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Within the nucleus, structural maintenance of chromosome protein complexes, namely condensin
and cohesin, create an architecture to facilitate the organization and proper function of the genome.
Condensin, in addition to performing loop extrusion, creates localized clusters of chromatin in
the nucleolus through transient crosslinks. Large-scale simulations revealed three different dynamic
behaviors as a function of timescale: slow crosslinking leads to no clusters, fast crosslinking produces
rigid slowly changing clusters, while intermediate timescales produce flexible clusters that mediate
gene interaction. By mathematically analyzing different relative scalings of the two sources of
stochasticity, thermal fluctuations and the force induced by the transient crosslinks, we predict
these three distinct regimes of cluster behavior. Standard time-averaging that takes the fluctuations
of the transient crosslink force to zero predicts the existence of rigid clusters. Accounting for
the interaction of both fluctuations from the crosslinks and thermal noise with an effective energy
landscape predicts the timescale-dependent lifetimes of flexible clusters. No clusters are predicted
when the fluctuations of the transient crosslink force are taken to be large relative to thermal
fluctuations. This mathematical perturbation analysis illuminates the importance of accounting for
stochasticity in local incoherent transient forces to predict emergent complex biological behavior.

I. INTRODUCTION

The genome has an intricate and hierarchical organi-
zation that allows cells to fit an extraordinary amount
of genetic material and perform important nuclear func-
tions within a nucleus mere micrometers in size. Within
the nucleus, DNA is complexed with a variety of proteins
to form the fibrous material chromatin that makes up
chromosomes. Contributing to chromosomal architecture
are structural maintenance of chromosome (SMC) pro-
tein complexes, namely condensin and cohesin, which fa-
cilitate chromosome segregation and gene regulation [1].
Such processes aid in the compaction of genetic material
within the nucleus as well as allow the cell to locate and
access specific genes depending on cell cycle, cell type,
or environmental cue [2]. In particular, condensin helps
regulate the retrieval of genetic information by acting on
chromatin to form stochastic gene-gene crosslinks [3] and
generate loops to induce gene mixing [4–7].
The emergent behavior induced by condensin

crosslinks has been studied computationally with
polymer models of chromatin [8–13] in order to more
directly observe the dynamics of DNA over experimental
techniques. By representing 5kbp of DNA as beads,
linked through worm-like-chain springs to form a long
polymer chromatin chain, the timescale of the random
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SMC crosslink binding between different beads was
shown to control the formation of clusters and gene
interactions [11, 12]. These clusters, or gene neighbor-
hoods, reveal an underlying organizational framework
that optimizes gene interactions, retains a high level
of genomic compaction, and yet is highly flexible. A
similar detailed level of information is not yet available
experimentally; high throughput population methods
such as Chromosome Conformation Capture (Hi-C)
methods lack temporal evolution information, while
microscopic imaging lacks genome-level resolution [14].
The ability to access both the spatial arrangement and

the temporal re-arrangement of beads, which is possible
in simulation, is crucial for advancing our understanding
of life at the cellular level.

Building and remodeling these high-level genetic neigh-
borhoods has the potential to reveal the underlying me-
chanics for the configuration of the energy landscape
within our nuclei. In this paper, we reveal the math-
ematical mechanism that describes how fluctuations in
the model lead to the formation of bead clusters and the
temporal mixing of beads between clusters. We vary the
timescale of crosslinking forces between beads to change
the size of this fluctuating force relative to thermal fluctu-
ations. These various timescales produce three different
dynamic regimes. At fast bead crosslinking timescales,
rigid, unchanging clusters form. At slow crosslinking
timescales, the beads interact in an amorphic state with
no clusters. At intermediate mean crosslink lifetimes,
clusters can both form and exchange beads, indicative of

http://arxiv.org/abs/2401.06921v2
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the required gene interaction for proper function. Tuning
the timescales of crosslinking provides a unifying mecha-
nism of genome organization that gives insight into how
a large number of configurational states can be rapidly
remodeled as cells encounter biological challenges.
Configurations that can be rapidly remodeled were

shown to take advantage of the interaction between the
crosslink binding force fluctuations and the thermal noise
fluctuations to promote faster bead exchange between
clusters [13]. We build upon this work by incorporating
the timescale of the crosslink binding into the mathe-
matical analysis to show how different relative scalings of
the two sources of stochastic fluctuations, thermal noise
and the force induced by the transient bonds, predict
the three distinct regimes of cluster behavior mentioned
above. Standard time-averaging that takes the fluctua-
tions of the transient binding force to zero (fast crosslink-
ing timescale) predicts the existence of long-lived rigid
clusters. No clusters are predicted when the fluctuations
of the transient binding force are taken to be large (slow
crosslinking timescale) relative to the thermal fluctua-
tions. When accounting for the interaction of both fluc-
tuations from the binding and thermal noise with an ef-
fective energy landscape we predict the flexible clusters
and their timescale-dependent mixing.
This work provides the mathematical mechanism un-

derlying the timescale-dependent effects of active agents
in biological systems. The timescale controls the produc-
tion of fluctuations in the forces generated by the active
agents. The relative size of these fluctuations to the ther-
mal fluctuations produces different emergent temporal
behavior. This mechanism is not restricted to only the
chromatin dynamics studied here but is potentially appli-
cable to a wide range of cell-level biological processes such
as homology searches for genetic recombination [15–17],
defensive mucus barriers emerging from polymer chains
of mucin [18–20], and error correction through configu-
rational state changes [21–23]. Thus to deepen our un-
derstanding of how such biological systems function, we
have shown it is necessary to properly analyze the inter-
play of different fluctuations and the timescale on which
they are generated.

II. RESULTS

A. Timescale of crosslink binding force drives

cluster formation and dynamics

We establish that it is the timescale of the
stochastically-switching SMC protein crosslinking force
through random binding and unbinding that affects the
organization of the beads and the dynamics of the clus-
ters. To show this, we create an idealized 361-bead model
that represents the nucleolus, removing the chromatin-
chain springs between beads to emphasize that it is the
stochastically-switching force in competition with the ex-
cluded volume force that creates the clustering structure.

The number of beads is set by the length of the biological
chromatin chain with each bead representing 5 kilobase
pairs of DNA. The beads bind and unbind based on a
biologically feasible random model for the SMC protein
crosslinks that is more likely to choose pairs of nearby
beads to bind.

Fig. 1 shows the formation of clusters when the
timescale of the random crosslink binding force, β, is fast
enough. The repulsive excluded volume force and ther-
mal fluctuations acting on the beads are in competition
with the attractive stochastically changing pairwise bind-
ing forces that coalesce many beads into a cluster. Fur-
thermore, changing the timescale of the crosslink binding
force, β > 0, from slow to fast results in three distinct
clustering behaviors: The system passes from amorphic
behavior (dissolution of clusters with many bead inter-
actions) to flexible clustering (frequent bead exchanges
between clusters) and then to rigid clustering (minimal
bead interaction between clusters).

The observed timescale-dependent clustering behav-
ior mirrors that seen in [12] which employed a larger
polymer-like chromosome model and a different random
model for the crosslinking proteins in the nucleolus. This
demonstrates the universality of the clustering dynamics
that are driven by the timescale of the fluctuating bind-
ing forces.

B. Time-averaged force predicts existence of rigid

clustering dynamics

To mathematically determine the effective attractive
force generated by the stochastic binding we work with a
further reduced 3-bead model. We start by showing that
a simple time-averaging of the stochastic binding force
can predict the existence of rigid clustering dynamics but
not the timescale-dependent mixing of flexible clustering
dynamics.

The chosen random model for the crosslink bind-
ing forces has the added advantage of fitting into a
continuous-time Markov chain (CTMC) framework. For
the idealized 3-bead model, the four Markov states are
easily enumerated: all beads unbound (s = 1), beads 1
and 2 bound (s = 2), beads 1 and 3 bound (s = 3), and
beads 2 and 3 bound (s = 4). The time evolution of the
states follows a general CTMC process with a transition
rate matrix S. Included in S is the bead binding rate that
is proportional to the bead separation distance given by
affinity function a(·) and a constant bond breaking rate
c.

Now that the binding stochasticity is formulated as
a Markov chain, finding the time-averaged force on each
bead is straightforward [24]. The percent of time spent in
each Markov chain state is given by ~r(~x), the normalized
null vector of the switching matrix S(~x), so that the time-
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FIG. 1. (A-C) Snapshot of 361 bead model for increasing binding timescale. We observe three clustering regimes: (A) amorphic,
(B) flexible, and (C) rigid. (D) Mixing coefficient and average nearby number of beads for a range of β-values for 361 bead
model. Flexible clustering occurs for the range of β-values within the grey region. In this regime, clusters emerge and beads
interact.

averaged force for each coordinate is

dxk

dt
=

4
∑

s=1

vk(~x; s)rs(~x) = 〈vk(~x)〉 for k = {1, . . . , 6}

(1)
where vk(~x; s) is the force on coordinate k when the sys-
tem is in Markov state s. (Note, we have concatenated
the x and y coordinates of each bead into a single vec-
tor ~x.) This removes the stochasticity and results in a
deterministic effective force for the system, 〈~v〉.
The stable fixed points of (1) are the observed clusters.

One fixed point is a 3-bead cluster in which the beads are
in a small triangle configuration; see Fig. 2C. This is dis-
tinguished from the unbound state s = 1, in which the
beads form a triangle but with larger pairwise distances;
see Fig. 2A. The other three fixed points are 2-bead clus-
ters in which two beads are superimposed and the third
is farther away and unbound; see Fig. 2B. These are dis-
tinguished from states s = 2, 3, 4 as the clusters persist
longer than any single bond lifetime.
In addition to predicting the existence of clusters, we

can test this time-averaging procedure’s ability to predict
the lifetime of a cluster. We do this by considering the
effects of small perturbations of noise about the average
by studying the equation,

dxk = 〈vk(~x)〉dt+
√
2ǫ dBk (2)

in the limit as ǫ → 0. Even though the vector of
forces is the gradient of a potential function for each
state s, i.e. ~v(~x; s) = −∇xU(~x; s), it is not true that
〈~v(~x)〉 = −∇x〈U(~x)〉 since the CTMC null vector ~r de-
pends on the positions ~x. However, we numerically find
an effective potential Ueff such that −∇xUeff(~x) ≈ 〈~v(~x)〉
along the most probable transition path connecting a
minimum of Ueff (recall these minima are the stable
fixed points of (1)) to a saddle point using the String
Method [25]. We asymptotically approximate the escape
times from a cluster using the well-known Arrhenius law,

log(E[τ ]) ∼ ∆Ueff

ǫ
(3)

in the limit as ǫ → 0, where ∆Ueff is the change in the
effective potential generated by the time-averaged force
along the most probable transition path [26].
The time-averaged force, and thus its effective poten-

tial, is invariant to the overall timescale of the transition
rate matrix. Scaling S by some constant α does not af-
fect the fraction of time spent in each state because ~r is
also in the null space of αS. Thus, Eqs. (1) and (2) are
unchanged when scaling the transition rate matrix S by
α. The escape times from a cluster predicted by (3) are
valid for describing the rigid clustering dynamics that are
largely invariant to the binding timescale parameter α.
As we will later show, this regime has the highest effective
energy barrier and thus the longest-lived clusters.

C. Relative scalings of fluctuations predicts three

different clustering regimes

The key to understanding clustering dynamics is ac-
counting for the relative size of fluctuations between the
stochastic binding and the small perturbations of ther-
mal noise. To analyze the dynamics mathematically we
perform an asymptotic expansion as the size of the fluctu-
ations goes to zero. We consider taking both fluctuations
to zero at the same rate and at different rates. The latter
allows one noise source to dominate. Rigid clusters arise
when the binding fluctuations are small and only thermal
noise drives transitions between clusters. Amorphic ar-
rangements arise when the binding fluctuations are large
and take place on a longer timescale than the fast thermal
fluctuations. The stochastic binding alone drives transi-
tions between arrangements. Taking fluctuations to zero
at the same rate allows for interaction between the noises.
We find that this interaction predicts the flexible cluster
dynamics that depend on the timescale of the binding.
The combination of stochastic binding and thermal fluc-
tuations drives transitions between clusters. Together,
these three asymptotic regimes explain the three regimes
seen in [12] and Fig. 1. In the remainder of this sec-
tion, we elaborate on the mathematics and thus reveal
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FIG. 2. (A-C) plots of pairwise distances of three beads over
time and a snapshot of the three bead configuration: (A) all
beads unbound: balance between excluded volume and con-
finement forces keep beads in a large triangle configuration,
(B) 2-bead cluster state with beads 1-2 bound, (C) 3-bead
cluster state: all beads remain close, rapid switching between
pairwise bonds keeps beads in a small triangle configuration.

the mechanism behind these three dynamic regimes.

We include the effects of fluctuations about the mean
force so that the position of each bead follows the over-
damped Langevin-like equation given by

dxk = vk(~x; s)dt+
√
2ǫdBk. (4)

where s is the state of the CTMC. How we choose to scale
the transition rate matrix S determines how the relative
rates of the two different fluctuations go to zero.

We start with the scaling 1

ǫ2
S which takes the binding

fluctuations to zero faster than the perturbations from
thermal noise. We seek an effective potential W (also
known as a quasipotential) to replace Ueff in Eq. (3).
Therefore we assume a steady-state distribution

ps(~x) = rs(~x) exp

(

− 1

ǫ
W (~x)

)

(5)

as the asymptotic solution for the system of steady-state

Fokker-Planck equations,

∂ps

∂t
= −

6
∑

k=1

∂

∂xk

[vk(~x; s)ps]+ǫ

6
∑

k=1

∂2

∂x2

k

[ps]+
α

ǫ2

4
∑

j=1

Ssjpj .

(6)
The element of the CTMC transition matrix Ssj gives
the transition rates from state j into state s. Thus, the
last term couples the process between different states.
Setting (6) to zero and plugging in (5) yields the leading
order equation

S~r = 0 (7)

with next order equation

rs~v · ∇xW + rs∇xW · ∇xW = 0. (8)

Thus, ~r is the steady-state distribution of S and summing
Eq. (8) over s reveals that −∇xW =

∑

s ~v(~x; s)rs(~x) is
exactly the naive time-average from above that does not
depend on α and predicts rigid clustering dynamics.
If instead we take the scaling 1

ǫ
S, both sources of noise

remain in the leading order equation given by

[A(~x,∇xW ) +D(∇xW ) + αS(~x)]~r = 0 (9)

for advection (drift) matrix A, diffusion matrix D, and
switching rate matrix S; see [13] for details. In this
regime, both sources of noise are important for flexi-
ble clustering. We see the effects of varying the bind-
ing timescale parameter α, which controls how quickly
the simulation switches between the Markov chain states.
This role mirrors that of the kinetic timescale parameter
µ in the large-scale simulations of [11, 12] in which µ is a
“tuning knob” used to set the kinetic timescale on which
the crosslinks bind and unbind.
To further illustrate the changing dynamics with α, we

compare the predicted lifetime of the cluster governed by
Eq. (3) with Monte-Carlo simulations. The predicted life-
time depends on the barrier height of the quasipotential
along the most probable path connecting the minimum to
the saddle point. Fig. 3A shows the quasipotential along
such a path from a 2-bead cluster to the saddle point of
another 2-bead cluster for corresponding α-values. The
asymptotic escape times from one 2-bead cluster to an-
other 2-bead cluster are shown in Fig. 3B. The slope value
is given by the quasipotential barrier height and well ex-
presses the linear relationship of the mean escape times.
As α increases, the effective energy barrier approaches
the barrier predicted by the naive time average discussed
previously; see Fig. 3C.
Finally, if we keep S independent of ǫ, retaining all the

fluctuations, the system equilibrates within each Markov
chain state and there are no clusters predicted. In this
amorphic regime, the effects of the binding noise are
pushed into a higher order so that the leading order does
not contain any contributions from the CTMC. We ob-
serve the beads are often unbound, settling into a “large
triangle” configuration; see Fig. 2A. This long-observed
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FIG. 3. Transition: 2-bead cluster to 2-bead cluster. (a)
Quasipotential (solid) for different α values and for the time-
averaged binding force (dotted) along the transition path, nor-
malized to unit length. (b) Comparison of asymptotic escape
times computed via Monte Carlo simulation to slope taken
from quasipotential barrier height. (c) Quasipotential energy
barrier height vs. switching timescale α.

state of the system is a balance between the excluded
volume and the confinement forces. We do not consider
this a cluster as it would dissolve in the absence of the
confinement forces, leading to amorphic dynamics. Fig. 4
shows the formation of clusters as α increases. The sys-
tem is able to remain in a cluster state despite all the
beads being unbound as the system does not have time
between binding events to reach the large triangle equi-
librium.

D. Effects of crosslink binding fluctuations on

different transitions

Scaling S by 1

ǫ
revealed the dependence of cluster life-

times on the crosslink binding timescale, α. By account-
ing for both sources of randomness in the system we com-
puted an accurate quasipotential that predicted a higher
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FIG. 4. Average proportion of simulation spent in s = 1
unbound state of the Markov chain and average proportion of
simulation not spent in a cluster state vs. α.

energy barrier height between minimum states as α in-
creased, and thus longer cluster lifetimes. However, this
increase is not uniform across all transitions as we show
in Fig. 5.
Of the “uphill” most probable transition paths the sys-

tem takes from one minimum state to the saddle point
shown in Fig. 5A-D, only the 3-bead on its way to a 2-
bead cluster has noticeable dependence on α (Fig. 5C).
This transition also has the largest change in quasipoten-
tial energy barrier with α (Fig. 5F) indicating removing
a bead from a cluster is more sensitive to the binding
timescale that rearrangements within the cluster (path-
way in Fig. 5D). The transition shown in Fig. 5D to the
“collinear” saddle point configuration also has the low-
est energy barrier height amongst the transitions, with
limited dependence on α for either the pathway or the
height. This indicates that the binding force is not impor-
tant for this transition, as the stochasticity of the binding
does not help the system make the transition.
Starting in the 2-bead cluster state, our system can

transition into a different 2-bead cluster (Fig. 5A) or
into the “small triangle” 3-bead cluster (Fig. 5B). These
transitions have similar pathways up to each saddle point
that do not significantly depend on α and have similar
quasipotential energy barrier heights for the range of α
values from 0 to 20. This suggests that the system will
take either transition with similar probability and do so
in approximately the same amount of time.

III. DISCUSSION

We have shown the underlying mathematical mecha-
nism behind how the relative scaling between the thermal
fluctuations and the timescale of the model condensin
crosslinking force tunes the regime of chromatin orga-
nization into one of three regimes: flexible clustering,
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transition pathways

rigid clustering, and an amorphic state. This crosslink-
ing timescale controls the production of random fluctu-
ations in the force and in turn the dominating terms in
the asymptotic perturbation when searching for an ef-
fective thermal equilibrium. This analysis emphasizes
the importance of accounting for stochasticity in local
incoherent transient forces to predict emergent complex
biological behavior.

Flexible clustering dynamics emerge from accounting
for fluctuations from both the stochastic binding force
and the thermal noise, keeping both of their correspond-
ing terms in the Fokker-Planck equation balanced in the
limit as the size of the fluctuations goes to zero. To pro-
duce this interaction mathematically, we scale the bind-
ing rate matrix S by 1

ǫ
. Taking ǫ → 0 with this scaling,

an effective binding force remains that allows for stable
clusters. This limit also accounts for the fact that the
fluctuations of the binding force aid in transitions be-
tween clusters, as it creates finite periods of time when
the thermal noise has to overcome smaller forces to push
the system into a new cluster state. Since our added
binding timescale parameter α controls the size of the
fluctuations, it also controls the size of the effective en-
ergy barrier for predicting transition times between sta-

ble cluster states given by the Arrhenius law.
If we take the fluctuations to zero at different rates, one

source of noise “dominates” over the other in the limit
as ǫ → 0. Choosing to scale S by 1

ǫ2
, the fluctuations

of the binding force go to zero faster than the thermal
fluctuations. An effective binding force that allows for
stable clusters remains, but the fluctuations in the bind-
ing force are now much smaller and do not interact with
the thermal noise to aid in transitions between clusters.
Indeed, we recover the naive time average to describe the
effective energy barrier, which is also the limiting barrier
as α → ∞ of the above-mentioned fluctuation-interaction
case.
By keeping S independent of ǫ, we flip which fluctua-

tion source dominates in the limit as ǫ → 0. Here, the
switching between Markov chain states occurs so infre-
quently that the system equilibrates while in this one
state. No effective force is generated by the superposi-
tion of different states, thus no clusters are predicted.
In the 3-bead model, two cluster-like states appear but
their generating mechanism would not produce clusters
in the 361-bead model. The first is a 3-bead large-triangle
configuration (Fig. 2A), but it is a result of the balance
between the repulsive excluded volume force and con-
finement force. In the 361-bead model, this would cor-
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FIG. 6. Typical distance a bead diffuses while unbound (black line) and general classification of the three regimes (blue rigid;

pink flexible; yellow amorphic) for three different models. (A)Biologically-realistic model [11] : the typical distance
√

3kbT

γ
µoff

beads diffuse while the crosslink is inactive; µoff is the prescribed mean time for the crosslink to remain inactive. (B) 361-bead
model: the typical distance

√
3ǫTunbound beads diffuse while unbound; Tunbound is the mean unbound time calculated from

simulations. (C) 3-bead model: the typical distance
√
2ǫTunbound beads diffuse while unbound for three different values of ǫ;

Tunbound is the mean unbound time calculated from simulations.

respond to all beads in an amorphic arrangement. The
second is a 2-bead-like cluster formed by the fact that
a crosslink binds two beads; this cluster returns to the
3-bead triangle configuration once the bond is broken.
In the 361-bead model, this would correspond to an-
other amorphic arrangement with many pair-wise bound
beads.

While mathematically the three regimes are distin-
guished by the relative rates at which the two fluctua-
tions go to zero asymptotically, experimentally only the
binding timescale (or cluster lifetimes) and thermal dif-
fusivity can be determined. To help bridge the gap from
mathematics to the real world, we show in Fig. 6(A-C)
the typical distance a bead diffuses during the average
time the bead remains unbound for the case of (A) the
biologically realistic model in [11] (B) the reduced but
still dimensional 361-bead model of the nucleolus used
in Fig. 1 and (C) the idealized 3-bead model. The three
regimes of rigid (blue), flexible (pink), and amorphic (yel-
low) are added based on measurements of the clustering
behavior in (A) and (B) and based on the quasipotential
barrier heights in (C). For (C), typical flexible-regime dis-
tances are approximately 0.25 to 0.35 and beads rarely
form bonds when farther than 1 unit away. Similarly, in
(A), typical flexible distances are approximately 15 to 25
nm and beads cannot bind if further than 90 nm away, a
similar ratio to (C). The model in (B) appears to require
faster binding to create clusters. Regardless, both mod-
els in (A) and (B) cover biologically feasible length and
timescales. Note that strict boundaries cannot be drawn
between regimes and these fuzzy boundaries depend on
the criteria used.

The emergence of a wide range of clustering regimes
(amorphic, flexible, rigid)(Fig. 6) and exchange within
and between clusters with a pared-down 3-bead model
(Fig. 5) provides a framework for understanding the gov-

erning principles of genome organization. The crosslink-
ing forces provide a mechanism to build gene (bead) clus-
ters and generate informational circuits that are agnostic
to the position of a gene along a given chain of chro-
matin. By adjusting the timescale of the crosslinking
forces, the plasticity of the gene clusters can be tuned
based on biological needs. This is akin to tuning the
crosslinking timescale between the rigid (blue) and flexi-
ble (pink) regions of Fig. 6. The biological mechanism is
agnostic to the division between these two regions; tun-
ing the timescale of the crosslinking forces allows the cell
to modify the rigidity of clusters. The arrangement of
beads within clusters provides a physical model for the
dynamics of gene clusters within the nucleus. The ability
to spatially reconfigure genes loci is central to the cell’s
ability to re-wire its transcriptional circuitry. The 3-bead
model shows that the energy barrier for rearrangements
within a cluster is lower than that required for exchanges
between clusters (Fig. 5E, F). The system is remarkably
plastic, with small bursts of energy able to potentiate
new configurations depending on the biological demand.
This model and analysis provide critical insight into the
diversity of chromosomal geometry with a minimal set of
parameters.

Computationally, our analysis is limited to relatively
small numbers of beads due to the need to enumer-
ate all possible pairwise bound states for the Markov
chain. With the growing power of machine learning, it
is likely possible to build a physics-informed neural net-
work [27, 28] to learn the effective potential. This would
allow predictions of cluster dynamics for larger systems
but would need to be re-applied for each timescale or set
of model parameters. The effective potential alone gives
little insight into the mechanism underlying the emergent
behavior that our analysis of the 3-bead model has pro-
vided. This new outlook on the importance of noise at
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the proper timescale aids in deepening our understanding
of life at the cellular level.

IV. METHODS

The idealized chromatin model is based on the
polymer-like chain of beads model in [11, 12]. The po-
sition of bead i is given by the overdamped Langevin
equation

dxi = (f ic + f
i
EV + f

i
bond)dt+

√
2ǫdB. (10)

The parameter ǫ scales the vector of Brownian increments
dB preparing for asymptotic analysis to take the fluctu-
ations to zero. The deterministic confinement force,

f
i
c = −ηxi,

replaces the hard-wall constraint of the nucleus mem-
brane while the excluded volume force,

f
i
EV =

∑

j 6=i

aev(xi − xj) exp

(

− |xi − xj |2
cev

)

,

remains similar to its form in [11, 12]. Parameters η,
aev, and cev are given in Table 1 for both the 361-bead
(xi ∈ R

3, i = 1 . . . 361) and the 3-bead (xi ∈ R
2, i =

1 . . . 3) models. Note we have neglected the spring force
linking the beads together to form a chain. We show in
Fig. 1 that this spring force is not necessary to produce
clustering dynamics.

The stochastic binding force,

f
i
bond =

∑

j 6=i

κbij(xj − xi),

models the binding SMC proteins found in the biologi-
cal system. This force binds two beads, corresponding to
bij = 1 if beads i and j are bound and 0 otherwise. Each
bead can be bound to only one other bead; these stochas-
tic bonds form and break at exponentially distributed
times with a binding rate proportional to the bead sepa-
ration distance, a(xi−xj), and constant breaking-rate c.
The time evolution of the states follows a general CTMC
process; for the 3-bead model the transition rate matrix

is given by

S =







b c c c
a(x1 − x2) −c 0 0
a(x1 − x3) 0 −c 0
a(x2 − x3) 0 0 −c






(11)

with b = −a(x1 − x2)− a(x1 − x3)− a(x2 − x3).
The affinity function a(x) and parameter values are

given in Table 1 for both the 361-bead and the 3-bead
models. Both a(x) and c are scaled by β for the 361-bead
model and α for the 3-bead model to explore the kinetic
timescale on which the crosslinks bind and unbind, mir-
roring the kinetic timescale parameter µ in the large-scale
simulations of [12]. Both a(x) and c are further scaled by
different powers of ǫ to perform the asymptotic analysis
of the fluctuations.

TABLE I. Model parameters and formula.

361-Bead Model 3-Bead Model

a(x)
2

1 + exp(20(|x| − 75))

2

1 + exp(20(|x| − 0.75))
η 0.002 s−1 1
aev 0.03 s−1 2
cev 30,000 nm2 0.5
κ 10 s−1 5
c 0.01 s−1 0.5

Monte Carlo Simulations

We performMonte Carlo simulations of the 3-bead sys-
tem to compare the scaling of the escape times with ǫ to
the effective energy barriers predicted by the theoretical
calculations. The simulations are started in either the
2-bead or 3-bead cluster, and continued until a stopping
condition is met, indicating that the system has left the
basin of attraction of the initial state. From the 2-bead
cluster, we look for either a different 2-bead cluster or
the 3-bead triangle cluster. From the 3-bead triangle
cluster, we look for either a 2-bead cluster or a collinear
configuration that is the saddle point between different
arrangements of the 3-bead triangle cluster. The mean
escape time, τ , is computed by the maximum likelihood
estimate that divides the sum of all escape times by the
number executing the desired transition.
Code for reproducing results is available on GitHub

[29] (quasi-string-reprod).
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