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Abstract
Random fluctuations (noise) in gene expression can be studied

from two complementary perspectives: following expression in a
single cell over time or comparing expression between cells in a
proliferating population at a given time. Here, we systematically
investigated scenarios where both perspectives lead to different
levels of noise in a given gene product. We first consider a sta-
ble protein, whose concentration is diluted by cellular growth, and
the protein inhibits growth at high concentrations, establishing a
positive feedback loop. For a stochastic model with molecular
bursting of gene products, we analytically predict and contrast the
steady-state distributions of protein concentration in both frame-
works. Although positive feedback amplifies the noise in expres-
sion, this amplification is much higher in the population framework
compared to following a single cell over time. We also study other
processes that lead to different noise levels even in the absence
of such dilution-based feedback. When considering randomness
in the partitioning of molecules between daughters during mito-
sis, we find that in the single-cell perspective, the noise in protein
concentration is independent of noise in the cell cycle duration.
In contrast, partitioning noise is amplified in the population per-
spective by increasing randomness in cell-cycle time. Overall, our
results show that the commonly used single-cell framework that
does not account for proliferating cells can, in some cases, un-
derestimate the noise in gene product levels. These results have
important implications for studying the inter-cellular variation of
different stress-related expression programs across cell types that
are known to inhibit cellular growth.

Introduction
The intracellular level of gene products is the result of com-
plex interconnected biochemical processes that are intrinsically
stochastic and often operate with low-copy number components.
This stochasticity is manifested as intercellular variation in gene
expression levels within an isogenic cell population despite con-
trolling for factors, such as the extracellular environment and cell-
cycle effects [1–4]. Random fluctuations (noise) in gene expres-
sion levels fundamentally impact all aspects of cell physiology
and the fidelity of cellular information processing. Not surpris-
ingly, depending on the gene function and context, expression
noise is subject to evolutionary pressures [5–10] and actively
regulated through diverse mechanisms. For example, the pro-
moter architecture/genomic environment [11–13], the kinetics of
different gene expression steps [14–16], the inclusion of feed-
back/feedforward loops [17–22], and the ubiquitous binding of
proteins to decoy sites [23–25] have been shown to both attenu-
ate or amplify noise levels.

Over the last few decades, single-cell studies have interest-

ingly revealed the beneficial roles of noise in gene product levels.
These include, but are not limited to, driving genetically-identical
cells to different fates [26–33] and facilitating population adapta-
tion to environmental fluctuations [34–38]. The latter scenario is
exemplified by rare populations of clonal cells that survive lethal
stresses, as seen in antibiotic treatment of bacteria [39–44], or
cancer cells undergoing chemotherapy [45–49]. The non-genetic
basis of heterogeneous single-cell responses to stress is a topic
of current research, and several publications have implicated pre-
existing drug-tolerant expression states arising as result of noise
in gene regulatory networks [50,51].

Random fluctuations in the level of a given protein can be stud-
ied from two perspectives: single cell and population [52–54].
The commonly used single-cell perspective approach captures
the stochastic dynamics of protein level in a single cell over time
(Figure 1A), and here the effects of cell growth and division are
either ignored or implicitly captured (for example, through the
continuous dilution of concentration). In the population perspec-
tive, one explicitly considers an exponentially expanding cell pop-
ulation, and gene product variability is quantified across all cells
at a given time point. A fundamental question of interest is when
do these complementary perspectives predict different degrees
of stochastic variation in gene expression?

Our analysis identifies two scenarios where single-cell and
population perspectives yield different extents of fluctuations in
the concentration of a given protein of interest. The first scenario
arises when the intracellular concentration directly or indirectly
affects cellular growth, and hence determines the cell’s prolifera-
tion capacity. We specifically focus on the case where high pro-
tein concentration inhibits cellular growth. This drives the con-
centration even higher because of reduced dilution. This effect
implements a positive feedback loop [55–58]. This expression-
growth coupling can be seen in many cases of protein-induced
stress response [59], cell resource saturation [60, 61], and is a
feature of many stress-tolerant expression programs. For exam-
ple, high expression of specific proteins comes at the cost of in-
hibiting cellular growth in the absence of stress, but improves cell
survival in the presence of stress [62–65].

From a mathematical perspective, we propose approaches
based on the solution of the associated differential Chapman-
Kolmogorov equation (dCKE), and the population balance equa-
tion (PBE), to derive protein concentration distributions in the
single-cell and population perspectives, respectively. The sim-
plicity of our modeling frameworks allows exact derivations of the
corresponding probability density function (pdf), which are then
compared and contrasted between the two perspectives with in-
creasing feedback strength.

The second scenario corresponds to randomness in the parti-
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Figure 1: Single-cell and population perspectives for investigating stochastic gene expression with dilution-based feedback regulation.
(A) (top:) For the single-cell perspective, concentration of a given protein is tracked along a single lineage. (bottom:) From a population point of
view, the protein concentration distribution is obtained across all descendants of the colony. Different shades of green represent the protein level for
each cell. (B) (left:) Schematic of the gene expression model with random bursts of protein synthesis, and concentration dilution in between burst
events. In the model without regulation (blue), the dilution rate is constant. In the model with feedback on dilution (green), the dilution rate decreases
as the protein concentration increases, according to (3). (right:) Sample trajectories and corresponding protein concentration distributions for both
models. The gray lines in the background show protein dilution trajectories; horizontal dashed lines represent the mean concentration in both models.
Parameter values used for these trajectories are β = 10, k = 1/100, λ = 10 (no feedback), λ = 4.76 (with feedback), γ = 1 in arbitrary units. The
time axis is normalized with respect to the dilution rate γ.

tioning of protein molecules between two daughters during mito-
sis and cytokinesis [66]. In this case, concentration fluctuations
in the single-cell perspective are modeled using the formalism of
Stochastic Hybrid Systems (SHS) resulting in an exact analyti-
cal formula for the concentration noise level, as quantified by the
steady-state squared coefficient of variation of protein concentra-
tion. The corresponding statistics from the population perspec-
tive are obtained via agent-based models that track expression
levels within each cell of a proliferating colony. Interestingly, our
results show that coupling the partitioning process with the inher-
ent randomness of cell-cycle times enhances expression variabil-
ity across the population as compared to the single-cell perspec-
tive. We begin by formally introducing the two different perspec-
tives for studying stochastic expression, and how stochasticity is
modeled based on random bursts of gene activity.

Single cell and population to quantify the statis-
tics of gene expression

We study stochastic variations in the concentration of a specific
protein within proliferating cells using two complementary per-
spectives. These perspectives are graphically illustrated in Fig-
ure 1A, where the expansion of a cell colony is represented as a
lineage tree: the root of the tree represents the progenitor cell,
each branching point is a cell division event, and the horizontal
distance between consecutive branching points represents the
cell-cycle duration. The color intensity represents the protein
level at a given time: the lighter the green, the higher the pro-
tein level. During cell division, a mother cell splits into two iden-
tical daughters, each inheriting half of the mother’s volume and
protein amount. Thus, the protein concentration in the newborn
daughters is assumed to be equal to the mother’s concentration

Notation Interpretation
x Random process representing the intracellular protein concentration
λ Rate of occurrence of protein bursts, i.e., burst frequency
β Mean size of exponentially distributed protein bursts
γ Maximum dilution rate
k Feedback strength quantifying the expression-dilution coupling
ε Degree of partitioning noise in the segregation of protein molecules between daughters
τd Cell cycle duration
⟨xn⟩ n-th order moment of a random variable/process, ⟨·⟩ is the expectation operator
⟨xn⟩ := limt→∞⟨xn⟩ Steady-state moment of a random variable

⟨x⟩ Steady-state mean protein concentration
σ2

x := ⟨x2⟩ − ⟨x⟩2 Steady-state variance of protein concentration
CV2

x := σ2
x/⟨x⟩2 Steady-state coefficient of variation of protein concentration, also defined as noise

Skewx :=
(
⟨x3⟩ − 3⟨x⟩σ2

x − ⟨x⟩3
)
/σ3

x Steady-state skewness of protein concentration

(·)SC , (·)Pop Statistics of protein concentration in single cell and population perspectives, respectively

Table 1: Model parameters and variables studied in the text.
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Figure 2: Comparison of protein distribution in single-cell and population perspectives as the feedback intensifies. (A) The region of
existence of the steady-state protein distribution in terms of the feedback strength k and relative burst frequency λ/γ. Green region: stationary
distribution p(x) exists in both single cell and population perspectives. Brown region: Only the distribution in the population perspective exists. Yellow
region: Distribution does not exist in any of the frameworks. Bold red line: a set of values (k ,λ/γ), resulting in fixed ⟨x⟩SC = 100 as per (7). (B)
Comparison of protein distribution in single-cell (solid green line) and population perspectives (brown dashed) as feedback increases: (top:) weak
feedback, (bottom:) strong feedback. (C) (from top to bottom:) Mean protein level, protein noise, and distribution asymmetry in the single cell and
population frameworks; λ is chosen so that ⟨x⟩SC = 100 as k increases following the bold red line in panel (A). For all plots, we set β = 10, γ = 1.

just before division. This assumption of perfect partitioning will
be relaxed later in the manuscript. In the single-cell approach,
only one of the two daughter cells is tracked after division and
protein statistics are determined based on a single lineage path
over time. In contrast, in the population approach, both daughter
cells are tracked, and statistics are estimated on all descendant
cells at a fixed point in time.

To analytically derive and contrast the concentration distribu-
tion in both perspectives, we take advantage of a simple one-
dimensional model of gene expression that has previously been
introduced [67] and validated with single-cell data [68, 69]. This
model consists of protein synthesis that occurs in short periods of
intense gene activity, often referred to in the literature as burst-
ing. Diverse mechanisms that span all stages of gene expres-
sion (promoter activation / transcription / translation) have been
attributed to bursting [70–77], and each stochastically-occurring
burst event increases protein concentration by a random amount.
Considering a long-lived protein (i.e., half-life much longer than
the cell-doubling time), its concentration is continuously diluted
along the cell cycle due to exponential growth in cell size.

Effects of growth-mediated feedbacks on protein
concentration fluctuations

In this section, we provide descriptions of the model coupling
bursting expression events with dilution-based positive feedback
in both single-cell and population perspectives. These models
are analyzed to derive exact steady-state distributions for protein
concentration that are compared and contrasted between the two
perspectives with and without feedback regulation.

Protein distribution for single-cell perspective

In the single-cell perspective, the protein concentration x(t) at
time t within an individual cell evolves stochastically according to
the following rules. Burst events occur according to a Poisson

process with rate or burst frequency λ. During each burst, x
increases instantly with a burst size b drawn from an exponential
distribution with mean β. These increments in concentration are
conveniently represented by the reset:

x
λ→ x + b, b ∼ Exp(1/β). (1)

It is important to point out that both the burst frequency and size
in this concentration model are invariant with respect to the cell
size. This implicitly assumes appropriate scaling of expression
rates (in terms of the number of molecules synthesised per unit
time) with cell size [78–86].

Feedback in dilution is modeled phenomenologically by con-
sidering the cellular growth rate

γ

1 + kx
, (2)

to be a decreasing function of concentration x (Figure 1B, lower
panels). This results in the following dilution dynamics in between
burst events

dx
dt

= −x
γ

1 + kx
, (3)

where k ≥ 0 can be interpreted as the feedback strength and
γ > 0 is the maximum dilution rate. In summary, intracel-
lular fluctuations in protein concentration are captured by the
piecewise deterministic Markov process (PDMP) x(t) defined
by (1)-(3). For the reader’s convenience, we provide a compi-
lation of model parameters and symbols used to quantify con-
centration statistics in Table 1.

Before analyzing the feedback model, we briefly review the
special case of no feedback (k = 0) that corresponds to con-
stant cellular growth and dilution rate γ (Figure 1B, upper pan-
els). Prior analysis of this unregulated gene expression model
predicted that the steady-state protein distribution p(x) followed
a gamma distribution with parameters λ/γ and β (shape and
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scale, respectively) [67], consistent with single-cell variations in
the expression of specific proteins in Escherichia coli and Sac-
charomyces cerevisiae [69]. The steady-state protein distribution
can be analyzed through its statistical properties (defined in Ta-
ble 1): the mean ⟨x⟩, the squared coefficient of variation CV2

x
(quantifying the noise in protein level), and the skewness (mea-
sure of the distribution asymmetry). For this unregulated case
(k = 0), we obtain

⟨x⟩ =
λβ

γ
, CV2

x =
β

⟨x⟩
, Skewx = 2

√
β

⟨x⟩
, (4)

and it is interesting to note the ratio Skewx/CVx = 2.
Now, considering the model with feedback (k > 0), the time

evolution of the probability density function (pdf) p(x , t)SC is given
by the differential Chapman-Kolmogorov equation (dCKe) [67,
87, 88]. Here and throughout the article the subscript SC is
used to denote distributions and statistics in the single-cell per-
spective. The stationary protein distribution p(x)SC defined as
p(x)SC := limt→∞ pSC(x , t) follows

pSC(x) = (1 + kx)
βη2

Γ(λ/γ)
e−ηx (ηx)λ/γ−1, η = 1/β − λk/γ,

(5)
where Γ(z) =

∫∞
0 uz−1e−u du is the gamma function (see Ap-

pendix S1 for details on dCKe and its analytical solution). We
observe from (5) that pSC(x) exists only for the set of parameters
λ, β and k that satisfy η > 0. An interpretation of this condi-
tion is that the average production flow λβ must be less than the
maximum dilution flow γ/k in (3). Otherwise, the protein dilution
is not fast enough to compensate for the protein production rate
and the mean level unboundedly increases over time; thus, the
stationary distribution does not exist. Figure 2A shows the space
of parameters where the distribution (5) exists.

Using (5) we obtain the following statistical properties of the
protein level in terms of the feedback strength k

⟨x⟩SC = ⟨x⟩ 1 + kβ

1 − k ⟨x⟩
, (6a)

(
CV2

x

)
SC

=
β

⟨x⟩

(
1 − 1 + λ/γ(

1 + 1
kβ

)2

)
, (6b)

(Skewx )SC = 2
(λ/γ + 1 − (ηβ)3)(
λ/γ + 1 − (ηβ)2

)3/2
, (6c)

where ⟨x⟩ is the mean concentration of the unregulated process
as per (4). To have a fair comparison of the effect of increasing
k , we hold the mean protein level ⟨x⟩SC fixed for different values
of k . To achieve this, we use (6a) to express the burst frequency
λ as a function of k :

λ → γ⟨x⟩SC

β(1 + kβ + k ⟨x⟩SC)
. (7)

As a graphic example, the way λ must change as we increase
k to maintain ⟨x⟩SC = 100 is shown in Figure 2A (red line). Fig-
ure 2C shows that after fixing ⟨x⟩SC ,

(
CV2

x

)
SC

, and (Skewx )SC

are increasing functions of k (green lines). Thus, as feedback
becomes stronger, the protein distribution exhibits greater noise

and becomes more right-skewed. In particular, in the limit of
weak feedback strength (k ≪ 1), the distribution statistics are
approximated as:(

CV2
x

)
SC

≈ β

⟨x⟩SC

(
1 + k

(
β + ⟨x⟩SC

))
, (8a)

(Skewx )SC ≈ 2

√
β

⟨x⟩SC

(
1 +

k
2

(
β + ⟨x⟩SC

))
. (8b)

Notice that without regulation (k = 0), the protein distribution
in a single cell becomes identical to the unregulated one with
statistics given by (4). The presence of weak regulation scales
these unregulated statistics (4) by an increasing function of k .
Finally, recall that the ratio ((Skewx )SC / (CVx )SC) was equal to 2
for unregulated gene expression (k = 0), but decreases below 2
with increasing positive feedback strength k .

Protein distribution for population perspective

To extend the single-cell framework to a population one, it is re-
quired to describe the dynamics of cell proliferation. We assume
that cell division events are modeled by a non-homogeneous
Poisson process with rate γ/(1 + kx) [89]. Then a cell with the
protein level x at time t has a probability [γ/(1 + kx)]dt to divide
during the next infinitesimal time interval (t , t + dt). It also fol-
lows that cells with low protein concentrations proliferate faster
than those with high protein levels. Note that in the limit of the
unregulated protein (k = 0), division events occur according to
the standard Poisson process with rate γ, and the cell cycle is
exponentially distributed with mean 1/γ.

In the population framework, in addition to the protein, we also
quantify the time evolution of the cell population size. We intro-
duce the population density function h(x , t), which describes the
population as the number of cells with a given concentration x at
time t . Then h(x , t) is obtained by solving the population balance
equation (PBE) [54, 90]. The PBE is similar to the dCKE, but af-
ter division, the process follows the dynamics of both daughter
cells. In steady-state conditions, only the population size grows,
whereas the proportion of cells with a given protein level remains
steady. Thus, h(x , t) can be decomposed as

h(x , t) = f (t)pPop(x), (9)

where f (t) is an exponential function (explained in Appendix S2)
associated with the population size growth and pPop(x) is the sta-
tionary probability density function of the protein concentration x ;
the subscript Pop represents quantities determined in the pop-
ulation perspective. In Appendix S2, we also show that pPop(x)
has the closed expression:

pPop(x) = (1 + kx)
βρ2

Γ(ξ)
e−ρx (ρx)ξ−1, ρ =

1
β
− kξ, ξ =

λ/γ

kβ + 1
.

(10)
Similarly to the single-cell approach, the protein distribution at

population perspective exists if ρ > 0. Figure 2A shows that the
population distribution exists whenever the single-cell distribution
does. Moreover, pPop(x) always exists when λ < γ, that is, when
the burst frequency is below the maximum dilution rate. In gen-
eral, the population distribution exists for values of λ that satisfy
(λ− γ)β < γ/k . This existence condition is less strict than the
one for a single-cell model: a population distribution may exist
even if the single-cell distribution does not (Figure 2A).
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A comparison of the protein distributions for both frameworks
is shown in Figure 2B. If the feedback is weak (upper panel), then
the difference between the distributions is insignificant; this is
consistent with the fact that both distributions are identical to the
gamma distribution in the unregulated case (k = 0). As the feed-
back becomes stronger (lower panel), the differences between
protein distributions become larger: population distribution shifts
to lower concentration and becomes more light-tailed, indicating
a larger portion of cells with low protein concentration.

The statistics of the protein level in the population perspective
are obtained as:

⟨x⟩Pop = ⟨x⟩ 1 + kβ

1 + kβ − k ⟨x⟩
, (11a)

(
CV2

x

)
Pop

=
β

⟨x⟩

(
1 + k̃ − λ

γ
k̃2

)
, (11b)

(Skewx )Pop = 2

√
β

⟨x⟩

1 + 2k̃ − 3λ
γ k̃2 +

(
λ
γ

)2
k̃3(

1 + k̃ − λ
γ k̃2

)3/2
, (11c)

where k̃ = kβ/(1 + kβ) is an auxiliary constant, and these are
compared to their counterparts in the single-cell perspectives in
Figure 2C. To obtain the limit of weak feedback strength (k ≪ 1),
we take the approach used in (8) and fix ⟨x⟩SC . The statistics for
the protein from population perspective (11) can be expressed in
terms of their single-cell counterparts and the parameter k :

⟨x⟩Pop ≈ ⟨x⟩SC(1 − kβ), (12a)(
CV2

x

)
Pop

≈
(
CV2

x

)
SC

(1 + kβ) , (12b)

(Skewx )Pop ≈ (Skewx )SC

(
1 + k

β

2

)
. (12c)

We see that from the population perspective, noise and skew-
ness (given by (12b) and (12c), respectively) increase at least
linearly faster than the moments for a single cell. This is because
as the feedback intensifies, the population includes more fast-
proliferating cells with low protein concentration, and the mean
protein level ⟨x⟩Pop decreases to zero, as shown in Figure 2C
(upper panel). This causes higher noise levels for stronger feed-
back (Figure 2C, middle panel). Finally, as k increases, the popu-
lation distribution becomes more right-skewed (Figure 2C, lower
panel) as a result of population composition shifting to prolifera-
tive cells with lower concentrations.

We proceed with limit of strong feedback, as we keep ⟨x⟩SC

fixed according to (7). We observe that the statistics in each
perspective show different properties. Noise and skewness in
the single-cell framework exhibit the following limits:

lim
k→∞

(
CV2

x

)
SC

= 1 + 2β/⟨x⟩SC , (13a)

lim
k→∞

(Skewx )SC = 2
1 − β̃3(

1 − β̃2
)3/2

, β̃ =
β

⟨x⟩ + β
. (13b)

In contrast, these statistics are unbounded in the population per-
spective, i.e.,

lim
k→∞

(
CV2

x

)
Pop

= lim
k→∞

(Skewx )Pop = ∞. (14)

In a single cell, the existence conditions provide an exact coun-
terbalancing relationship between the feedback strength and the

intrinsic noise (stochastic production); thus, the noise is finite. In
the population perspective, the existence condition is relaxed, so
the feedback does not fully counterbalance the intrinsic noise.

As a final remark, we also performed an analysis of how the
protein statistics change when we increase the feedback strength
k and keep parameters λ, β, and γ fixed. Under these conditions
we obtained similar results: noise level and skewness in single
cell perspective are always lower than in the population one; fur-
ther details and comparison to unregulated case are provided in
Appendix S3.

Now, having explored the impact of growth-mediated feedback
on protein statistics, we study how additional noise generated
during the partitioning of protein molecules between daughter
cells impacts protein stochasticity in single-cell and population
perspectives.

Effects of molecule partitioning on protein con-
centration fluctuations
During cell division or mitosis, a parent cell segregates its con-
tents, including chromosomes, organelles, and gene products,
between daughters. In the absence of any active regulation of
segregation, each molecule has a random chance of being in-
herited by each descendant cell. This randomness in partition-
ing constitutes an additional noise source that drives intercellu-
lar heterogeneity in protein levels [66, 91–95]. We investigated
whether this source of noise makes different predictions on ex-
pression variability in single-cell and population perspectives. To
isolate the effect of partitioning noise, we first explore an unreg-
ulated model in which gene expression evolves deterministically
with no intrinsic noise. Next, we relax this assumption by incor-
porating stochastic bursting events.

Coupling deterministic expression with partitioning errors

As a starting point, we ignore noise in gene expression and the
protein concentration x evolves deterministically as per the first-
order differential equation:

dx
dt

= λβ − γx . (15)

The term λβ (the product of the burst frequency and the average
burst size) represents the net average protein synthesis rate and
γ is the constant dilution rate ignoring feedback regulation.

In the previous section, we assume that the cell cycle du-
ration, the time between consecutive divisions, is exponentially
distributed. Relaxing this assumption, we now consider the cell-
cycle time to be an independent and identically distributed ran-
dom variable τd that can follow any arbitrary positively-valued
continuous distribution (Figure 3A). We set the mean duration
of the cell cycle as ⟨τd⟩ = ln 2/γ and quantify the noise in τd

through its squared coefficient of variation, CV2
τd

.
Having defined the timing of cell-division events, we next de-

scribe how we model the random partitioning during the process.
First, consider a mother cell with concentration x just before di-
vision. A division event results in two daughters with concentra-
tions x+ and 2x − x+ respectively. Here x+ is a random vari-
able that is appropriately bounded 0 < x+ < 2x to ensure non-
negative concentrations, and has the following mean and vari-
ance (conditioned on x)

⟨x+⟩ = x , Var(x+) = εx . (16)
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Figure 3: Noisy cell-cycle durations amplify protein noise differences between single-cell and population perspectives. (A) (top:) The
cell-cycle duration τd is a random variable following an arbitrary distribution. Within the cell cycle, the protein concentration evolves deterministically
as per the ordinary differential equation (15). (bottom:) During mitosis, protein molecules are randomly segregated among daughters resulting in
differences in the inherited concentration. Different shades of green represent different levels of protein concentration. (B) (left:) Trajectories of
protein concentration in an expanding cell colony, where jumps represent randomness in protein partitioning among daughters during cell division.
The green line: a single-cell trajectory is generated by randomly choosing one of the two daughter cells (red lines) after each division event. The
brown lines represent other descendant cells. The cell-cycle times are assumed to be exponentially distributed in this simulation. (right:) The steady-
state probability density functions of the protein concentration in single-cell and population perspectives. (C) Effect of noise in the cell cycle time as
quantified by its squared coefficient of variation (CV2

τd ) on the noise in the protein concentration (CV2
x ). The solid line is the analytically predicted noise

in the single-cell perspective as given by (18), and the dots represent noise levels computed from simulations. Mean concentrations in both models
are identical (⟨x⟩SC = ⟨x⟩Pop = ⟨x⟩ = 20). (D) A logarithmic scale representation of the steady-state protein noise level as a function of the mean
protein level, highlighting variability differences between single-cell and population perspectives. Parameters used for the plot are γ = ln 2, ⟨τd⟩ = 1,
ε = 1, kβ = 20γ. Population statistics were calculated using cells of 2000 colonies and 5000 individuals were simulated for the single cell perspective.
Statistics were calculated after 6 generations.

Note that the mean protein concentration in both newborn daugh-
ters is the same as the mother cell. The constant ε quantifies the
extent of randomness in the partitioning process and depends on
multiple of factors, such as the cell size at mitosis, the specifics
of molecular segregation (for example, molecules segregating as
monomers or dimers), errors in cell size partitioning, etc. Note
that the scenario of perfect partitioning (x+ = x with probability
one) is recovered for ε = 0. We refer the reader to Appendix S4
for further details on this approach and how x+ is randomly gen-
erated.

Partitioning noise for single-cell perspective

In the single-cell perspective, x(t) is a PDMP with deterministic
dynamics (15) and resets

x 7→ x+, (17)

that occur during the division events (Figure 3B). If the protein
level after the division x+ follows the statistics (16), it is possible
to obtain exact analytical formulas for the steady-state mean and
noise levels of x(t) (see Appendix S5 for details). More specifi-
cally, our results show that for any arbitrarily distributed cell-cycle
time τd , the protein statistics are

⟨x⟩SC = ⟨x⟩ =
λβ

γ
, (CV2

x )SC =
1

⟨x⟩

( ε

2 ln 2

)
, (18)

and remarkably, they are invariant of the statistical properties of
the cell-cycle time. Thus, making the cell-cycle times more ran-
dom, this is, increasing CV2

τd
for fixed mean ⟨τd⟩, will not have

any impact on the protein noise level (Figure 3C). Notice the in-
verse scaling of noise (CV2

x )SC with the mean protein level in (18)

that is a direct consequence of the variance of x+ being propor-
tional to the concentration in (16). This is also seen in the unreg-
ulated bursting model (4) leading to indistinguishability of noise
mechanisms from such scaling relationships [66].

Partitioning noise for population perspective

Having analytically solved the statistics of concentration fluctu-
ations in the single-cell perspective, we turn our attention to
quantifying protein variability in an expanding cell colony. In
Appendix S6 we show that a fixed cell-cycle duration (this is
τd = ⟨τd⟩ with probability one) yields the same concentration
noise in both perspectives.

For general randomly distributed cell-cycle duration, we re-
sort to simulation of agent-based models as done in previous
works [96, 97]. The basis of the algorithm, with more details in
Appendix S7 and published in our repository [98], consists of
considering each cell as an agent with particular properties, such
as protein level x and an internal timer that regulates its division
timing. Each division event leads to two newborn cells with con-
centration partitioning as described above. During the cell cycle,
protein concentrations evolve by (15) considering deterministic
expression, and the time to the next division is drawn indepen-
dently according to a prescribed arbitrary statistical distribution.

Sample realizations of protein concentrations from this agent-
based framework are illustrated in Figure 3B. Both perspec-
tives yield the same mean concentration while the protein level
noise follows: (

CV2
x

)
Pop

>
(
CV2

x

)
SC

. (19)

This means that protein has a higher noise in protein concen-
tration from the population perspective. A quantification of this
difference is presented in Figure 3C, where both noise levels
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Figure 4: Increasing randomness in molecular segregation between daughters enhances protein noise differences between single-cell and
population perspectives. (A) Sample trajectories of protein concentration in an expanding cell colony when expression variability is dominated by
partitioning noise (β = 0.2 and ε = 1 in (20)). (B) Comparison of the steady-state protein concentration noise (CV2

x ) from single-cell (green circles) and
population perspectives (brown squares) calculated from simulations of the agent-based model. The solid line represents the analytically-predicted
noise level (20). (C) Sample concentration trajectories for the high intrinsic noise scenario (β = 5 and ε = 1 in (20)). Other parameters are taken as
γ = ln 2, ⟨x⟩ = 20,λ = γ⟨x⟩/β, ε = 1, 5000 simulated cells were studied).

start out equal when CV2
τd

= 0. In contrast to the single-cell per-
spective where (CV2

x )SC is invariant of CV2
τd

,
(
CV2

x

)
Pop

increases
monotonically with increasing randomness in cell-cycle duration.
For exponentially-distributed cell-cycle times (CV2

τd
= 1), the ap-

proximation used by several models [99], and as assumed in the
PBE model of the previous section,

(
CV2

x

)
Pop

is approximately

twice of (CV2
x )SC (Figure 3C). The inverse scaling of noise with

mean as seen in (18) is also preserved in the population per-
spective, albeit with a higher proportionality constant resulting in
a shifted line in the logarithmic scale (Figure 3D) (similar to that
seen in (12b) for the case of dilution-based feedback).

Finally, the qualitative differences seen in Figure 3C are re-
capitulated in more realistic agent-based models that explic-
itly take into account cell size dynamics (see Figure S3 in Ap-
pendix S8), and here cell size homeostasis mechanisms drive
mother-daughter and daughter-daughter cell-cycle correlations.

Coupling stochastic expression with partitioning errors

To complete the approach, we now consider stochastic gene ex-
pression as captured by protein synthesis occurring in random
bursts. From a single-cell perspective, the protein noise is ele-
gantly derived as (see details in Appendix S5)

(CV2
x )SC =

1

⟨x⟩

( ε

2 ln 2
+ β

)
, (20)

and is the sum of two noise contributions as given by equa-
tions (4) (contribution form intrinsic noise) and (18) (contribution
form partitioning noise). To obtain the corresponding statistics in
the population perspective we modify the earlier described agent-
based model to consider intracellular concentrations evolving via
stochastic bursts and continuous exponential decay with a con-
stant dilution rate γ in between bursts. Figure 4 shows simulation
trajectories corrupting to two different scenarios:

• One where the partitioning noise dominates (β ≪ ε), in
which case

(
CV2

x

)
Pop

>
(
CV2

x

)
SC

(Figure 4A).

• The other where intrinsic noise dominates (β ≫ ε), in which
case

(
CV2

x

)
Pop

≈
(
CV2

x

)
SC

(Figure 4C).

Figure 4B quantifies these differences with increasing intrinsic
noise component, i.e., increasing β. The key message of this fig-
ure is that when intrinsic noise dominates, then both perspectives
are similar in terms of the concentration statistics. This can be in-
tuitively understood from our earlier analytical results where both
perspectives yield similar protein concentration pdfs (Figure 2B)
in the case of perfect partitioning (ε = 0). In contrast, the gap
between

(
CV2

x

)
Pop

and
(
CV2

x

)
SC

increases as partitioning noise
begins to dominate.

Discussion
In this manuscript, we have investigated stochastic concentra-
tion fluctuations in an individual cell over time (single-cell per-
spective) and across all descendant cells at a fixed time point
(population perspective). A key assumption is that the protein of
interest is long-lived; thus, its decay is dominated by dilution from
cellular growth. We identified two scenarios where the concen-
tration statistics are different between single-cell and population
perspectives:

• Expression-growth coupling, where a cell’s proliferation rate
depends on the concentration of a specific protein.

• Random partitioning of molecules between daughters dur-
ing cell division.

Consistent with previous observations [52], our analytical re-
sults corroborated with the simulation of agent-based models find
an underestimation of noise in the single-cell perspective (Fig-
ures 2C & 3C). We discuss these scenarios in more detail below.

Reduction in cellular growth rate with increasing protein con-
centration was captured phenomenologically through expres-
sion (2). This defines feedback in gene expression in which
bursts in protein synthesis capture the intrinsic noise in gene ex-
pression. The continuous protein dilution between consecutive
bursts is defined by the differential equation (3). Our main contri-
bution is to derive exact analytical formulas for steady-state con-
centration pdfs in both single-cell and population perspectives,
as given by (5) and (10), respectively. Before discussing these
results, we comment on the no-feedback case. In the absence
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of any concentration-dilution coupling, both perspectives yield
the same gamma-distributed concentration. This result can be
generalized to consider transcription feedbacks that are common
regulatory features in gene expression [100, 101]. Our analysis
in Appendix S9 shows that a constant dilution rate with an ar-
bitrary concentration-dependent burst frequency yields identical
concentration distributions in both perspectives.

The presence of dilution-based positive feedback shifts the
concentration distribution in the population perspective to lower
protein levels (Figure 2B) due to the increased proliferation of
low-expressing cells. This explains the lower mean levels and the
higher noise and skewness in cell populations compared to the
single-cell perspective (Figure 2C). A key qualitative difference is
seen in the parameter space where the steady-state concentra-
tion distributions exist (Figure 2A). In the single-cell perspective
this existence region is defined by the net synthesis rate (λβ) be-
ing lower than the maximum rate of concentration decrease γ/k
in (3) that is reached when the protein level is high. The exis-
tence region is expanded in the population perspective as cells
with higher concentrations proliferate slower, and hence do not
contribute significantly to the population. While we have kept the
modeling framework simple to obtain analytical insights, mod-
els can be refined in the future to consider the scaling of ex-
pression rates with the dilution rate [102], explicitly accounting
for cell size and cell-cycle effects [103–105], incorporating pro-
moter transcriptional states and mRNA dynamics in more com-
plex gene expression models [106].

In a previous contribution, we investigated dilution-based neg-
ative feedback [97], where increasing concentration increases
the cellular growth (dilution) rate. This would be the case for
many cellular growth factors, where lower concentrations result
in lower proliferative capacities [107]. As expected, the results
here are opposite to those seen in Figure 2, with the distribu-
tion now shifting to a higher concentration in the cell population
relative to the single-cell distribution [97]. In summary, if the ex-
pression of a specific gene determines cellular proliferative ca-
pacity at an individual-cell level, then the statistical fluctuations
in its gene product levels can be qualitatively and quantitatively
different between population and single-cell perspectives.

The discrepancy between single-cell and population perspec-
tives also arises when considering another source of intrinsic
noise, the random segregation of molecules between daughters.
In the single-cell framework, these random segregation events
appear as jumps or noise-injections in the concentration at divi-
sion times (Figure 3B). The statistical properties of these jumps
are defined in (16) where the degree of partitioning noise can
be tuned through the variable ε. We derived the steady-state
noise in concentration (20) for an arbitrarily distributed cell-cycle
duration and find it to be insensitive to fluctuations in cell-cycle
times. In contrast, the corresponding noise within a cell popula-
tion increases monotonically with increasing randomness in cell-
cycle times (Figure 3C). One way to explain this effect is that the
randomness in cell cycle times manifests itself as a fluctuation
in colony size [108], and larger colonies exhibit higher intracel-
lular concentration fluctuations resulting from the accumulation
of noise-injecting division events. Thus, while both perspectives
predict similar noise levels for a fixed cell cycle duration, the noise
gap increases with CV2

τd
, and the noise at the population level is

approximately twice the noise in single cells when the cell cycle

timing is distributed exponentially (Figure 3C).
A key limitation of our modeling approach is that cell-cycle du-

ration is considered to be timer, that is, each duration is inde-
pendently and identically distributed. It is well known that, if cells
grow exponentially in cell size along the cell cycle, then such
timer-based models are not able to provide cell size homeosta-
sis, that is, the variance in cell size grows unboundedly over time
[109, 110]. We address this limitation by modifying the agent-
based model to explicitly consider the size dynamics of individual
cells and implemented size control according to adder – the size
added from cell birth to division is not correlated with the new-
born size [111–116]. Statistics computed from simulating these
cell-size homeostatic models are presented in Appendix S8 and
recapitulate the qualitative finding of Figure 3C: Protein noise in
a cell population is more sensitive to fluctuations in added size
compared to the single-cell perspective. Interestingly, these sim-
ulations show that the single-cell concentration noise that is in-
variant to CV2

τd
in the timer model (Figure 3C), increases slightly

with CV2
τd

in the adder model (Figure S3). The agent-based mod-
els used in this study have been uploaded to zenodo for the re-
search community and can be modified to include other types
of size control mechanisms and more complex biochemical pro-
cesses of gene expression [98].

In summary, we have determined differences in studying gene
expression in isolated cells versus expanding cell lineages. Al-
though we specifically considered stable proteins, these results
can be adapted to other types of biomolecules, such as mRNAs
& metabolites, and extended to study intracellular differences in
chromosome abundance, plasmids and organelles [117–119].
The focus on intrinsic noise mechanisms (bursting and parti-
tioning noise) can also be generalized to explore extrinsic noise
through parametric fluctuations in gene product synthesis/decay
rates [120–123]. For example, recent work has reported random
fluctuations in translation rates in Schizosaccharomyces pombe
that dissipate quickly within a cell cycle [124]. Finally, it will be
interesting to test our predictions with single-cell expression data
using lineage tracking via cellular barcodes, where the extent of
cell proliferation can be directly linked to gene expression pat-
terns and their corresponding statistical fluctuations [62].
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Appendices
S1 Appendix. Feedback in dilution. SC model:

Chapman–Kolmogorov equation
In the single-cell model we study the dynamics of protein con-
centration x(t), which follows the following rules. Protein is pro-
duced instantly in portions (bursts) of random size. These bursts
arrive at a rate rate λ and with a size drawn from an exponen-
tial distribution with mean β. The protein studied is considered
to be relatively stable with a null degradation rate. Then, be-
tween the bursts, the protein dilutes exponentially with constant
rate γ, which corresponds to the cell growth rate. Biologically,
this means that the cell cycle duration is distributed following
the exponential distribution with mean 1/γ. In this appendix, we
provide a solution approach for the protein pdf in the single cell
model with the feedback in the protein dilution.

The time evolution of the probability density pSC(x , t) is de-
scribed by the Chapman-Kolmogorov equation:

∂pSC(x , t)
∂t

=
∂

∂x

(
x

γ

1 + kx
pSC(x , t)

)
+
λ

β

∫ x

0
e−(x−y )/βpSC(y , t) dy − λpSC(x , t).

(S1.1)

The first term of (S1.1) captures the deterministic drift of proba-
bility due to dilution. The last two terms are related to stochastic
dynamics. The integral represents the bursts that end at a con-
centration of x and the negative is related to the jumps (burst)
when the concentration abandons the state x .

To find the stationary distribution, we write it as a probability
conservation equation. It is done by collecting the last two terms
of (S1.1) as per Leibniz integral rule:

λ

β

∫ x

0
e−(x−y )/βpSC(y , t) dy − λpSC(x , t)

= −λ
d

dx

∫ x

0
e−(x−y )/βp(y )SC dy .

(S1.2)

Then, we set ∂pSC
/
∂t = 0 in the expression (S1.1), and inte-

grate the result. It yields an integral equation:

x
1 + kx

pSC(x) =
λ

γ

∫ x

0
e−(x−y )/βpSC(y ) dy . (S1.3)

The method to obtain the solution of (S1.3) is based on the
Laplace transform. We rearrange that equation in the following
way:

xpSC(x) =
λ

γ

∫ x

0
(1 + k (x − y ) + ky )e−(x−y )/βpSC(y ) dy . (S1.4)

It allows us to represent the right-hand side of equation as the
sum of three distinct convolutions:

xpSC(x) =
λ

γ
((f ∗ pSC)(x) + k (xf ∗ pSC)(x) + k (f ∗ xpSC)(x)) ,

(S1.5)
where by f we denote the exponential function, that is,
f (x) = e−x/β . By the asterisk in (S1.5), we denote the con-
volution of two functions (f ∗ pSC =

∫ x
0 pSC(y )f (x − y ) dy ), which

helps us to solve the problem in the space of Laplace transforms.

As a quick introduction, we define the image P(s) =
L{pSC}(s), a function with argument s, as the Laplace transform
of the function pSC(x) following the relationship:

P(s) = L{pSC(x)}(s) =
∫ ∞

0
pSC(x)e−sx dx , (S1.6)

with properties:

L{xpSC(x)}(s) = −dP(s)
ds

, (S1.7a)

L{e−x/β ∗ pSC}(s) =
1

s + 1
β

P(s). (S1.7b)

Applying the Laplace transform to (S1.5), it becomes a sepa-
rable differential equation:

1
P(s)

dP(s)
ds

=

(
1

s + 1/β
− λ/γ + 1

s + 1/β − λk/γ

)
. (S1.8)

The general solution of (S1.8) is given by:

P(s) = C
s + 1/β

(s + 1/β − λk/γ)λ/γ+1
, (S1.9)

where C is an arbitrary constant. Note that the right-hand side
is a power function of the Laplace variable s, which is shifted by
value η = 1/β − λk/γ. In order to return to the original function
pSC(x), we use the following relation [125]:

L−1{(s + η)−a} =
e−ηx xa−1

Γ(a)
, (S1.10)

where L−1 is the inverse Laplace transform to (S1.6). After ap-
plying it to (S1.9), we obtain:

pSC(x) = Ce−ηx xλ/γ−1 1 + kx
Γ(λ/γ)

.

We set C so that
∫∞

0 pSC(x)dx = 1 satisfies the normalization
condition for the probability density function. This results in the
stationary protein distribution:

pSC(x) =
η2β

Γ(λ/γ)
(ηx)λ/γ−1e−ηx (1 + kx),

η = 1/β − λk/γ > 0,

(S1.11)

The obtained density (S1.11) is a mixture distribution, thus it can
be represented as a weighted sum of two distinct gamma distri-
butions:

pSC(x) = (1 − λkβ)fGamma(λ, η) + λkβfGamma(λ + 1, η),

where by fGamma we denoted pdf of Gamma distribution. Note
that this distribution is unimodal for any permissible values of pa-
rameters λ, β, γ, and k . This distribution has its peak at zero if
λ/γ < (4kβ − 1)/4(kβ)2 when kβ > 1/4, and if λ/γ < 1 when
kβ < 1/4; otherwise, the peak is non-zero.

By definition, the n-th raw moment is given by the integral
⟨xn⟩SC =

∫∞
0 xnpSC(x) dx ; we then use (S1.11) to obtain a

closed expression for the n-th raw moment:

⟨xn⟩SC = (1 + nkβ)
Γ
(

λ
γ + n

)
ηnΓ

(
λ
γ

) .
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In the absence of the dilution regulation as k = 0, pSC(x) be-
comes the probability density function of the unregulated gene
expression p(x) [67]:

p(x) =
1

βΓ(λ/γ)

(
x
β

)λ
γ −1

e−x/β . (S1.12)

S2 Appendix. Feedback in dilution. Population
model: Population balance equa-
tion

In this appendix, we study the feedback in the protein dilution,
which is now implemented in the population model and affects
not only the protein level but also the proliferation rate. Here,
µ – the population growth rate – cannot be determined imme-
diately due to the presence of feedback, which affects the cell
cycle time and thus the population growth rate. An implicit as-
sumption of the model is that cell volume is strictly increasing at
rate γ/(1 + kx). Consequently, division events are governed by a
nonhomogeneous Poisson process with rate γ/(1 + kx). An ap-
propriate µ is required to keep the average cell volume constant,
in order to prevent its infinite expansion or diminution to zero.

The expected population density h(x , t) (number of cells with
concentration x at time t) satisfies the population balance equa-
tion:

∂h(x , t)
∂t

=
∂

∂x

( γx
1 + kx

h(x , t)
)

+
γ

1 + kx
h(x , t)

+ λ

∫ x

0
b(x − y )h(y , t) dy − λh(x , t),

(S2.1)

where b(x) is pdf of the exponential distribution of the burst size.
We start by collapsing the last two terms according to the Leib-

niz integral rule as per (S1.2). Subsequently, we use the Fourier
method, that is, we assume that the population density function
can be represented as a separable function:

h(x , t) = eµt pPop(x), (S2.2)

where the principal eigenvalue µ gives the population growth rate
and the principal eigenvector pPop(x) gives the protein distribu-
tion. Then (S2.1) becomes(

1
1 + kx

− µ

γ

)
pPop(x) +

d
dx

(
xpPop(x)
1 + kx

)
−λ

γ

d
dx

(
B̄ ∗pPop

)
(x) = 0,

(S2.3)

where B̄(x) is the ccdf corresponding to b(x), that is, B̄(x) =
e−x/β .

We define an auxiliary function q(x) = pPop(x)/(1 + kx), which
we substitute into the equation above; thus we apply the Laplace
transform explained in Appendix S1, which gives us the relation-
ship:

Q(s) − µ

γ
P(s) − sQ′(s) − λ

γ
sB(s)P(s) = 0, (S2.4)

where P(s), Q(s), and B(s) are the Laplace images of functions
pPop(x), q(x), and B̄(x) respectively, defined as per (S1.6). Ap-
plying the Laplace transform directly to the function q(x), one can
obtain:

P(s) = Q(s) − kQ′(s),

which is used to transform (S2.4) into an ODE for Q(s):

dQ(s)
Q(s)

=
µ
γ + λ

γ sB(s) − 1
µk
γ + λk

γ sB(s) − s
ds . (S2.5)

Despite the separable form of this equation, additional complex-
ity is brought about by the generalization of the burst size dis-
tribution. However, since B̄(x) corresponds to the exponential
distribution, its Laplace image B(s) is known:

B(s) =
∫ ∞

0
B̄(x)e−sx dx =

1
s + 1/β

, Re{s} > − 1
β

. (S2.6)

We substitute (S2.6) into (S2.5) and obtain:

dQ(s)
Q(s)

=
γ−µ
γβ + s(1 − µ̃)

− µk
γβ − s

(
kµ̃− 1

β

)
+ s2

ds , µ̃ =
µ + λ

γ
. (S2.7)

The right-hand side of (S2.7) can be simplified by partial fraction
decomposition. The quadratic in the denominator has two roots,
which are real and given by

s1,2 =
1
2

(
kµ̃− 1

β
±
√

D

)
,

D =

(
kµ̃ +

1
β

)2

− 4k
β

λ

γ
,

(S2.8)

where s1 > 0 and s2 < 0 is for any positive values of λ,β, γ,
and k . The partial fraction decomposition of (S2.7) leads to:

dQ(s)
Q(s)

=
A1

s − s1
+

A2

s − s2
,

A1,2 =
1 − µ̃

2
± 1 − µ̃ + 2λ/γ + βkµ̃(1 − µ̃)

2β
√

D
.

(S2.9)

The solution of (S2.7) is

Q(s) = C(s − s1)A1 (s − s2)A2 . (S2.10)

The Laplace transform (S2.10) must be analytic in the complex
half-plane Re(s) > 0, implying that A1 ∈ {0, 1, 2, ...}. In particu-
lar, the principal eigenvalue is obtained for A1 = 0; it implies

µ = γ − λkβ
kβ + 1

. (S2.11)

Substituting (S2.11) into (S2.8) and (S2.9), we obtain strictly neg-
ative values; we introduce additional variables for their opposite
values:

s2 =
λk

γ(kβ + 1)
− 1

β
, ρ = −s2 > 0,

A2 = − λ

γ(kβ + 1)
, ξ = −A2 > 0.

(S2.12)

Inserting s = 0 into (S2.4) and using the normalization condi-
tion P(0) = 1 yield Q(0) = µ, which is used to find the value
of C in (S2.10). Finally, applying the inverse Laplace transform
to (S2.10) and returning to the initial function pPop(x), we obtain:

pPop(x) = (1 + kx)
βρ2

Γ(ξ)
e−ρx (ρx)ξ−1, (S2.13)
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Figure S1: Dilution-based feedbacks result in noiser and more right-skewed concentrations across cell populations as compared to the
single-cell perspective. (A) Phase diagram of distribution existence similar to Figure 2A. Red line represents increase of k keeping λ = 2 and the
low frequency λ = 0.5. Mean protein concentration: (B) for high frequency and (C) for low frequency. Protein noise: (D) for high frequency and (E)
for low frequency. Protein Asymmetry: (F) for high frequency and (G) for low frequency. On (B)–(G) are shown statistics of single cell (green solid
line) and population (brown dash-dotted line) compared to the unregulated case (blue horizontal dashed lines). Parameters: β = 10, γ = 1.

where the constants ρ and ξ are defined in (S2.12).
As well as (S1.11), stationary protein distribution pPop(x) is a

mixed distribution, i.e.,

pPop(x) = (1 − ξkβ)fGamma(ξ, ρ) + ξkβfGamma(ξ + 1, ρ),

which is also unimodal for any set of parameters λ, β, γ, and k
satisfying ρ > 0.

Note that without regulation, as k = 0, the pdf of the protein
concentration in the population model is identical to the one in
the single cell (S1.12). Finally, we obtain moment expressions
for the n-th raw moment:

⟨xn⟩Pop = (1 + nkβ)
Γ (ξ + n)
ρnΓ (ξ)

.

S3 Appendix. Moments analysis of the effects of
the feedback strength keeping the
burst frequency constant

In the main text, we focus on asymptotic behavior in the case
when the burst frequency is adjusted so that the mean concen-
tration remains fixed (7). In this appendix, we study protein noise
and skewness as functions of feedback strength k , with parame-
ters λ/γ and β.

In the single cell, the protein distribution pSC(x) (5) has the
existence condition η > 0, from which it follows that k must
be within the interval KSC = [0, 1/⟨x⟩), with ⟨x⟩ = βλ/γ for a
given set of parameters (λ,β, γ). It is clear that as k approaches
1/⟨x⟩, in the expression (6a), the mean value ⟨x⟩SC diverges
due to a singularity in the denominator (Fig. S1B, green line). To
explore the behavior of the noise level (6b) and skewness (6c)
on KSC , we use the first derivative test. For the noise level, we
find that ∂(CV2

x )SC
/
∂k < 0 meaning that (CV2

x )SC is decreasing
function of k within KSC (Fig. S1D, green line). We also use this

approach for the skewness; its derivative is given by:

∂(Skewx )SC

∂k
=

3λβ2η(βη − 1)
γ(1 + λ/γ − (βη)2)5/2

, (S3.1)

where the quadratic function in denominator is always posi-
tive (it is concave and its two zeroes are not in KSC), then
∂(Skewx )SC

/
∂k < 0 for any k ∈ KSC . We find that both (CV2

x )SC

and (Skewx )SC are monotonically decreasing functions with local
maxima and minima being left and right endpoints of the interval
KSC , respectively. In particular:

lim
k→1/⟨x⟩

(CV2
x )SC =

β

⟨x⟩
λ

λ + γ
,

lim
k→1/⟨x⟩

(Skewx )SC = 2
1√

λ/γ + 1
.

In conclusion, for a given production flow λβ, the feedback of any
strength reduces protein noise at the single cell level (green lines
in Figs. S1D–S1E) and makes the distribution less skewed (green
lines in Figs. S1F–S1G) compared to the unregulated expression
(blue horizontal lines in corresponding figures).

We follow a similar approach for the statistics of from the
population perspective, where the permissible interval of k is
KPop = [0, 1/(⟨x⟩ − β)), for λ > γ (the high frequency limit), and
KPop = [0,∞), for λ < γ (the low frequency limit). The behavior
of mean, noise level, and skewness depends on the ratio λ/γ. In
a low-frequency mode (λ < γ), we obtain:

lim
k→∞

⟨x⟩Pop =
⟨x⟩

1 − λ/γ
, (S3.2)

lim
k→∞

(CV2
x )Pop =

β

⟨x⟩
(2 − λ/γ), (S3.3)

lim
k→∞

(Skewx )Pop = 2

√
β

⟨x⟩
(λ/γ)2 − 3λ/γ + 3

(2 − λ/γ)3/2
. (S3.4)
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Then the protein distribution in the population with the low tran-
scriptional frequency (λ < γ) has higher, but always bounded
statistics compared to unregulated case. This behaviour is
shown in the second row of Fig. S1.

In high frequency mode (λ > γ) as k reaches the right end-
point of KPop, the mean value ⟨x⟩Pop diverges and the statistics
become identical to the unregulated case:

lim
k→1/(⟨x⟩−β)

(CV2
x )Pop = CV2

x , (S3.5)

lim
k→1/(⟨x⟩−β)

(Skewx )Pop = Skewx , (S3.6)

which is shown in the first row of Fig. S1.
The first derivative of the squared coefficient of variation,

∂(CV2
x )Pop

∂k
=

β

⟨x⟩
(1 − 2λ)kβ + 1

1 + kβ
,

has a single root at 1/(2λ − 1)β, indicating that over the inter-
val KPop, (CV2

x )Pop is monotonically increasing if 2λ < γ; oth-
erwise, it is concave (Figs. S1D–S1E). The first derivative test
for skewness involves analysis of a cubic equation, which was
done numerically. We conclude that the low frequency leads to
(Skewx )Pop > Skewx on the whole interval KPop, maximum is
reached within KSC (Fig. S1G). The high frequency leads to mi-
nor fluctuations of (Skewx )Pop around Skewx with single intersec-
tion within KPop (Fig. S1F).

Overall, we use the statistics of the unregulated case as a crit-
ical point for comparison of both perspectives. We conclude that
for given production rate λβ and admissible values of k > 0
protein distribution in the population is always noisier and more
right-skewed compared to the single-cell one.

S4 Appendix. Statistical properties of protein
partitioning

In this appendix, we derive the statistical properties of the jumps
that the protein concentration performs during partitioning.

S4.1 Statistics of protein level during partitioning

First, consider a scenario in which just before cell division, the
protein concentration within the cell is indicated as x = nd

sd
, where

nd represents the number of protein molecules and sd is the cell
size. As the cell divides, its size is halved, and each daughter
cell inherits a size of sd

2 . The total number of molecules, nd , is
assumed to segregate with a probability of 0.5 for each daughter.
Consequently, the number of molecules in each daughter cell
follows a binomial distribution with parameters nd and 0.5.

Given these premises, the mean and variance of the protein
count in each daughter cell, denoted as n+, have the moments of
the binomial distribution:

⟨n+|nd⟩ =
nd

2
, Var(n+|nd ) =

nd

4
. (S4.1)

This allows us to find the mean and variance of the protein con-
centration in a daughter cell:

⟨x+|nd , sd⟩ =
⟨n+|nd⟩

sd/2
=

nd

sd
= x , (S4.2a)

Var(x+|nd , sd ) =
Var(n+|nd )

(sd/2)2
=

nd

4(sd/2)2
=

x
sd

. (S4.2b)

In the general case, protein partitioning may not be perfectly bi-
nomial and have complex mechanisms. To generalize expres-
sion (S4.2b), let us define the statistics for the protein level after
partitioning:

⟨x+|x⟩ = x , Var(x+|x) = εx , (S4.3)

where ε > 0 is a constant that reflects these effects of size scal-
ing and complex partitioning. For the case of binomial partition-
ing, ε = 1/sd .

S4.2 Simulation of protein partitioning

During partitioning, protein levels change following the statistics
shown in (S4.3) with the additional constraint that 0 < x+ < 2x .
In our simulations, we model the protein partitioning, proposing
that the protein level after division follows:

x+ = 2xδ; δ ∼ Beta(a, b), (S4.4)

which means that we multiply the protein before division x by two
times a random variable δ which is beta-distributed with shape
parameters a and b. To obtain the desired stochastic properties
of x+ as defined in (S4.3), we have to satisfy ⟨δ⟩ = 1/2 and
Var(δ) = εx . Using these constrains, we obtain the values for the
shape parameters of the beta distribution (S4.4):

a = b =
1
2

(x
ε
− 1

)
, for x > ε. (S4.5)

Due to the properties of the beta distribution, the limit x = ε
means that δ takes the values of 0 and 1, each with equal prob-
ability. This scenario represents the highest possible variance
for any distribution confined to the interval (0,1). For a biological
interpretation, if ε satisfies ε = 1/sd , then x ≤ ε means that
the progenitor cell either does not contain any protein molecules
(leaving nothing to segregate) or contains exactly one. Hence,
during cell division, this single molecule is inherited randomly
by one of the descendants, leaving the other cell without any
molecules. In our simulations, when x ≤ ε, one descendant
cell receives a protein concentration of 2x , while its counterpart
receives none.

S5 Appendix. Derivation of the protein steady-
state mean and noise: single cell
perspective

In this appendix we present our theoretical framework for calcu-
lating the statistical moments of protein concentration, taking into
account the role of molecular partitioning in gene expression. For
this purpose, we use the framework of time-triggered stochastic
hybrid systems (TTSHS) [126–128], which integrates the contin-
uous dynamics of protein dilution with two families of resets: (i)
cell division and (ii) protein synthesis in bursts.

To model cell division we leverage the theory of renewal pro-
cesses that is a generalization of the classical Poisson process.
Here the time between two successive events is an independent
and identically distributed random variable following an arbitrary
distribution pτd (y ), i.e., the probability

P{τd ∈ (y , y + dy ]} = pτd (y )dy . (S5.1)

To model division events we introduce a timer τ that is set to
(τ = 0) when a cell is born, and increases linearly with time along
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the cell cycle
dτ
dt

= 1, (S5.2)

together with decay in protein concentration

dx
dt

= −γx , (S5.3)

as a per fixed dilution rate γ. Cell division events occur proba-
bilistically with propensity (or hazard rate)

h(τ ) =
pτd (τ )

1 −
∫ τ

0 pτd (y )dy
. (S5.4)

More specifically, given the state of the timer τ , the probability
of a division event occurring in the next infinitesimal time interval
(t , t + dt ] is h(τ )dt . Whenever this division event occurs, the timer
and concentration are reset as

x 7→ x+ τ 7→ 0, (S5.5)

with x+ representing the protein concentration in one of the
randomly-chosen daughters in the single-cell perspective. The
statistical properties of x+ were described in Section S4.1. The
case of Poisson process is recovered if pτd is precisely an ex-
ponential distribution with mean ⟨τd⟩, then as per (S5.4) the cell
division propensity h(τ ) = 1/⟨τd⟩ would be a constant. Note
that in this model formulation τ is a stochastic process and the
steady-state expected value of any generalised hazard-rate sat-
isfies:

⟨h(τ )⟩ =
1

⟨τd⟩
, (S5.6)

as shown in [127]. Having explained the timing of cell division,
we next describe protein synthesis events occurring in stochastic
bursts. Synthesis events occur as per a constant propensity λ,
and each event increases the protein concentration as per the
reset

x → x + b (S5.7)

where b an independent and identically distributed random vari-
able following an exponential distribution with mean 1/β. This
model of protein synthesis can be further generalized where
both the time interval between two successive bursts events and
the burst size b follow arbitrary distributions [77]. In summary,
the deterministic dynamics (S5.2)-(S5.3) together with cell divi-
sion and protein bursting events with corresponding resets (S5.5)
and (S5.7), respectively, define a time-triggered stochastic hybrid
systems (TTSHS) which is itself a special class of PDMPs.

We refer the reader to [126, 127] for details on deriving time
evolution of the statistical moments of TTSHS state space. Us-
ing the statistical properties of x+ in (S4.3), the time evolution of
the first- and second-order moments of the protein concentration
follow the system of differential equations

d⟨x⟩
dt

= λβ − γ⟨x⟩ (S5.8a)

d⟨x2⟩
dt

= 2λ⟨x⟩β + λ⟨b2⟩ − 2γ⟨x2⟩ + ε⟨h(τ )x⟩. (S5.8b)

Using the fact that at steady-state (see Theorem 1 in [127])

⟨h(τ )x⟩ =
⟨x⟩
⟨τd⟩

, (S5.9)

and ⟨b2⟩ = 2β2, γ⟨τd⟩ = ln 2, solving (S5.8) at steady state yields

⟨x⟩ =
λβ

γ
, ⟨x2⟩ = ⟨x⟩2 + ⟨x⟩β +

ε⟨x⟩
2γ⟨τd⟩

, (S5.10)

which results in the following expression for concentration noise

CV2
x =

1

⟨x⟩

( ε

2 ln 2
+ β

)
. (S5.11)

S6 Appendix. Partitioning noise with determinis-
tic cell cycle duration

In this appendix, we solve the moments of protein concentration
from the single-cell and population perspectives when the cell
cycle has a deterministic duration. As a final result, we show that
the protein concentration noise is the same in both perspectives.
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Figure S2: Protein concentration noise in single-cell and popu-
lation perspectives follows the same dynamics for fixed cell- cy-
cle duration. The line represents the protein noise calculated us-
ing (S6.11). The scatter-plot shows the results of simulations (green
circles: single-cell, brown squares: population). Parameters: γ = ln 2,
λβ = 20γ, ε = 1 τd = 1, 5000 simulation replicas.

S6.1 Noise at single cell level

First, we solve the moment dynamics for the single-cell perspec-
tive. We neglect protein bursting and therefore assume that pro-
tein concentration evolves deterministically as per (15). In this
way, protein concentration trajectories consist of continuous dy-
namics interrupted by random-size jumps that represent parti-
tioning during division. These divisions occur with a period of
deterministic duration τd and therefore we can solve the ODE for
protein concentration (15) applying periodic boundary conditions.
This means that the system has the same properties after each
multiple of τd .

We define the timer τ to track the time since the previous di-
vision following dτ

dt = 1. During the cell cycle τ ∈ [0, τd ), the
protein concentration evolves as per (15) which has the solution:

x(τ ) = x+e−γτ +
λβ

γ
(1 − e−γτ ), 0 ≤ τ ≤ τd , (S6.1)

where we have used the property (S5.5) that, during division,
protein levels jump from x(τd ) to the random variable x+ with un-
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known moments ⟨x+⟩ and ⟨x2
+ ⟩. Using the periodic boundary con-

ditions, and considering that during division the mean concentra-
tion does not change, we have:

⟨x(0)⟩ = ⟨x+⟩ = ⟨x(τd )⟩. (S6.2)

Taking the expected value of (S6.1) and using the boundary con-
ditions (S6.2), we solve for ⟨x+⟩:

⟨x+⟩ =
λβ

γ
, (S6.3)

which also solves the mean concentration as function of τ :

⟨x(τ )⟩ =
λβ

γ
, (S6.4)

which is consistent with the fact that the division does not change
the mean concentration level. To obtain the variance of x over
time, we find the second moment ⟨x2(τ )⟩. Since the protein tra-
jectory for given x+ is deterministic, the square of the protein level
follows:

x2(τ ) =

(
x+e−γτ +

λβ

γ
(1 − e−γτ )

)2

, (S6.5)

which has the expected value given τ :

⟨x2(τ )⟩ = ⟨x2
+ ⟩e−2γτ +

(
λβ

γ

)2

(1 − e−2γτ ). (S6.6)

Next step is to apply the boundary conditions. During cell divi-
sion, this is, when time is a multiple of τd , protein level jumps
from x(τd ) to x+ and the variance increases as:

Var(x+) = Var(x)|τ=τd + ε⟨x⟩|τ=τd

= Var(x(τd )) + ε
λβ

γ
. (S6.7)

Notice that Var(x+) − Var(x(τd )) = ⟨x2
+ ⟩ − ⟨x2(τd )⟩ because the

averages are identical ⟨x⟩|τ=τd = ⟨x+⟩. Therefore, we conclude
that:

⟨x2
+ ⟩ = ⟨x2(τd )⟩ + ε

λβ

γ
. (S6.8)

It is possible to replace ⟨x2(τd )⟩ from equation (S6.6) into (S6.8)
and solve for ⟨x2

+ ⟩ to obtain:

⟨x2
+ ⟩ =

(
λβ

γ

)
ε

(1 − e−2γτd )
+

(
λβ

γ

)2

. (S6.9)

Substitution of this second moment of x+ into (S6.6) yields:

⟨x2(τ )⟩ =

(
λβ

γ

)
εe−2γτ

(1 − e−2γτd )
+

(
λβ

γ

)2

. (S6.10)

Using also ⟨x(τ )⟩, it is possible to obtain the protein noise
throughout the cell cycle:

(
CV2

x (τ )
)

SC
=

(
γ

λβ

)
εe−2γτ

(1 − e−2γτd )
. (S6.11)

Figure S2 presents the trajectory of
(
CV2

x (τ )
)

SC
using (S6.11);

the comparison with simulations shows a relatively good match.

S6.2 Noise at population level

In this subsection, we demonstrate that the noise at the popula-
tion level coincides with the noise at the single-cell perspective.
From the population perspective, after division at τ = 0+, we con-
tinue to follow both daughter cells. While one daughter cell inher-
its the protein level x+, the other inherits the level 2⟨x(τd )⟩ − x+.
This is because the mean concentration of both cells just after
the division the same before the division, that is ⟨x(τd )⟩. After a
timer τ ∈ [0, τd ), the protein concentration in the first daughter is
presented in (S6.1). The second daughter follows the dynamics:

x(τ )2nd daughter = (2⟨x(τd )⟩ − x+)e−γτ +
λβ

γ
(1 − e−γτ ). (S6.12)

Using the property ⟨x+⟩ = ⟨x(τd )⟩, we obtain that the mean con-
centration for both daughters at equilibrium are identical:

⟨x(τ )1st daughter ⟩ = ⟨x(τ )2nd daughter ⟩ = λβ/γ. (S6.13)

To obtain the dynamics of the second-order moment for the
second daughter, we take the square of the equation (S6.12) and
take the average:

⟨x2(τ )2nd daughter ⟩ =
〈(

2⟨x(τd )⟩ − x+)e−γτ
)2
〉

+

〈(
λβ

γ
(1 − e−γτ )

)2
〉

+

〈
2
(
2⟨x(τd )⟩ − x+)e−γτ

)(λβ

γ
(1 − e−γτ )

)〉
= ⟨x2

+ ⟩e−2γτ +

(
λβ

γ

)2

(1 − e−2γτ ), (S6.14)

where we have used ⟨x+⟩ = ⟨x(τd )⟩ = λβ
γ . Notice that equation

(S6.14) is the same as (S6.6) which has solution (S6.10):

⟨x(τ )2
1st daughter ⟩ = ⟨x(τ )2

2nd daughter ⟩

=

(
λβ

γ

)
εe−2γτ

(1 − e−2γτd )
+

(
λβ

γ

)2

.
(S6.15)

The first and second order moments of both daughters are
identical, so that the

(
CV2

x (τ )
)

Pop
during the cell cycle τ ∈ [0, τd )

can be obtained as follows:

(
CV2

x (τ )
)

Pop
=

(
Var2

x (τ )
)

Pop

⟨x(τ )⟩2
Pop

=

1
2

∑i=2
i=1

(
⟨x(τ )2

i thdaughter ⟩ − ⟨x(τ )i thdaughter ⟩2
)

1
2

∑i=2
i=1⟨x(τ )i thdaughter ⟩2

=

(
γ

λβ

)
εe−2γτ

(1 − e−2γτd )
, (S6.16)

which is the same as the single cell noise given by (S6.11). Con-
sequently, it can be shown that after the nth division, the noise
level within the population is equal to that of single cell, i.e.,(

CV2
x (τ )

)
Pop

=
(
CV2

x (τ )
)

SC
= CV2

x (τ ).

This result is verified using the simulations, which is shown in
Figure S2. It can be shown that with the parameters γ = ln 2/τd
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and τd = 1, the time-averaged CV2
x is given by,

1
τd

∫ τd

0
CV2

x (τ )dτ =
1

⟨x⟩

( ε

2 ln 2

)
, (S6.17)

which corresponds to the dashed horizontal line in Figure S2.

S7 Appendix. Simulation Algorithm for estimat-
ing the protein statistics in SC and
population model

In this appendix, we present the basis of the simulation algo-
rithms used in the main article. The main idea of Algorithm 1
is to produce two time intervals for the next reactions and select
the minimum. The reaction related to that minimum time will be
chosen to happen. The first reaction corresponds to the protein
burst, and the second is the division event. The main difficulty
in the simulation relative to other standard methods such as the
classical Gillespie’s algorithm [129] is that the division time is not
exponentially distributed, and therefore division is not a memo-
ryless process. This means that each cell has to track the time
left for division. In addition, when the population perspective is
considered, the number of cells in the population increases dur-
ing each division. To address this, we designed an agent-based
algorithm that models protein levels within each cell over time.

The algorithm has the goal of estimating the protein level x i

of cells in the population. Here, the superscript i represents the
i-th cell of the population. When the single-cell perspective is
considered, only one descendant is randomly chosen to inherit a
beta-distributed protein level during each division, so the popula-
tion corresponds to one cell. Otherwise, in population model, a
new cell is added to the population after each division, the num-
ber of cells in population grows each division.

The process starts with setting the initial conditions. For each
replica, we start the colony progenitor (i = 1) with a given pro-
tein level x1. Simultaneously, we set the maximum time to end
the simulation T . Each cell has two additional variables: the
time to the next burst τ i

b and the time to division τ i
d . While τ i

b
is exponentially distributed with mean ⟨τ i

b⟩ = 1/λ, τ i
d is consid-

ered as gamma distributed with shape and scale parameters se-
lected, such as this variable has mean ⟨τd⟩ and variability CV 2

τd
.

In some cases we consider gene expression as non-bursty, this
means that the burst does not occur. This can be done consider-
ing τ i

b → ∞ and choosing always the division.
During each iteration, the minimum time τmin is selected

among all τ i
d and τ i

b, and the respective reaction occurs in the
i-th cell. Before the reaction, all τ i

d and τ i
b decrease by τmin.

Simultaneously, the protein level of all cells evolve following the
differential equation:

dx i

dt
= g(x i , t), (S7.1)

where the function g(x , t) depends on whether the gene expres-
sion is bursty or not. For a bursty protein synthesis the protein
dilutes as g(x , t) = −γx . In non-bursty case, protein evolves as
g(x , t) = λβ − γx , and we reassign τ i

b = ∞ in Algorithm 1, so
that the division is the only possible event.

We denote by n the cell that is the one with the correspond-
ing minimum time. If τ n

b is that minimum, the protein burst is set
to happen; otherwise, the division occurs. During the burst, the
protein level increases by a jump with size drawn from an expo-
nential distribution with mean β. During division, the protein level

Data: X = {x1},T
Result: X = {x1, · · · , xN}
τ 1

d ∼ gamma(⟨τd⟩, CV 2
τd

);
τ 1

b ∼ Exponential(⟨τb⟩);
N = |X| = 1;
τmin = min∀i∈{1}(τ i

d , τ i
b);

n = argmin∀i∈{1}(τ i
d , τ i

b) = 1;
t = τmin;
τ ′ = 0;
if τmin > T then

x1 =
∫ T

0 g1(u)du
else

while t < T do
for i = 1; i ≤ N; i = i + 1 do

x i = x i +
∫ t−τ ′

0 g i (u)du;
τ i

b = τ i
b − (t − τ ′);

τ i
d = τ i

d − (t − τ ′);
end
if τmin == τ n

b then
b ∼ Exponential(β);
xn = xn + b;
τ n

b ∼ Exponential(⟨τb⟩);
else

δ ∼ Beta
(

xn/ε−1
2 , xn/ε−1

2

)
;

x+ = 2xnδ;
if Population then

xN+1 = 2xn − x+;
τN+1

d ∼ gamma(⟨τd⟩, CV 2
τd

);
τN+1

b ∼ Exponential(⟨τb⟩);
N = |X| = N + 1;

else
N = 1;

end
xn = x+;
τ n

d ∼ gamma(⟨τd⟩, CV 2
τd

);
end
τmin = min∀i∈{1,··· ,N}(τ i

d , τ i
b);

n = argmin∀i∈{1,··· ,N}(τ i
d , τ i

b);
τ ′ = t ;
t = t + τmin;

end
for i = 1; i ≤ N; i = i + 1 do

x i = x i +
∫ T
τ ′ g i (u)du;

end
end

Algorithm 1: Given the initial protein concentration x1, and
the time to complete the simulation T , we obtain the end
of the simulation the array of protein concentrations at X =
{x1, · · · , xN} for the N cells. If the simulation is done for the
population perspective, the algorithm saves a new descen-
dant cell every time a cell in the population divides; for the
single-cell perspective all descendants are ignored.
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Figure S3: Adder-based cell size homeostasis causes differences in concentration noise levels between the population and single-cell
frameworks. (A) Cell size dynamics following adder principle. After division, a cell has a given birth size, grows exponentially, and divides once it
has expanded by added size. The added size is an independent random variable with a given noise CV2

∆. (B) Trajectories of protein level (top) and
cell size (bottom) in a sample population. Green lines represent the protein levels of a single cell, dark brown are the trajectories of the descendant
cells and other trajectories correspond to remaining cells in the colony. (C) Comparison of noise in protein levels as a function of noise in added size
CV 2

∆. Green scatter plots show single-cell statistics and brown ones are for population. While the noise at the single-cell level changes weakly with
the noise in added size, there is a greater change at the population level. Parameters of protein concentration: λβ = 20, γ = ln(2), ε = 1. Parameters
of cell size: ⟨sb⟩ = 0.5, ⟨sd⟩ = 1, ∆ is drawn from gamma distribution with ⟨∆⟩ = 0.5. Single-cell statistics are based on the simulation of 50000
individual cells, population statistics are derived from 1000 colonies after approximately six divisions.

is reset to a new variable x+ with mean ⟨x+⟩ = x and variance
Var(x) = εx as explained in Section S4.2.

When the population perspective is chosen, during division, a
new cell is added to the population. While, randomly, one cell
inherits a protein level x+ with the statistics explained before, the
other cells inherit a level 2x−x+. This ensures that the mean pro-
tein level across both daughter cells is maintained at x . For single
cell model, only one of the descendants is randomly chosen to
inherit a protein level x+, maintaining population size constant at
one cell.

This simulation is performed across multiple populations, in-
volving 5000 replicates. To estimate the moments of the distri-
bution, for the single cell perspective, we calculate the average
across 5000 cells, one from each colony, at the end of the sim-
ulation. For the population perspective, statistical estimates are
derived from all cells across 5000 colonies, without distinguishing
between lineages.

S8 Appendix. Pop and SC difference for the
adder division

We consider that cell size increases exponentially over time with
divisions following the adder strategy [112] – cells divide after
adding, on average, a fixed cell size called added size. This
added size is presented in Figure S3A as the difference between
the cell size at birth and the cell size at division.

During the cell cycle the cell size s(t) grows exponentially:

ds
dt

= γs, (S8.1)

with the same growth rate γ as the protein dilution rate. The
protein concentration evolves deterministically according to (15)
with constant synthesis and dilution rates. During each cell di-
vision, the protein partitioning follows the method presented in
Appendix S4. Then, according to (S4.3), if the cell has concen-
tration x and size sd at the end of its life cycle, the mean protein

concentration in the new cells equals to x , with variance x/sd .
In Figure S3B, we show the cell protein concentration dynamics
(top) and the cell size dynamics (bottom).

During a cell cycle, cells add a size denoted by ∆. For sim-
ulations, we assume that ∆ is a random independent variable
that follows a gamma distribution with mean ⟨∆⟩ = 0.5 and noise
CV 2

∆. This choice of ⟨∆⟩ is set so that the mean size at division
⟨sd⟩ = 1, making the results of adder comparable to those of
timer in the main text, following ε = 1/⟨sd⟩ = 1.

To obtain the cell cycle duration τd for each cell, we register its
birth size sb, and then the size at the end of that cycle is sb + ∆.
Given the exponential cell growth, we have sb + ∆ = sbeγτd ,
which we use to obtain the cell cycle duration as follows:

τd =
1
γ

ln

(
sb + ∆

sb

)
. (S8.2)

Note that the duration of the cell cycle τd is now a variable that
depends on sb. This means that, unlike the timer approach con-
sidered in the text, τd is no longer an independent variable.

For simulation, each cell x i in a colony has parameters: pro-
tein level xi , cell size si , added size ∆i , time for next burst τ i

b
drawn from the exponential distribution, and cell cycle duration
τ i

d estimated using (S8.2). Then Algorithm 2 shows that based
on these parameters each cell colony evolves as follows. The
set of all τ i

d and τ i
b over the cells in the colony defines all possi-

ble reaction times. During each iteration, we select the minimum
of those times, perform the associated reaction, and allow the
system to evolve during that minimum time. The evolution of the
colony includes the exponential growth of cells at a rate γ with the
subsequent dilution of proteins at the same rate. If the selected
reaction corresponds to a burst, the protein level of the cell in-
creases by an exponentially distributed quantity with mean β. If
the reaction is a division event, the protein level is perturbed, as
explained in Appendix S4, and, for population level, another cell
is added to the colony. The iteration continues until the maximum
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Data: X = {x1}, S = {s1},T
Result: X = {x1, · · · , xN}, S = {s1, · · · , sN}
∆1 ∼ gamma(⟨∆⟩, CV 2

∆);

τ 1
d = 1

γ ln
(

s1+∆
s1

)
;

τ 1
b ∼ Exponential(⟨τb⟩);

N = |X| = 1;
τmin = min∀i∈{1}(τ i

d , τ i
b);

n = argmin∀i∈{1}(τ i
d , τ i

b) = 1;
t = τmin;
τ ′ = 0;
if τmin > T then

x1 =
∫ T

0 g1(u)du
else

while t < T do
for i = 1; i ≤ N; i = i + 1 do

x i = x i +
∫ t−τ ′

0 g i (u)du;

si = sieγ(t−τ ′);
τ i

b = τ i
b − (t − τ ′);

τ i
d = τ i

d − (t − τ ′);
end
if τmin == τ n

b then
b ∼ Exponential(β);
xn = xn + b;
τ n

b ∼ Exponential(⟨τb⟩);
else

ε = 1/sn;

δ ∼ Beta
(

xn/ε−1
2 , xn/ε−1

2

)
;

x+ = 2xnδ;
s+ = sn/2;
if Population then

xN+1 = 2xn − x+;
sN+1 = s+;
∆N+1 ∼ gamma(⟨∆⟩, CV 2

∆);

τN+1
d = 1

γ ln
(

s++∆
s+

)
;

τN+1
b ∼ Exponential(⟨τb⟩);

N = |X| = N + 1;
else

N = 1;
end
xn = x+;
sn = s+;
∆n ∼ gamma(⟨∆⟩, CV 2

∆);

τ n
d = 1

γ ln
(

s++∆
s+

)
;

end
τmin = min∀i∈{1,··· ,N}(τ i

d , τ i
b);

n = argmin∀i∈{1,··· ,N}(τ i
d , τ i

b);
τ ′ = t ;
t = t + τmin;

end
for i = 1; i ≤ N; i = i + 1 do

x i = x i +
∫ T
τ ′ g i (u)du;

si = sieγ(T−τ ′);
end

end
Algorithm 2: Simulation algorithm for cell proliferation following the
adder division strategy.

time T is reached.
Given that there is no simple way to measure the noise in τd

because the duration of the cycle is defined by ∆ instead, we
simulate CV 2

x as a function of the noise in the added cell size
CV 2

∆. A comparison of the level of noise protein CV 2
x in the popu-

lation and the single-cell perspective is presented in Figure S3C.
We observe that with the adder method of cell division, the dif-
ference in protein noise level between the population and single
cell is similar to the scenario where cell division follows the timer
strategy (Figure 3C). However, protein noise for a single cell has
a slight increase with CV2

∆. This is because the variance of the
protein level after partitioning is a function of sd and the noise in
this variable increases with CV2

∆.

S9 Appendix. Feedback in frequency. Identical
protein distribution in SC and pop-
ulation model: Proof

When the we generalize the burst frequency to a function λ(x) of
the protein concentration, the time-evolution of the protein con-
centration pdf pSC(x , t) is governed by the Chapman-Kolmogorov
equation:

∂pSC(x , t)
∂t

=
∂

∂x
(γxpSC(x , t)) +

∫ x

0
b(x − y )λ(y )pSC(y ) dx

− λ(x)pSC(x), (S9.1)

where b(x) = e−x/β/β is probability density function of the expo-
nential distribution.

To find the stationary distribution, we write it as a probability
conservation equation. It is done by gathering the last two terms
of (S9.1) as per Leibniz integral rule into the following derivative:∫ x

0
b(x − y )λ(y )pSC(y ) dy − λ(x)pSC(x , t)

= − d
dx

∫ x

0
B̄(x − y )λ(y )pSC(y ) dy .

(S9.2)

where B̄(x) is the complementary cumulative distribution function
(ccdf) corresponding to b(x), i.e., B̄(x) = e−x/β .

Finally, the steady state of the system implies that distribution
does not change over time, i.e., ∂pSC(x , t)/∂t = 0. We obtain:

d
dx

(γxpSC(x)) =
d

dx

(
B̄ ∗ p̃

)
(x), (S9.3)

where an auxiliary function p̃(y ) = λ(y )pSC(y ) is used for conve-
nient representation of the convolution.

We proceed with the model of the population, where the life-
cycle of each cell is identical to one described at the beginning
of the chapter. Its composition is given by the function h(x , t)
– number of cells with given concentration x at the time t . The
time evolution of h(x , t) is described by the population balance
equation:

∂h(x , t)
∂t

=
∂

∂x
(γxh(x , t)) + γh(x , t)

− ∂

∂x

(∫ x

0
B̄(x − y )λ(y )p(y ) dy

)
. (S9.4)

which differs from the Chapman-Kolmogorov equation (S9.1) by
the inclusion of the population growth term γh(x , t).
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However, in the absence of the feedback in dilution, we have
exponentially distributed lifespans. In this case, the population
growth rate depends only on the division frequency, i.e., the
eigenvalue µ = γ. By substitution, we can prove that solutions of
PBE satisfy

h(x , t) = pSC(x , t)eγt ,

where pSC(x , t) solves the master equation (S9.1). From it fol-
lows, in particular, that

h(x , t) ∼ pSC(x)eγt , t → ∞,

where pSC(x) solves the stationary problem for the single-cell
perspective (S9.3). Then the stationary distributions of the pro-
tein concentration for single-cell perspective pSC(x) and popula-
tion perspective pPop(x) are identical.
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