples, and it 614 

can be seen that samples in the pattern 5 tend to have higher values in Area_min, Perimeter_min, 615 

AreaBbox_min and low values for F_0<=r<10. D) A niche belonging to pattern 5, it contains no small 616 

size cells and exhibits a relatively dispersed distribution. 617 

 618 
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