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Abstract:  

Single-cell decisions made in complex environments underlie many bacterial phenomena. Image-
based transcriptomics approaches offer an avenue to study such behaviors, yet these approaches 
have been hindered by the massive density of bacterial mRNA. To overcome this challenge, we 
combine 1000-fold volumetric expansion with multiplexed error robust fluorescence in situ 5 
hybridization (MERFISH) to create bacterial-MERFISH. This method enables high-throughput, 
spatially resolved profiling of thousands of operons within individual bacteria. Using bacterial-
MERFISH, we dissect the response of E. coli to carbon starvation, systematically map subcellular 
RNA organization, and chart the adaptation of a gut commensal B. thetaiotaomicron to micron-
scale niches in the mammalian colon. We envision bacterial-MERFISH will be broadly applicable 10 
to the study of bacterial single-cell heterogeneity in diverse, spatially structured, and native 
environments. 
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Main Text: 

Introduction 

Population-level bacterial dynamics often emerge from the heterogeneous behaviors of single 
cells. Notable examples include entry into and exit from antibiotic persistent states (1), bet hedging 
(2), virulence factor expression (3), and cellular specialization within biofilms (4). Recent 5 
advances in bacterial single-cell RNA-sequencing (scRNA-seq) offer an exciting avenue to study 
such phenomena by providing transcriptome-wide expression profiles for thousands of cells (5–
14). Indeed, such methods have provided insights into antibiotic response (11, 13, 14), prophage 
activation (9, 11, 14), toxin expression (9, 10), sporulation (10), competence (9, 10), mobile 
genetic elements (11, 14), cell-cycle-dependent gene regulation (15), and functional heterogeneity 10 
within the rumen microbiome (16).  

Missing from these studies is the natural spatial context in which many behaviors occur. Yet, 
spatial organization, across a range of length scales, is an essential modulator of bacterial 
dynamics. On the tens-of-micron-scale, spatial gradients in small molecule concentrations tune 
bacterial responses, define niches for commensal growth, or shape interactions in multi-species 15 
communities (17, 18). On the micron-scale, direct cell-to-cell contact controls effector protein 
delivery which mediates predation (19), self- versus non-self recognition (20), contact-dependent 
inhibition (21), and virulence (22). Finally, even sub-micron length scales are relevant, as growing 
evidence indicates that the bacterial transcriptome is internally organized with functional 
consequences (23). Unfortunately, such spatial information is lost during cell dissociation and 20 
RNA extraction in scRNA-seq; thus, current methods are not well suited for the study of such 
processes.  

By contrast, image-based approaches to single-cell transcriptomics provide this spatial context by 
directly imaging and identifying RNAs within fixed cells in their native spatial environment (24–
26). Moreover, by leveraging combinatorial optical barcodes to distinguish RNAs, these 25 
measurements can be massively multiplexed, producing spatially resolved, transcriptome-scale 
expression profiles that span intracellular to tissue-scale lengths (24–26). In eukaryotic systems 
such methods have mapped the intracellular RNA organization, explored regulatory networks, and 
defined, discovered, and charted cell types and states across a range of tissues (24–26). 
Unfortunately, current methods are not compatible with bacteria, as the massive density of 30 
bacterial RNA challenges combinatorial barcode detection. Non-combinatorial barcoding 
approaches can bypass this challenge, as recently illustrated with Pseudomonas aeruginosa (27), 
yet are not suitable for transcriptome-wide profiling.  

Here we overcome this RNA density challenge and introduce a transcriptome-scale, image-based 
approach for bacterial, single-cell transcriptomics. This approach combines a bacterially optimized 35 
expansion microscopy toolbox with multiplexed error-robust fluorescent in situ hybridization 
(MERFISH) (28) and allows single-cell profiling of up to 80% of the transcriptome. We 
demonstrate that this technique—bacterial-MERFISH—accurately profiles 97, 1,057, or 1,930 
operons with large detection efficiency, accuracy, and throughput in log-phase Escherichia coli 
(E. coli) cells. To highlight the discovery potential of this technique, we first profile E. coli 40 
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response to a carbon-source switch, revealing a heterogeneous sequential nutrient exploration 
program. Next, we chart the intracellular organization of the E. coli transcriptome, uncovering a 
previously unappreciated diversity in spatial patterning and a cooperative role for genome and 
proteome organization in shaping transcriptome organization. Finally, we map the adaptation of a 
human gut commensal—Bacteroides thetaiotaomicron (B. theta)—to the mouse colon, revealing 5 
micron-scale fine-tuning of gene expression based on local polysaccharide availability. More 
broadly, these measurements illustrate the potential for bacterial-MERFISH to reveal single-cell 
heterogeneity in a wide range of biological and spatial contexts.  

Results 

Bacterial-MERFISH accurately profiles thousands of operons in E. coli 10 

MERFISH enables the identification of thousands of different mRNA molecules by using 
combinatorial, error-robust, fluorescent optical barcodes built from repetitive rounds of single-
molecule FISH (smFISH) (28). However, to decipher barcodes, the fluorescent signal from 
different molecules must be optically resolvable. For conventional high-resolution optical 
microscopy, only a few molecules per µm3 can be distinguished (29). For eukaryotic systems, large 15 
transcriptome fractions can be targeted while satisfying this limit (28). By contrast, a log-phase E. 
coli cell contains ~8,000 mRNA molecules in a cell volume of ~3 µm3 (30), producing a total 
mRNA density nearly three orders of magnitude greater than that resolvable with diffraction-
limited imaging (Fig. 1A). Thus, mRNA density restricts the imaging of more than a small number 
of bacterial mRNAs (31) and is a substantial challenge to transcriptome-scale imaging.   20 

Density reduction is a natural avenue to address this challenge. Indeed, image-based approaches 
to single-cell transcriptomics have achieved modest degrees of RNA density reduction by 
spreading the barcode signal over more imaging rounds (32, 33) or by leveraging expansion 
microscopy (34) to physically swell the sample (32, 35). While the approximately 10-fold 
reduction in RNA density achieved by these approaches was sufficient to extend image-based 25 
transcriptomes to whole-transcriptome-scale in eukaryotes (32, 33), such density reduction is still 
nearly two orders of magnitude insufficient for similar profiling in bacteria.  

To overcome bacterial mRNA density, we leveraged recent advances in expansion microscopy 
(36, 37) to develop a bacterial-FISH-optimized expansion toolbox capable of up to 1000-fold 
volumetric expansion (Fig. 1B), complementing recent bacterial expansion methods developed for 30 
non-RNA targets and with modest degrees of expansion (38–43). Briefly, we grew E. coli to mid-
log phase, fixed them with paraformaldehyde (PFA), digested the cell wall, expanded them in a 
Ten-fold Robust Expansion (TREx) gel (36), and then re-embedded the sample in a non-
expanding, stabilizing gel (Fig. 1B; Materials and Methods). Using custom expansion-optimized 
staining protocols, we labeled samples with a 16S ribosomal RNA (rRNA) probe and a MERFISH 35 
probe set targeting 97 E. coli operons (Materials and Methods). We targeted operons rather than 
individual genes as the signals from different barcodes from genes on the same polycistronic 
mRNA would not be resolvable.  

Expansion increased the width of E. coli 3.9±0.9-fold (standard deviation [STD], n=4; fig. S1A) 
consistent with a ~50-fold volumetric expansion (fig. S1B). Thus, we term this approach the 50X 40 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2024. ; https://doi.org/10.1101/2024.06.27.601034doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.27.601034
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

expansion protocol. In expanded cells stained with the 97-operon library, individual fluorescent 
puncta were visible, and these molecules were identified with MERFISH (Fig. 1, C to H), 
indicating sufficient expansion to resolve the mRNA density of this targeted library. Interestingly, 
we noted ample number of molecules even in the absence of specific RNA-gel anchoring 
chemistries in PFA-fixed but not methanol-fixed expanded samples, suggesting a PFA-dependent, 5 
RNA-anchoring mechanism (fig. S1, C to I). 

To further explore the multiplexing possible with the 50X protocol, we stained 50X-expanded E. 
coli with a MERFISH probe set targeting 1,057 operons, roughly 40% of the E. coli transcriptome 
(Materials and Methods). While the mRNA density was higher than that observed for the 97-
operon measurement, individual puncta were still resolved and many molecules were identifiable 10 
with MERFISH (fig. S1, J to L). Nonetheless, we noticed an increased frequency of overlapping 
RNA signals (fig. S1K). To address this overlap, we developed an iterative expansion protocol 
that combined TREx (36) with a previous iterative strategy (37). Briefly, cells expanded and 
stabilized with the 50X protocol were expanded in a second TREx gel and then embedded in a 
second stabilizing gel (Fig. 1B; Materials and Methods). This protocol expanded the width of cells 15 
11.1±1.7-fold (STD, n=4; fig. S1A), consistent with a ~1,300-fold volumetric expansion (fig. 
S1B). Thus, we term this protocol the 1000X protocol. When cells were expanded with this 
protocol, the signal from individual RNAs and their identity were clearly distinguished when 1,057 
operons were stained (Fig. 1, I to K). Notably, the 1000X protocol starts with 50X-expanded 
samples (Fig. 1B), facilitating exploration of the necessary expansion for a given sample.  20 

Inspired by the ability to expand E. coli volumetrically by three orders of magnitude, we designed 
a MERFISH library that covers 80% of the transcriptome, corresponding to 1,930 operons 
(Materials and Methods). 1000X-expanded samples stained with this probe set showed clear 
single-molecule signals with limited overlap, and these RNAs could be identified with MERFISH 
(fig. S1, M to O), suggesting that 1000X expansion is sufficient to allow MERFISH profiling of a 25 
substantial fraction of the E. coli transcriptome.   

Notably, during the early development of bacterial-MERFISH, we observed a low correlation 
between the abundance determined via bacterial-MERFISH and that of bulk RNA-sequencing for 
lowly expressed operons, suggesting a higher false-positive rate than that measured by our internal 
false-positive controls (Fig. 1L; Materials and Methods). This discrepancy suggested a bacterial-30 
expansion-dependent source of false positives, which we reasoned might be due to probe binding 
to genomic DNA melted during expansion. Supporting this hypothesis, DNase treatment 
dramatically reduced this apparent false-positive rate, bringing it into agreement with that 
measured with internal controls (Fig. 1M).  

To benchmark the performance of bacterial-MERFISH, we performed two replicate measurements 35 
of 97, 1,057, or 1,930 operons in combination with 50X or 1000X expansion in log-phase E. coli, 
segmented cells from these images, and partitioned RNAs into those cells (Fig. 1, F to K, and fig. 
S1, J to O). We observed strong correlation between these measurements and bulk RNA-
sequencing across all conditions (Fig. 1, M to O, and fig. S2, A and B), indicating that bacterial-
MERFISH can accurately profile RNA expression across four orders of magnitude in abundance. 40 
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Further supporting its accuracy, measurements with bacterial-MERFISH correlated strongly 
between biological replicates, expansion protocols, and multiplexing levels (fig. S2, C to E).  

These measurements also revealed that the detection efficiency—the fraction of targeted molecules 
actually detected—of bacterial-MERFISH is comparable to or greater than the capture efficiencies 
reported for scRNA-seq (5–14) (Fig. 1P and fig. S2F; Materials and Methods). Values ranged from 5 
7% for near-whole transcriptome measurements (1,930 operons) to as high as 50% for more 
targeted measurements (97 operons), with additional expansion providing an increase from 10% 
to 25% for 1,057 operons measurements (Fig. 1P). As expected, the number of mRNA counts and 
unique operons observed per cell varied based on the multiplexing and detection efficiency (Fig. 
1, Q and R). Finally, bacterial-MERFISH can image large numbers of cells, comparable or greater 10 
than those characterized previously with scRNA-seq (5–16), despite the decreased imaging 
throughput due to expansion (fig. S2G). Importantly, with the ability to vary multiplexing and 
expansion, it is possible to balance different aspects of performance, e.g., the number of imaged 
cells versus the degree of expansion, to best suit the question. Collectively, these measurements 
indicate that bacterial-MERFISH is a high-performance, versatile image-based approach to 15 
bacterial single-cell transcriptomics, with low false-positive rates and large dynamic range, 
detection efficiencies, and throughput.  

 

Bacterial-MERFISH reveals an asynchronous hierarchical response during a shift in carbon 
source 20 

One promise of single-cell bacterial transcriptomics is the ability to identify heterogeneous 
bacterial behaviors and to computationally resynchronize the desynchronized response of 
individual cells to environmental stimuli, unmasking dynamics obscured by population averages. 
One illustrative dynamic response is the diauxic shift caused by a switch in carbon source. Bacteria 
often consume different carbon sources in a preferential order regulated, in part, by carbon-25 
catabolite repression (CCR) (44). A bacterial population grown in a mixture of two carbon sources 
will often consume the preferred source, pause growth in a diauxic shift, and then resume growth 
on the less preferred substrate (45). The diauxic shift is classically interpreted as the time required 
to express utilization machinery for the second sugar; however, recent single-cell studies suggest 
that this response is instead shaped by differential dynamics of sub-populations (46). Nonetheless, 30 
the diversity and transcriptional profiles of such sub-populations remain poorly defined.  

Thus, we revisited the classic diauxic shift with bacterial-MERFISH. We grew E. coli in a minimal 
defined medium with a mixture of glucose and xylose (Materials and Methods). As expected, the 
culture grew logarithmically until glucose was exhausted, paused growth in a diauxic shift, and 
then resumed logarithmic growth on xylose before entering stationary phase once both sugars were 35 
exhausted (Fig. 2A). We harvested E. coli cells throughout this process and profiled the expression 
of 1,057 operons (Fig. 2, A to C) in 296,666 cells with 50X expansion—a multiplexing and 
expansion level set to balance transcriptome-wide profiling with the number of profiled cells. For 
experimental efficiency, multiple time points were combined and profiled in a single MERFISH 
measurement by labeling cells with barcoded 16S rRNA probes (27) optimized for expansion 40 
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protocols (Fig. 2B; Materials and Methods). Putative cells were segmented, RNA molecules 
assigned to these cells, and conditions demultiplexed with the 16S rRNA barcode (Fig. 2C; 
Materials and Methods).  

Supporting these measurements, we found that the average RNA expression determined via 
MERFISH was strongly correlated between biological replicates and with bulk RNA-sequencing 5 
at different growth stages (fig. S3, A to D). Moreover, cell populations displayed expected 
expression patterns (Fig. 2D) with cells harvested during growth expressing operons associated 
with amino acid synthesis (e.g., argG and ilvC), translation (e.g., tff-rpsB-tsf and cmk-rpsA-ihfB), 
and aerobic respiration (e.g., atpIBEFHAGDC), and cells harvested during the diauxic shift and 
stationary phase expressing operons associated with stress response (e.g., nlpD-rpoS) and 10 
gluconeogenesis (e.g., glpFKX and glpD).  

To explore the heterogeneity in cellular response to this carbon shift, we integrated the 
measurements from two biological replicates, visualized single-cell heterogeneity with Uniform 
Manifold Approximation and Projection (UMAP), and performed Leiden clustering to distinguish 
sub-populations (Fig. 2, E to I; Materials and Methods). Supporting our analysis, cells harvested 15 
at similar growth phases largely co-integrated (fig. S3E), yet, despite modest transcriptional 
differences, cells collected from log-phase growth in glucose or xylose were largely resolved (Fig. 
2E and fig. S3F). This analysis revealed a rich diversity in behavior at the single-cell level. Cells 
were organized into two major groups, corresponding to cells taken from conditions of growth or 
non-growth (Fig. 2E), and were collectively sub-divided into 14 different clusters (Fig. 2F). These 20 
clusters had unique gene expression profiles (Fig. 2, G and H) and abundances across different 
conditions (Fig. 2I). Supporting cluster validity, individual clusters were observed across both 
replicates (Fig. 2I) and were each marked by multiple operons associated with related biological 
processes (Fig. 2H). Moreover, single-molecule FISH (smFISH) in unexpanded E. coli confirmed 
the co-expression of cluster markers (fig. S4). 25 

During log-phase growth, we identified a diversity of sub-populations (Fig. 2, E to I), including 
clusters associated with translation and amino acid transport (G0 marked by tff-rpsB-tsf and lysP), 
nucleobase synthesis (G6 marked by carAB, codBA, and purHD), arginine synthesis (G7 marked 
by argG, argD, and argCBH), serine biogenesis (G4 marked by serA and serC-aroA), sulfate 
utilization (G11 marked by cysDNC and cysJIH), protein folding (G12 marked by dnaKJ, groSL, 30 
hslVU, clpB, and htpG), and motility and chemotaxis (G3 marked by motRAB-cheAW, fliDST, and 
tar-tap-cheRBYZ) (Fig. 2H). Intriguingly, many of these biochemical processes are required for 
growth in minimal media, yet our analysis revealed that only subsets of cells expressed high levels 
of these essential operons, suggesting a model in which the homeostatic, population-level 
expression of these pathways is produced not by uniform expression across all cells but rather by 35 
transient, coherent bursts of expression that time-average to required levels. This observation is 
consistent with transient bursts in promoter activity revealed with live-cell imaging (47, 48) and 
the presence of similar clusters in recent scRNA-seq measurements (10). Our measurements now 
suggest that such bursts are widespread and occur not at the individual operon level but rather 
upstream in common regulatory factors.  40 
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We also observed a similar degree of heterogeneity during the diauxic shift (Fig. 2, E to I). 
Interestingly, only a subset of clusters expressed operons associated with xylose utilization (N2 
and N10 both marked by xylAB, xylE, xylFGHR, and yagGH) while most clusters in the diauxic 
shift expressed utilization operons associated with carbon sources not included in our medium 
(Fig. 2, E to I). These sources comprised mannose and glycerol (N1 marked by manXYZ, glpABC, 5 
and glpTQ); maltose (N9 marked by malEFGH, malKM-lamB, and malPQ); arabinose (N10 
marked by araE-ygeA, araFGH, and araBAD in addition to xylose-associated operons); mannitol 
and glycolate (N8 marked by mtlADR and glcDEFGBA); and acetate and puterscine (N5 marked 
by acs-yjcH-actP, puuAP-ymjE, and puuDRCBE) (Fig. 2, H and I). N13, like G3, was marked by 
chemotaxis and motility operons. However, these clusters were distinguished by operons 10 
associated with chemotaxis towards peptides (G3; e.g., tar-tap-cheRBYZ and tsr) or sugars (N13; 
e.g., trg and aer), reflecting the differential nutrient needs between the conditions associated with 
these clusters (Fig. 2H).   

We also noted an apparent temporal order in which specific carbon sources were explored. To 
investigate this ordering, we computationally resynchronized cells using a pseudotime analysis 15 
from glucose-log-phase growth through the diauxic shift (Materials and Methods). Not only did 
this analysis reproduce the order of sampling during the diauxic shift (Fig. 2, J and K), supporting 
the pseudotime ordering, it also revealed a temporal cascade of carbon-utilization operon 
expression (Fig. 2L). This cascade started with operons associated with glucose (e.g., ptsG) and 
then proceeded through operons associated with glycogen (e.g., segA-pgm); the glyoxylate cycle—20 
related to acetate utilization—(e.g., pdhR-aceEF-lpd and aceBAK); mannose (e.g., manXYZ); 
galactitol and galactose (e.g., gatYZABCD and mglBAC); glycerol (e.g., glpFKX); maltose and 
fucose (e.g., malT, malEFGH, malKM-lamB, and fucAO); xylose (e.g., xylFGHR and xylAB); and 
then, finally, arabinose (e.g., araFGH and araBAD). The transient co-expression of xylose- and 
arabinose-utilization operons seen at late pseudotime values (Fig. 2L) may represent an overshoot 25 
in carbon-source progression due to the lag between transcription of xylose-utilization operons 
and the transition to the functional utilization of xylose. Importantly, the range of pseudotime 
values observed for each shift condition overlapped with those of other conditions (Fig. 2M), 
supporting a stochastic response model in which cells are desynchronized in their progression 
along this carbon-source hierarchy. Notably, this model does not assume that all cells explore all 30 
carbon sources.  

Together these results reveal that the homeostatic levels of required pathways can be maintained 
by transient, coherent bursts of expression within entire regulons, and that, when faced with carbon 
starvation, E. coli adopts a responsive diversification strategy (49) in which the lack of glucose 
triggers a stochastic hierarchical progression along sugar utilization operons. Importantly, with the 35 
ability to characterize sub-populations and computationally resynchronize cells undergoing 
dynamic responses, bacterial-MERFISH could prove useful in dissecting the diverse regulatory 
mechanisms that encode such cellular heterogeneity. 

 

Bacterial-MERFISH reveals a diversity of intracellular localization patterns for E. coli 40 
mRNAs  
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Another advantage of image-based, single-cell transcriptomic methods is the ability to measure 
the intracellular transcriptome organization. Specific bacterial mRNAs are localized to the 
cytoplasm (50–52), membrane (50–52), poles (50, 52–55), chromosomal loci of origin (56), or the 
surface of intracellular organelles (57) as determined via low throughput mRNA imaging (50–57) 
or biochemical fractionation (50, 52). This organization has proposed functional roles in protein 5 
sorting, complex assembly, and mRNA turnover (23). However, as RNA localization has yet to be 
imaged at the transcriptome-scale, the extent and diversity of spatial organization remain unclear.  

To explore the spatial organization of the E. coli transcriptome, we leveraged our 50X-expanded, 
1,057-operon measurements of E. coli grown in LB. To define intracellular RNA localization, we 
mapped each mRNA molecule to its axial and radial position within each cell and normalized these 10 
coordinates to the cell length and width (Fig. 3A; Materials and Methods). We then computed the 
average axial and radial distributions for each mRNA across all measured cells (Fig. 3, B to D; 
Materials and Methods). Consistent with previous reports in E. coli (23), we identified mRNAs 
enriched in the cytosol (e.g., dnaKJ), at the membrane (e.g., ptsG), and toward the poles (e.g., 
dnaB) (Fig. 3, C and D). However, we also noticed a striking diversity of variations on these major 15 
patterns, with mRNAs enriched at different locations along the membrane, at multiple cytoplasmic 
locations, or in a single central focus (Fig. 3E). These patterns were reproduced between replicate 
measurements (fig. S5, A to C), with 1000X-expanded MERFISH measurements (fig. S5D), and 
with unexpanded smFISH (Fig. 3F). 

To further categorize this spatial diversity, we leveraged a measure of pattern similarity to visualize 20 
and cluster spatial patterns (Materials and Methods). This analysis produced five major clusters of 
mRNA distributions (Fig. 3G) which showed some degree of continuous spatial variation within 
the clusters. The Cytoplasmic cluster comprised patterns including uniform filling of the cytoplasm 
(e.g., dnaKJ and glnS), multiple foci throughout the cell (e.g., uxuAB and groSL), or increased 
central density (e.g., metG). mRNAs with a strong central focus (e.g., adhE and rnb) defined the 25 
Midcell-cytosolic cluster. The Membrane cluster was defined by diffuse membrane-enriched 
patterns (e.g., ptsG and cydAB) or membrane enrichment at or adjacent to the poles (e.g., yifK, 
kgtP or yojI) while the Midcell-membrane cluster was defined by strong membrane enrichment 
only in the middle of the cell (e.g., dtpA and pntAB). Finally, the Polarized cluster was defined by 
diffuse (e.g., mreBCD) or sharp cytoplasmic foci (e.g., metBL) near the poles. Importantly, some 30 
mRNAs at cluster boundaries shared features similar to nearby clusters (e.g., proS and proP), 
underscoring a continuous variation in spatial patterns. 

To investigate possible patterning mechanisms, we explored the correlation between clusters and 
mRNA features. Covariation with spatial distribution was modest for transcript length, GC content, 
abundance, and half-life (fig. S6, A to H) but strong for encoded protein location (Fig. 3, H to J, 35 
and fig. S6, I to N). Specifically, operons containing mRNAs that encode at least one inner-
membrane protein were enriched in membrane-associated RNA localization clusters, whereas 
mRNAs that encode cytoplasmic proteins were enriched in clusters found within the cytosol (Fig. 
3J). These observations are consistent with previous measurements for individual mRNAs (50) as 
well as transcriptome-wide mRNA groups (51); with the co-translational insertion mechanism of 40 
inner-membrane proteins, which would concentrate mRNAs at the membrane during translation 
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(58); and with the report of membrane-associated sequence features enriched in inner-membrane-
protein-coding mRNAs (59, 60).  

In parallel, the genomic locus from which the mRNA was transcribed also correlated strongly with 
spatial patterning. mRNAs within the Midcell-cytosolic or Midcell-membrane clusters were 
preferentially encoded from genomic loci near the terminus of replication (terC) while the genes 5 
for mRNAs in other clusters were depleted in this chromosomal region (Fig. 3K and fig. S6O). 
During conditions of fast growth, the E. coli chromosome is organized with terC in the cell center 
and oriC and the left and right chromosomal arms replicating near the poles. This structure is 
maintained for the majority of the cell cycle, with the polar terC macrodomain formed at the pole 
of a newly divided cell moving rapidly to the cell center (61). Indeed, the axial distribution of 10 
mRNAs averaged across all (Fig. 3, L and M) or portions (fig. S6P) of the cell cycle were 
consistent with this organization.  

Our measurements now unify two previous models suggested for bacterial transcriptome 
organization—that either genomic (56) or proteomic (50–52) features dictate organization. 
Specifically, we show that both features play a role in the global organization of mRNAs, with 15 
protein location shaping cytoplasmic versus membrane enrichment and genomic feature shaping 
axial enrichment both within the cytoplasm or on the membrane. Nonetheless, we identified 
multiple mRNAs with spatial patterns that deviate from these global rules, including membrane 
enriched mRNAs that do not encode known inner-membrane proteins (fig. S7, A and B), 
cytoplasmic-enriched mRNAs that encode an inner-membrane protein (fig. S7, C and D) and many 20 
mRNAs with spatial patterns inconsistent with those predicted for their genomic loci (fig. S7, E to 
G). These exceptions raise the possibility that there are mRNA-specific localization mechanisms 
that remain to be discovered and that these exceptions, in addition to global patterns, might have 
functional significance. Importantly, bacterial-MERFISH offers a direct approach to measuring 
such patterns, which should greatly enable mechanistic and functional studies of the intracellular 25 
organization of the bacterial transcriptome.  

 

Bacterial-MERFISH reveals adaptation of a gut commensal to distinct niches in the colon 

Image-based approaches to single-cell transcriptomics also promise the ability to explore gene 
expression within complex, spatially structured environments. To explore this capability of 30 
bacterial-MERFISH, we leveraged germ-free mice monocolonized with the human gut commensal 
B. theta (Fig. 4A). As Bacteroides have the ability to harvest a remarkable diversity of 
polysaccharides—both from the rich dietary pool as well as those deposited onto the mucus layer 
by the host (62)—we reasoned that B. theta might modulate its polysaccharide utilization based 
on local polysaccharide availability, as suggested previously (63). To explore this possibility, we 35 
designed a MERFISH panel that covers the diverse importers (i.e., SusC proteins) within 
polysaccharide utilization loci (PUL), hybrid two-component systems (HTCS) often associated 
with the regulation of PUL expression, and a handful of genes associated with central metabolism 
and other bacterial functions, targeting 159 operons in total (Fig. 4B).  
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We then resected the colon from a monocolonized mouse, and the sample was methacarn-fixed, 
paraffin-embedded, and sectioned (Fig. 4A; Materials and Methods). In an unexpanded section, 
16S rRNA staining revealed depletion of B. theta from the sterile inner mucus layer next to the 
host epithelial layer, enrichment near the outer mucus layer (64), and variable density throughout 
the colonic lumen (Fig. 4, A and C). We then expanded a section with a modified 50X-protocol 5 
and stained it for MERFISH. The 16S rRNA signal revealed that the distribution of B. theta was 
largely preserved despite a notable loss in dietary debris (Fig. 4, C and D; Materials and Methods). 
Critically, individual mRNAs could be identified by MERFISH in single B. theta cells (Fig. 4, E 
and F). Across this colonic cross section, we observed that the expression of many B. theta operons 
was spatially variable. Some mRNAs were expressed throughout the lumen (e.g., BT_0364 and 10 
BT_4671) while others were more prominently expressed near the mucus layer (e.g., BT_3958 
and BT_2894) (Fig. 4G). Multi-color smFISH in unexpanded samples supported these expression 
patterns (fig. S8).  

To quantify this spatial variation, we performed these measurements in six slices sampled from 
the colon of two mice. Each colon was fixed with one of two different methods to control for 15 
potential fixation-dependent artifacts (Materials and Methods), which were minor as evidenced by 
strong correlation between these measurements (fig. S9, A to C). As PUL expression can be low 
(fig. S8), we averaged gene expression over small spatial patches containing ~5 B. theta cells and 
visualized transcriptional variation across patches using UMAP and diffusion maps (Fig. 4H and 
fig. S9, D to F). Individual genes expressed more prominently near the mucus layer or throughout 20 
the lumen defined different regions of this UMAP (fig. S9, D and E), and the diffusion analysis 
suggested that an important axis of variation, captured by the first diffusion component (DC1), is 
related to mucus proximity. Patches of low DC1 values were found enriched near the mucus 
whereas patches of high DC1 values were distributed more uniformly throughout the lumen (Fig. 
4, H to K, and fig. S9F). While these observations reveal that mucus proximity is a major driver 25 
of B. theta expression variation, the presence of low-DC1 patches deeper into the lumen and many 
high-DC1 patches near the mucus, suggest that local spatial heterogeneity may produce similar 
scale variations. More broadly, our data suggest that other spatial covariates remain to be 
described, as some samples showed luminal regions with unique patterns of gene expression (fig. 
S9G) or low-DC1 expression signatures throughout the entire lumen (fig. S9, H to M).  30 

To determine the operons that underlie the mucus-proximal adaptation of B. theta identified with 
DC1, we separated spatial patches into low-DC1 (mucus-associated) or high-DC1 (lumen-
associated) compartments. We found 38 operons with statistically significant enrichment between 
these two compartments (Fig. 4L), with substantial overlap in the enriched operons when samples 
from the two fixation methods were analyzed separately (fig. S9, N to Q). Interestingly, there was 35 
a clear difference in the basic gene categories differentially expressed between the mucus- or 
lumen-associated compartments. 9 of the 15 lumen-associated operons were connected with 
central metabolism while none of the 23 mucus-associated operons had this functional annotation 
(Fig. 4L), suggesting that luminal B. theta may upregulate elements of central metabolism relative 
to B. theta closer to the mucus layer. By contrast, all 23 mucus-associated operons contain SusC 40 
or PUL-associated HTCS genes, as opposed to only 5 of the 15 lumen-associated operons, 
suggesting mucus-associated niches support harvesting of a greater polysaccharide diversity.  
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We next examined the known substrates for the PUL enriched in each compartment. Of the mucus-
associated PUL with known substrates, 10 target host-mucus polysaccharides while only 1 targets 
dietary polysaccharides (Fig. 4L). By contrast, in the luminal compartment, 2 of the 3 PUL with 
known substrates target dietary polysaccharides (Fig. 4L). These observations are consistent with 
a greater availability of host-derived polysaccharides near the mucus, as expected, supporting our 5 
spatial analysis. Moreover, of the 23 PUL enriched in mucus-associated patches, 10 have unknown 
substrates (Fig. 4L). Given that we observe these operons enriched in mucus-associated patches, 
we predict that these PUL target host-derived polysaccharides or other carbohydrates enriched in 
this local environment. Our measurements complement a previous microdissection study (63) of 
the spatial variation of B. theta gene expression by providing a direct micron-scale measure of this 10 
variation and by extending the list of mucus-enriched PUL due, perhaps, to increased spatial 
resolution, improved sensitivity, or biological variability between the studies. 

In total, these measurements reveal that bacteria fine tune gene expression to adapt to micron-scale 
niches in the gut. Excitingly, with bacterial-MERFISH it should now be possible to profile such 
micron-scale adaptation to a wide variety of complex environments.  15 

 

Discussion 

Here we introduced bacterial-MERFISH, an image-based approach to single-cell transcriptomics 
that overcomes the massive mRNA density within bacterial cells by combining an optimized 
expansion microscopy toolbox with MERFISH. Bacterial-MERFISH offers complementary 20 
benefits to the growing suite of bacterial scRNA-seq methods (5–14). As a targeted method, it can 
sidestep abundant RNA (e.g., rRNA) challenges while providing an opportunity for high detection 
efficiency, which may prove essential for the many bacterial mRNAs that are very lowly 
expressed. In parallel, bacterial-MERFISH can be highly multiplexed, providing the ability to 
screen transcriptional changes with minimal prior knowledge of relevant targets. Bacterial-25 
MERFISH can also image large numbers of cells, which may prove useful in the characterization 
of rare phenotypes. As an image-based technique, it naturally links gene expression to cell 
morphology or to intracellular molecular organization. Finally, with recent advances in all-optical 
readouts of pooled genetic screens (65, 66), it may now be possible to combine transcriptome-
wide profiling with genome-wide perturbations in bacteria.  30 

However, we anticipate that one of the most substantial advantages of bacterial-MERFISH will be 
the ability to profile bacterial behaviors in situ. Whether it is interactions between specialized 
cellular states within single-species biofilms or between different species in mixed communities, 
bacterial-MERFISH provides a means of linking spatial proximity, cellular micro-environment, 
and global architecture to gene expression. Studying bacteria in their native environment also 35 
bypasses the need for culture; thus, bacterial-MERFISH may offer an avenue for the in situ 
characterization of the diverse range of unculturable bacteria. Finally, as MERFISH can now target 
both eukaryotic and prokaryotic mRNAs, bacterial-MERFISH may allow the simultaneous 
profiling of host and bacterial gene expression, which may deepen our understanding of host-
microbe interactions such as commensal colonization or pathogenic infection. More broadly, the 40 
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ability to directly profile single-cell bacterial transcriptomes in their native, complex environments 
may offer a new window into the substantial range of bacterial behaviors not well captured in a 
culture flask.  
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Fig. 1. Image-based expression profiling of thousands of operons in E. coli with bacterial-
MERFISH. (A) The RNA density resolvable with fluorescence microscopy and the estimated E. 
coli mRNA density. (B) Protocol for bacterial-MERFISH. (C-E) Images of fixed, log-phase E. 5 
coli grown in Luria Broth (LB) stained for the 16S ribosomal RNA (rRNA) (C), the first bit of a 
97-operon MERFISH measurement (D), or overlay of the two (E). Scale bars: 20 µm. (F,G) As in 
(C,D) but for 50X-expanded E. coli. (H) RNA identity (color) determined by MERFISH for cells 
in (F,G). (I-K) As in (F-H) but for 1000X-expanded E. coli stained with a 1,057-operon library. 
(L) Average mRNA copy number per field of view (FOV) for a 50X-expanded, 1,057-operon 10 
MERFISH measurement without DNase treatment versus bulk RNA-sequencing (RNA-seq) 
abundance from a matched culture. Dashed line: false-positive rate estimated from the average 
MERFISH abundance for the 100 mRNAs with the lowest RNA-seq abundance. TPM: transcripts 
per million reads. Left: distribution of MERFISH false-positive-controls (‘blank’). (M,N) As in 
(L) but for 50X-expanded, 1,057-operon MERFISH (M) or 1000X-expanded, 1,930-operon 15 
MERFISH (N) with DNase treatment. r: Pearson correlation coefficient between logarithmic 
expression. (O,P) Correlation coefficient with bulk sequencing (O) or detection efficiency (P) for 
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different MERFISH measurements. Bars represent the average between two replicates (markers). 
(Q,R) Distribution of unique operons (Q) or total mRNAs (R). Markers represent the average. 
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Fig. 2. Bacterial-MERFISH reveals a stochastic hierarchical response to carbon starvation. 
(A) Optical density (OD) at 600 nm of E. coli growing in minimal defined medium containing a 
mixture of glucose and xylose. Markers: biological replicates, colored if sampled for MERFISH. 
(B) 16S rRNA sample multiplexing strategy. (C) rRNA image colored by identified sampling 
condition (left), segmented cell boundaries similarly colored (middle), and identified RNAs (color; 5 
right) for a 50X-expanded, 1,057-operon MERFISH measurement. rRNA colors are defined as in 
(A). Scale bars: 20 µm. (D) Average gene expression measured in z-score for sampling conditions 
as listed in (A). (E-G) UMAP of cells colored by condition (E), Leiden cluster (F), or the natural 
log of normalized gene expression (G). Clusters are numbered in order of abundance and labeled 
based on growth (‘G’) or non-growth (‘N’). (H,I) Marker gene expression measured in z-score (H) 10 
and relative fraction in each condition (I) for clusters. (J,K) Scatter plot of the first two diffusion 
components for cells collected from glucose log-phase or diauxic shift colored by condition (J) or 
pseudotime (K). (L) Average carbon-utilization operon expression measured in z-score at different 
pseudotimes. (M) Distribution of the pseudotime values by condition.  
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Fig. 3. The E. coli transcriptome is organized in diverse patterns shaped by proteome and 
genome organization. (A) Mapping mRNAs to a normalized cellular coordinate system. (B) 
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Location of dnaKJ (top), ptsG (middle), or dnaB (bottom) mRNAs measured with 50X-expanded, 
1,057-operon MERFISH in LB log-phase E. coli. mRNAs were mapped to a positive axial midcell 
distance and radial coordinate (red upper quadrant) and mirrored (gray quadrants) for visualization 
and analysis. (C,D) Smoothed, normalized RNA density for the localizations plotted in (B) along 
the radial and axial directions (C) or radial directions (D). (E) As in (C) for an illustrative mRNA 5 
set. (F) Averaged, normalized RNA signal for unexpanded smFISH of individual operons for a 
single z-plane. (G) UMAP of mRNA spatial distributions colored by cluster and marked by name 
or number for examples in (C) or (E), respectively. (H,I) UMAP as in (G) colored by predicted 
location, inner membrane (H) or cytoplasm (I), of the encoded proteins for each mRNA. (J) 
Enrichment of protein location label within each cluster. Color: cluster. Size: fraction of operons 10 
with label. Boundary: significance of enrichment (‘y’ is an FDR-corrected p-value less than 0.05). 
(K) UMAP as in (G) colored by chromosomal position from which each operon is transcribed. 
The origin (oriC) and terminus (terC) of replication are listed. (L) As in (C) for example mRNAs. 
(M) Normalized, averaged, axial mRNA density arrayed by the chromosomal location from which 
they were transcribed.  15 
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Fig. 4. Adaptation of a gut commensal to micron-scale niches in the mammalian colon. (A,B) 
The colon from B. theta monocolonized mice was dissected, fixed, sliced, and expanded (A), and 
MERFISH targeting 159 operons—comprising polysaccharide utilization loci (PUL), hybrid two-
component systems (HTCS), and other operons—was performed (B). (C) Unexpanded colon 5 
section colored by 16S rRNA (red), DAPI (blue), and dietary debris autofluorescence (green). 
Yellow indicates autofluorescence in multiple channels. Scale bar: 500 µm. (D) 50X-expanded 
colonic section colored by DAPI (blue) and the first bit of a MERFISH measurement (magenta). 
Scale bar: 200 µm. (E,F) The first bit of a MERFISH measurement (E) and RNA identity (F) for 
two B. theta cells imaged in (D). Scale bars: 10 µm. (G) Spatial distribution of all (gray) or 10 
individual RNAs (red). Host tissue is marked. Scale bars: 1 mm. (H,I) UMAP of patch gene 
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expression colored by the first diffusion coefficient (DC1; H) or distance to host tissue (I). (J) 
Distribution of patch-host distance for patches with low, mid, and high DC1 values. Lines: median. 
(K) Spatial distribution of patches with low (blue), high (orange), or intermediate (gray) DC1 
values for slice in (G). (L) Enrichment significance versus log-fold change for operon expression 
in high- versus low-DC1 patches. Marker: gene type. Marker fill color: PUL substrate, where 5 
known. The colored regions indicate an FDR-corrected p-values less than 0.05.  
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