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Abstract 

Brain clocks, which quantify discrepancies between brain age and chronological age, hold 

promise for understanding brain health and disease. However, the impact of multimodal diversity 

(geographical, socioeconomic, sociodemographic, sex, neurodegeneration) on the brain age gap 

(BAG) is unknown. Here, we analyzed datasets from 5,306 participants across 15 countries (7 

Latin American countries -LAC, 8 non-LAC). Based on higher-order interactions in brain signals, 

we developed a BAG deep learning architecture for functional magnetic resonance imaging 

(fMRI=2,953) and electroencephalography (EEG=2,353). The datasets comprised healthy 

controls, and individuals with mild cognitive impairment, Alzheimer’s disease, and behavioral 

variant frontotemporal dementia. LAC models evidenced older brain ages (fMRI: MDE=5.60, 

RMSE=11.91; EEG: MDE=5.34, RMSE=9.82) compared to non-LAC, associated with 

frontoposterior networks. Structural socioeconomic inequality and other disparity-related factors 

(pollution, health disparities) were influential predictors of increased brain age gaps, especially in 

LAC (R²=0.37, F²=0.59, RMSE=6.9). A gradient of increasing BAG from controls to mild 

cognitive impairment to Alzheimer’s disease was found. In LAC, we observed larger BAGs in 

females in control and Alzheimer’s disease groups compared to respective males. Results were 

not explained by variations in signal quality, demographics, or acquisition methods. Findings 

provide a quantitative framework capturing the multimodal diversity of accelerated brain aging.  

 

 

 

 

 

 



   

 

   

 

Main  

The brain undergoes dynamic functional changes with age1-3. Accurately mapping the trajectory 

of these changes and how they relate to chronological age is critical for understanding the aging 

process, multilevel disparities4,5, and brain disorders1 such as the Alzheimer's disease continuum, 

which includes mild cognitive impairment (MCI), and related disorders like behavioral variant 

frontotemporal dementia (bvFTD) 6. Brain clocks or brain age models have emerged as 

dimensional, transdiagnostic metrics that measure brain health influenced by a range of factors7-

9, suggesting that they may be able to capture multimodal diversity10. Notably, underrepresented 

populations from Latin American countries (LAC) exhibit higher genetic diversity and distinct 

physical, social and internal exposomes11,12 that impact brain phenotypes4,13,14. Income and 

socioeconomic inequality15,16, high levels of air pollution17, limited access to timely and effective 

healthcare18, increased prevalence of communicable diseases19, rising prevalence of non-

communicable diseases19,20, and low education attaiment21,22, are determinants of brain health in 

LAC18. Thus, although measuring the brain age gap (BAG) could enhance our understanding of 

disease risk and its impact on accelerated aging23, there is a lack of research on brain age models 

in underrepresented populations with increased socioeconomic and health disparities18,24,25.  

 

Sex and gender differences emerge as critical factors influencing brain changes. Studies on 

atrophy in Alzheimer's disease continuum reveal a faster rate of brain atrophy in females than in 

males26. Moreover, country-level gender inequality is associated to sex differences in cortical 

thickness27. Structural gender inequality further impacts brain health, with adverse environments 

affecting dendritic branching and synapse formation28. However, no studies to date have explored 

the spectrum of brain age abnormalities, including the effects of demographic heterogeneity across 

geographical regions, sexes, and the continuum from brain health to disease. Further, most studies 



   

 

   

 

have been conducted with participants from the global north, resulting in a lack of generalization 

to underrepresented populations from LAC24,29-31.  

 

Multimodal machine learning studies show promise in brain aging23; however, most rely on 

structural MRI, overlooking brain network dynamics. Complex spatiotemporal dimensions can be 

tracked with spatial accuracy through functional magnetic resonance imaging (fMRI) and 

millisecond precision using electroencephalogram (EEG) 32. Given the complementary strengths 

of fMRI and EEG, it is crucial to cross-validate existing brain clock models using these 

techniques. However, no studies have simultaneously applied EEG and fMRI to replicate brain 

age effects. Additionally, standard machine learning approaches are less generalizable than deep 

learning methods33. Brain age indices has been restricted by the predominant use of MRI or PET, 

which are less accessible and affordable in LAC, leading to selection biases34.  EEG offers a 

solution due to its cost-effectiveness, portability, and ease of implementation in aging and 

dementia35,36. However, few studies have combined accessible techniques with deep learning to 

develop scalable brain age markers. The application of EEG is hindered by heterogeneity in 

recordings, electrode layouts, acquisition systems, processing pipelines, and small sample sizes37. 

These standardization challenges have impeded the integration of fMRI and EEG in extensive, 

multicenter brain age research. 

 

We adopted a framework to tackle diversity by including datasets from LAC and non-LAC 

regions (n = 5306), utilizing graph convolutional networks (GCN) to functional connectivity of 

fMRI and EEG signals. We hypothesized that, across fMRI and EEG imaging, models would 

accurately predict BAGs and be sensitive to the impacts of multimodal diversity, including 

geographical and sociodemographic effects, sex differences, health disparities, and exposome 



   

 

   

 

influences. By testing this hypothesis, we aimed to assess the effectiveness of high-order 

interactions and deep learning in predicting brain age differences across diverse and 

heterogeneous populations of healthy aging and neurocognitive disorders.  

 

Results  

We employed resting-state fMRI (n = 2953) and EEG (n = 2353) signals separately to evaluate 

whether a deep-learning computational pipeline (Fig. 1) captures differences in brain aging across 

heterogeneous populations. We included fMRI data from 2953 participants from Argentina, Chile, 

Colombia, Mexico, and Peru (LAC) and the USA, China, and Japan (non-LAC). The EEG dataset 

involved 2353 participants from Argentina, Brazil, Chile, Colombia, and Cuba (LAC), and Greece, 

Ireland, Italy, Turkey, and the UK (non-LAC). Healthy controls, MCI, Alzheimer's disease, and 

bvFTD groups were included. We focused on the Alzheimer's disease and bvFTD as these 

conditions represent the most common late-onset and early-onset causes of dementia38,39. We 

included the Alzheimer's disease continuum, which encompasses MCI, to capture the prodromal 

stages of the disease39. Raw fMRI and EEG signals were preprocessed to remove artifacts and then 

normalized. Based on multivariate information theory, we calculated high-order interactions1. 

Weighted graphs were used as inputs for a graph convolutional deep learning network trained to 

predict brain age, employing one model for fMRI and another for EEG.  

BAG across LAC and non-LAC datasets  

We used the fMRI and EEG signals from the control’s datasets (i.e., LAC and non-LAC) to train 

and test brain-aging models. We employed 80% cross-validation with a 20% hold-out testing split. 

As shown in Figs. 2a and 3a, our models predicting brain age obtained adequate goodness of fit 

(fMRI: R2 = 0.52, p < 0.001, F2 = 1.07; EEG: R2 = 0.45, p < 0.001, F2 = 0.83). We implemented 

the Root Mean Square Error (RMSE) to evaluate models’ fit, obtaining acceptable brain age 



   

 

   

 

predictions (fMRI-RMSE = 7.24, EEG-RMSE = 6.45). For both, fMRI and EEG, the main 

predictive brain-regional features included hubs in frontoposterior networks (nodes in precentral 

gyrus, the middle occipital gyrus, and the superior and middle frontal gyri; Fig. 2a and 3a). 

Additional nodes for the fMRI model included the inferior frontal gyri, and the anterior and 

median cingulate and paracingulate gyri (Fig. 2a.). For EEG, key nodes also comprised the 

superior and inferior parietal gyri and the inferior occipital gyrus (Fig. 3a). Thus, for both fMRI 

and EEG the models showed an adequate fit and predictive performance, with key predictive 

features involving frontoposterior networks in the brain. 

 

BAG in non-LAC datasets  

Using the same data split ratio, we trained and tested the models in non-LAC datasets. As shown 

in Figs. 2b and 3b, our models predicting brain age yielded considerable goodness of fit (fMRI: 

R2 = 0.40, p < 0.001, F2 = 0.67; EEG: R2 = 0.43, p < 0.001, F2 = 0.76). RMSE values were also 

adequate (fMRI-RMSE = 8.66; EEG-RMSE = 6.54). Mean Directional Errors (MDE) for fMRI 

and EEG were 0.69 and 1.07, respectively. For both fMRI and EEG, the main predictive features 

included hubs in frontoposterior networks including the superior frontal gyrus (dorsolateral), the 

precentral gyrus, and the middle occipital gyrus (Fig. 2b and 3b). Additional critical nodes for the 

fMRI model included the inferior and middle frontal gyri, and the anterior and median cingulate 

and paracingulate gyri (Fig. 2b). For EEG, key nodes also comprised the superior and inferior 

occipital gyri, and the superior parietal gyrus (Fig. 3b). In brief, models trained on non-LAC 

datasets exhibited strong fit values and predictive features as in the overall dataset analysis. 

BAG in LAC datasets  

When trained and tested in the LAC datasets (Figs. 2c and 3c), models demonstrated moderate 

goodness of fit indexes but were less precise, as indicated by higher RMSE values (fMRI = 11.91; 



   

 

   

 

EEG = 9.82). We observed increased positive biases in the MDE measures compared to the non-

LAC models (fMRI = 3.18; EEG = 5.34). Again, the main features involved frontoposterior 

networks. Common nodes for fMRI and EEG included the superior and middle occipital gyri, the 

superior and inferior parietal gyri, and the superior and middle frontal gyri (Fig. 2c and 3c). For 

EEG, the model also highlighted the precentral gyrus, and the inferior occipital gyrus (Fig. 3c). 

Thus, models trained on LAC datasets showed moderate fit and positive biases (older brain age) 

in frontotemporal nodes (fMRI and EEG), compared to non-LAC models. 

 

Cross-regional effects in model generalization  

We investigated the effects of cross-region training and testing with data from non-LAC and LAC. 

Training with non-LAC data and testing on LAC data led to biases predicting older brain ages 

than chronological ages as shown by positive MDE values (Figs. 2d and 3d; fMRI: MDE = 5.60, 

RMSE = 9.44; EEG: MDE = 5.24, RMSE = 7.23). On the contrary, training on LAC and testing 

on non-LAC resulted in negative age biases predicting younger brain age shown by the MDE 

(Figs. 2d and 3d; LAC/non-LAC fMRI: MDE = -2.52, RMSE = 8.41; LAC/non-LAC EEG: MDE 

= -2.34, RMSE = 5.69). Sex differences were observed in the BAG when training in the non-LAC 

and testing in LAC (Figs. 4a and 4b). Specifically, female participants in LAC exhibited a greater 

bias towards older brain age than males (fMRI: p = 0.04; EEG: p = 0.03). In conclusion, training 

with non-LAC data and testing on LAC data resulted in a bias towards predicting older brain ages, 

especially for female participants in LAC. 

 

Accelerated aging in MCI, Alzheimer's disease and bvFTD 

We investigated the effects of testing the controls-trained model (80%) on different subsamples, 

matched by age, sex, and education, from other groups (i.e., controls non-LAC, controls LAC, 



   

 

   

 

MCI, Alzheimer's disease, and bvFTD, Table 1). Permutation subsample analyses with 5000 

iterations revealed statistically significant BAGs between the non-LAC and LAC control groups 

(Figs. 4a and 4b, fMRI: p < 0.01; EEG: p < 1e-5). This difference was also observed for 

Alzheimer's disease in the fMRI dataset (p < 1e-5). Additionally, for fMRI, we found significant 

differences between controls from non-LAC and all clinical groups from the same region [MCI 

(p < 1e-5), Alzheimer's disease (p < 1e-5), and bvFTD (p < 1e-5)]. Similarly, for both fMRI and 

EEG, we observed significant differences between controls from LAC and all the clinical groups 

[fMRI: MCI (p < 1e-5), Alzheimer's disease (p < 1e-5), and bvFTD (p < 1e-5); EEG: MCI (p < 

1e-5), Alzheimer's disease (p < 1e-5), and bvFTD (p < 0.01)]. Across fMRI and EEG datasets, 

both LAC and non-LAC, we observed a gradient of increasing brain age from controls to MCI to 

Alzheimer's disease. The MCI groups significantly differed from Alzheimer's disease (fMRI and 

EEG: p < 1e-5) and bvFTD (fMRI: p < 1e-5; EEG: p < 0.01), with older brain ages for Alzheimer's 

disease and bvFTD. For the fMRI and EEG non-LAC datasets, the Alzheimer's disease group also 

showed an older brain age than the bvFTD group (p < 0.01). Thus, larger brain age gaps were 

observed in LAC compared to non- LAC groups and across clinical groups, with a gradient of 

increasing brain age from controls to MCI to dementia. 

 

Sex differences in neurocognitive disorders 

For fMRI, we analyzed the differences between male and female participants with the same 

diagnosis for the non-LAC and LAC datasets. There were no significant differences among groups 

from non-LAC datasets (Figs 4a and 4b). However, Alzheimer's disease females from LAC 

exhibited significantly greater BAGs compared to males (fMRI: p < 1e-3, EEG: p < 0.001). No 

other significant effects were observed. We conducted a supplementary analysis incorporating 

country-level gender inequality (GII indexes), sex, region (LAC vs. non-LAC), and individual 



   

 

   

 

neurocognitive status (HC vs. MCI, Alzheimer's disease, or bvFTD) as predictors of BAGs. The 

model demonstrated good performance (R² = 0.40, F² = 0.66, RMSE = 6.85, p < 1e-15) and all 

predictors were influential. Having a neurocognitive disorder and being a female living in 

countries with high gender inequality – particularly from LAC – were associated with higher 

BAGs (Extended Data Fig.1 and Supplementary Table 1). Overall, females with Alzheimer's 

disease from LAC exhibited significantly greater brain age gaps compared to males, influenced 

by high gender inequality in their countries. 

 

Exposome determinants of BAGs  

We employed gradient boosting regression models to explore the influence of physical and social 

exposomes, as well as disease disparity factors on BAGs. Predictors included aggregate country-

level measures of air pollution (PM2.5), socioeconomic inequality (GINI index), and burdens of 

communicable, maternal, prenatal, and nutritional conditions, and non-communicable diseases. 

We also leveraged the individual neurocognitive status (HC versus Alzheimer's disease, MCI, or 

bvFTD). We assessed predictors’ importance using a multi-method approach comprising 

permutation importance, mean decrease in impurity (MDI), and SHAP values (Fig. 4c). Across 

both LAC and non-LAC datasets, the models (R² = 0.41, F² = 0.71, RMSE = 6.76, F = 304.25, p 

< 1e-15) identified neurocognitive disorders (MCI, Alzheimer's disease, or bvFTD) and higher 

socioeconomic inequality (GINI index) as the most influential and consistent predictors of 

increased BAGs (Fig. 4c). High levels of pollution and burden of non-communicable and 

communicable diseases were also predictive of increased BAGs, albeit less impactful. Stratified 

models for LAC (R² = 0.37, F² = 0.59, RMSE = 6.9, F = 138.78, p < 1e-15) and non-LAC (R² = 

0.41, F² = 0.71, RMSE = 6.57, F = 135.91, p < 1e-15) also showed good performance, with 

neurocognitive disorders being the most influential predictor in both. In LAC, higher 



   

 

   

 

socioeconomic inequality was the second most consistent and influential predictor of larger BAGs 

across the three models. Air pollution and burden of communicable and non-communicable 

diseases were also influential. None of these variables was influential predictors in the non-LAC 

models. Predictors’ estimation coefficients are presented in Supplementary Table 2. In sum, 

neurocognitive disorders, followed by macrosocial factors linked to socioeconomic inequality, air 

pollution, and health disparities, were influential predictors of increased brain age gaps, especially 

in LAC. 

 

Sensitivity analyses 

We performed multiple tests to assess the validity of the results. First, we investigate whether 

variations in fMRI or EEG data quality explained the differences in brain age between the non-

LAC and LAC. Subsample permutation tests with 5000 iterations showed no significant 

differences between any of the groups for fMRI (Fig. 5a) or EEG (Fig. 5b) data quality metrics. 

In addition, a linear regression examining scanner type effects showed that the fMRI data quality 

metric did not predict the BAGs (R2 = 0.001, p = 0.18, Cohen’s F2 = 0.001, Fig. 5c). To further 

test for scanner effects, we implemented a harmonization strategy by normalizing the BAG 

variable within each scanner type. We used the min-max scaler to ensure consistent minimum and 

maximum values across scanners. Results using this harmonization (Fig. 5d) and our initial 

approach were very similar. Additional analyses controlling for datasets collected with eyes open 

versus eyes closed protocols revealed no significant differences in BAGs across any groups 

(Extended Data Fig. 2). 

 

We also controlled for effects of age and years of education on fMRI and EEG BAGs by including 

them as covariates in the group comparisons. All reported group differences remained significant 



   

 

   

 

after covariate adjustment (Supplementary Table 3). Years of education did not change the results 

for any analyses. In eight of the nine analyses, age did not have a significant effect. Considering 

the chronological age differences between Alzheimer's disease and MCI groups, we performed a 

sensitivity analysis using a subset of MCI participants (fMRI: n = 254, mean age = 73.287 +/- 

7.517; EEG: n = 52, mean age = 63.231 +/- 6.549) age matched to Alzheimer's disease participants 

(fMRI: n = 254, mean age = 72.295 +/- 7.530, p = 0.13; EEG: n = 52, mean age = 62.769 +/- 

6.302, p = 0.71). These results (Extended Data Fig. 3) confirmed those reported for the overall 

MCI and Alzheimer's disease datasets (Figs. 4a and 4b). For both fMRI and EEG datasets, we 

found significantly larger BAGs in Alzheimer's disease compared to MCI (fMRI: p < 1e-5; EEG: 

p < 0.01). For fMRI, these differences were observed in both LAC (p < 1e-5) and non-LAC (p < 

1e-5) datasets. We also found differences between MCI participants from LAC vs. non-LAC (p < 

1e-5) and Alzheimer's disease participants from LAC vs. non-LAC (p < 1e-5).  Thus, controlling 

for data quality, scanner effects, age, and education confirmed that the reported effects in brain 

age gaps remained the same. 

 

Discussion 

Our study used brain clocks to capture diversity and disparity across LAC and non-LAC datasets 

using fMRI and source-space EEG techniques. Despite heterogeneity in signal acquisition and 

methods, we captured patterns of brain age modulations in healthy aging from diverse datasets 

and participants with MCI, Alzheimer’s disease, and bvFTD. Models trained and tested on non-

LAC data showed greater convergence with chronological age. Conversely, models applied to 

LAC datasets indicated larger BAGs, suggesting accelerated aging. We observed a gradient of 

BAGs from controls to MCI to Alzheimer's disease. Sex differences revealed an increased BAG 

in females in control and Alzheimer's disease groups. Most brain clock patterns were 



   

 

   

 

independently confirmed and replicated across fMRI and EEG. Aggregate-level macrosocial 

factors, including socioeconomic inequality, pollution, and burden of communicable/non-

communicable conditions modulated the BAG, especially in LAC. Variations in signal quality, 

demographics, or acquisition methods did not account for the results. The findings offer a 

framework that captures the multimodal diversity associated with accelerated aging in various 

global settings. 

 

Our results suggest that being from LAC is associated with accelerated aging. The better fit of the 

non-LAC compared to the LAC models supports the notion that universal models of brain 

phenotypes do not generalize well to underrepresented populations24,29,40. Diversity-related factors 

associated with different exposome and disease disparities4,10,24,41 may influence the BAGs in 

LAC and non-LAC. Neurocognitive disorders played a crucial role4,42. However, structural 

socioeconomic inequality, a distinctive characteristic of LAC15, increased levels air pollution43, 

and the burden of non-communicable19,20 and communicable18,44 diseases also have an significant 

impact on BAGs. The fact that these effects were larger in LAC suggests that underlying 

inequalities and adverse environmental and health conditions play a macrosocial, structural 

driving role11 in the observed regional differences. Immigration may also influence brain age 

through social determinants of health45 and genetic diversity. In LAC, tricontinental admixtures 

lead to significant ancestral diversity within and across countries46, impacting dementia 

prevalence and brain phenotypes41. Future studies should consider these potential effects in BAGs. 

 

Selective brain networks were associated with larger BAG in the clinical groups. Both fMRI and 

EEG models of BAGs yielded large-scale frontoposterior high-order interactions1, consistent with 

models of brain age involving long-range connections between frontal, cingular, parietal, and 



   

 

   

 

occipital hubs, which may be more vulnerable to aging effects47-49. Also consistent with the 

cumulative nature of neurobiological changes over time50, BAGs increased from controls through 

MCI to Alzheimer’s disease. A previous deep learning study using MRI and PET in participants 

with MCI and dementia also indicated increased brain age associated with disease progression23. 

Our results point to the brain age of MCI as being an intermediate stage between healthy aging 

and dementia39, and suggest that both fMRI and EEG markers of brain age may help identify 

groups at greater risk of progressing to dementia.  

 

Sex and gender have been linked to poorer brain health outcomes27,51. Larger BAGs in controls 

and Alzheimer's disease females from LAC may relate to sex-specific conditions such as 

menopause, which involves brain volume reduction and increased amyloid-beta deposition52,53. 

Females also exhibit disproportionate tau brain burden54, pronounced inflammatory 

dysregulation55 and lower basal autophagy56, all of which increase Alzheimer's disease risk. Such 

sex-specific factors are intertwined with environmental factors and gender inequalities51. Females 

in countries with higher gender inequality exhibit greater cortical atrophy27. Our sex effects were 

specific for Alzheimer's disease and LAC, consistent with the impacts of environmental41 versus 

genetic risks57 in Alzheimer's disease and bvFTD, respectively. Despite advances in gender 

equality, women in LAC still face significant obstacles58 including lower education, less income 

and healthcare access, and greater caregiving burden, potentially exacerbating brain health issues 

and Alzheimer's disease risk59,60. Previous models for brain age have been conducted 

predominantly in high-income settings, ignoring sex and gender differences triggered by region-

specific influences30,31.  Thus, the inclusion of diverse samples can help to better understand the 

biological and environmental interaction of sex and gender disparities. 



   

 

   

 

Our study had different strengths. We used diverse datasets across LAC and non-LAC including 

15 countries, featuring large sample sizes, and replicated results across fMRI and EEG. 

Geographical and sex differences modulated brain clocks across fMRI and EEG models, with 

more accelerated aging observed in controls and Alzheimer's disease females from LAC, 

contributing to the understanding of the effects of sex and diversity in aging. We used an 

integrative approach to analyze fMRI and EEG data across a large and geographically diverse 

sample. The convergence of two neuroimaging techniques and population heterogeneity enhanced 

the generalizability of our findings, making a significant contribution to computational models 

that capture diversity10. Brain clocks based on high-order interactions capture many risks to brain 

health, and thus, offer a new approach to personalized medicine, particularly for underrepresented 

populations. Our framework combines multiple dimensions of diversity in brain health, the 

Alzheimer's disease continuum and related disorders within a single measure of brain clocks, 

which is relevant for global health policies, generalizable computational models, and public health 

strategies. Incorporating EEG offers affordable and scalable solutions for disadvantaged settings, 

such as those in LAC, compared to traditional neuroimaging techniques1,35. Accessible metrics of 

accelerated aging can offer personalized assessments of diversity, aging, and neurocognitive 

disorders.  

 

This study has multiple limitations. Our EEG dataset lacks representation from clinical groups in 

non-LAC, which may limit the generalizability. This issue is partially mitigated by the consistent 

results from the fMRI data, which included MCI, Alzheimer's disease, and bvFTD groups from 

both regions. Our BAG approach is unimodal. Future research should adopt multimodal 

approaches to deepen our understanding of brain aging across different pathophysiological 

mechanisms1.  We leveraged two independent training and test datasets with fMRI and EEG, with 



   

 

   

 

out-of-sample validation yielding consistent results across geographical comparisons, sex effects, 

and clinical conditions. These datasets involve multimodal settings and recording parameters, 

suggesting that our results are strong across highly variable conditions. However, future research 

should include more regions to further validate and strengthen our findings. Additionally, we did 

not include individual-level data on gender identity, socioeconomic status, and ethnic 

stratification. Future research incorporating these variables could further enrich our understanding 

of brain age across diverse populations. Lastly, the sex differences observed between controls 

from LAC and non-LAC exhibited moderate effect sizes. Further research should assess sex 

differences in other regions. 

 

In conclusion, brain clock models were sensitive to the impact of multimodal diversity involving 

geographical, sex, macrosocial, and disease-based factors from diverse populations, despite the 

heterogeneity in data acquisition and processing. Utilizing an deep learning architecture of the 

brain's high-order interactions1 across fMRI and EEG signals, combined with globally accessible 

and affordable data, our study paves the way for more inclusive tools to assess disparities and 

diversity in brain aging. These tools can be vital in identifying MCI, Alzheimer's disease and 

bvFTD risk factors, as well as to characterizing and staging disease processes. In the future, 

personalized medicine approaches could leverage models of BAGs to establish worldwide 

protocols for aging and neurocognitive disorders. 
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Table 1. Demographics for fMRI and EEG datasets 

Full dataset 

All participants 

n = 5306 

HCs 

= 3509 

MCI 

= 517 

AD 

= 828 

bvFTD 

= 463 

  

fMRI dataset 

Variable HCs 

Non-LAC 

n = 967 

LAC  

n = 477 

MCI 

Non-LAC 

n = 215 

LAC  

n = 169 

AD 

Non-LAC 

n = 214 

LAC  

n = 505 

bvFTD 

Non-LAC 

n = 190 

LAC  

n = 216 

Statistics 

Non-LAC 

 vs. LAC 

 

Post-hoc  

comparisons 

Sex 

(F:M) 

Non-LAC 470:497 114:101 112:102 98:92 χ2 = 2.19 

p = 0.533 

HC-MCI: p > 0.05 

HC-AD: p > 0.05 

HC-bvFTD: p > 0.05 

LAC 261:216 84:85 262:243 105:111 χ2 = 2.76 

p = 0.429 

HC-MCI: p > 0.05 

HC-AD: p > 0.05 

HC-bvFTD: p > 0.05 

Age  

(years) 

 

Range:  

[22-91] 

Non-LAC 53.55  

(13.43) 

59.62  

(8.77) 

76.59  

(9.35) 

73.14 

(8.56) 

F = 3.13 

p = 0.47 

np2 = 0.02 

HC-MCI: p > 0.05 

HC-AD: p > 0.05 

HC-bvFTD: p > 0.05 

LAC 65.34  

(11.44) 

66.53  

(8.18) 

77.52  

(9.35) 

73.15 

(8.76) 

F = 3.62 

p = 0.45 

np2 = 0.02 

HC-MCI: p > 0.05 

HC-AD: p > 0.05 

HC-bvFTD: p > 0.05 

Years of  

Education 

 

Range:  

[0 - 25] 

Non-LAC 13.15  

(5.41) 

14.15  

(3.41) 

13.12  

(5.34) 

11.16  

(3.56) 

F = 2.19 

p = 0.49 

np2 = 0.02 

HC-MCI: p > 0.05 

HC-AD: p > 0.05 

HC-bvFTD: p > 0.05 

LAC 12.11  

(3.39) 

11.52  

(6.32) 

 

8.89  

(4.34) 

7.89 

(3.36) 

F = 1.31 

p = 0.68 

np2 = 0.01 

HC-MCI: p > 0.05 

HC-AD: p > 0.05 

HC-bvFTD: p > 0.05 

EEG dataset 

  HCs 

Non-LAC 

n = 569 

LAC  

n = 1486 

MCI 

LAC  

n = 133 

AD 

LAC  

n = 108 

bvFTD 

LAC  

n = 57 

Statistics 

Non-LAC 

 vs. LAC 

 

Post-hoc  

comparisons 

Sex 

(F:M) 

Non-LAC 470:99 - - - χ2 = 64.62 

p < 0.001* 

- 

 LAC 954:532 111:22 85:23 39:18 χ2 = 28.05 

p < 0.001* 

HC-MCI: p > 0.05 

HC-AD: p > 0.05 

HC-bvFTD: p > 0.05 

Age  

(years) 

 

Range:  

[21-92] 

Non-LAC 58.98  

(12.03) 

- - - t = 4.21 

p = 0.07 

np2 = 0.02 

- 

LAC 66.74  

(13.94) 

62.54 

(9.98) 

78.62 

(8.34) 

71.05 

(9.34) 

F = 7.62 

p < 0.001* 

np2 = 0.07 

HC-MCI: p > 0.05 

HC-AD: p > 0.05 

HC-bvFTD: p > 0.05 

Years of educa

 

Range:  

[0 - 24] 

Non-LAC 14.85 (4.91 - - - t = 3.54 

p = 0.08 

np2 = 0.01 

- 

LAC 13.92 

(3.39) 

8.12 

(4.34) 

10.75 

(6.32) 

14.38 

(5.49) 

F = 6.31 

p < 0.001* 

np2 = 0.06 

HC-MCI: p > 0.05 

HC-AD: p > 0.05 

HC-bvFTD: p > 0.05 
Results are presented as mean (SD). Asterisks (*) indicate an alpha level of p < 0.05. Demographic data comparing non-LAC and LAC 

groups were assessed using unpaired t-tests, while data for pathological groups were analyzed using ANOVAs followed by Tukey post-hoc 

pairwise comparisons, except for sex, which was analyzed using Pearson's chi-squared (χ²) test. Effect sizes were calculated using partial eta 

squared (ηp²). Abbreviations: HC = healthy control, MCI = mild cognitive impairment, AD = Alzheimer's disease, bvFTD = behavioral 

variant frontotemporal dementia. 



   

 

   

 

 

 

Figure legends 

 

Fig. 1. Datasets characterization and analysis pipeline. Datasets included Latin American 

countries (LAC) and non-LAC healthy controls (HC, total N = 3509) and participants with 

Alzheimer’s disease (AD, total N = 828), behavioral variant frontotemporal dementia (bvFTD, 
total N = 463), and mild cognitive impairment (MCI, total N = 517). The functional magnetic 

resonance imaging dataset (fMRI, yellow lines) included 2953 participants from LAC (Argentina, 

Chile, Colombia, Mexico, and Peru) as well as non-LAC (the USA, China, and Japan). The 

electroencephalography dataset (EEG, blue lines) involved 2353 participants from Argentina, 

Brazil, Chile, Colombia, and Cuba (LAC) as well as Greece, Ireland, Italy, Turkey, and the UK 

(non-LAC). Circles represent the number of participants per group, scaled between the number of 

participants in the largest and smallest groups for each region to facilitate visualization. 

Line thickness represents the number of participants with fMRI (yellow lines) and EEG (blue 

lines) per country. The raw fMRI and EEG signals were preprocessed by filtering and artifact 

removal and the EEG signals were normalized to project them into source space. A parcellation 

using the automated anatomical labeling (AAL) atlas for both the fMRI and EEG signals was 

performed to build the nodes from which we calculated the high-order interactions using the Ω-

information metric. A connectivity matrix was obtained for both modalities, which was later 

represented by graphs. Data augmentation was performed only in the testing dataset. The graphs 

were used as input for a graph convolutional deep learning network (architecture shown in the last 

row), with separate models for EEG and fMRI. Finally, age prediction was obtained, and the 

performance was measured by comparing the predicted vs. the chronological ages. This figure was 

partially created using Biorender under Team license.  

 

Fig. 2. fMRI training and testing the deep learning model in different samples. (a) Ordinary 

least squares (OLS) regression comparing chronological age vs. predicted age with the feature 

importance list for training and testing in the whole sample. (b) Regression comparing 

chronological age vs. predicted age with the feature importance list for training and testing in the 

non-LAC dataset. (c) Regression comparing chronological age vs. predicted age with the feature 

importance list for training and testing in the LAC dataset. For (a), (b) and (c), data point colors 

indicate the kernel density estimation to provide a visual representation of the density of prediction 

errors across different values of chronological age. The bars show the brain region feature 

importance list in descending order, with ring plots and glass brain representations of the most 

important network-edge connections. (d) Histogram of the prediction error when training in non-

LAC dataset and testing in LAC dataset. (e) Violin plot of the distribution and statistical 

comparison of training and testing with different regions using a permutation test (5000 iterations). 

(f) Violin plot of the distribution and statistical comparison of testing the models on females and 

males using a permutation test (5000 iterations). LAC = Latin American countries. 

 

Fig. 3. EEG training and testing the deep learning model in different samples. (a) Ordinary 

least squares (OLS) regression comparing chronological age vs. predicted age with the feature 

importance list for training and testing in the whole sample. (b) Regression comparing 

chronological age vs. predicted age with the feature importance list for training and testing in the 

non-LAC dataset. (c) Regression comparing chronological age vs. predicted age with the feature 

importance list for training and testing in the LAC dataset. For (a), (b) and (c), data point colors 

indicate the kernel density estimation to provide a visual representation of the density of prediction 



   

 

   

 

errors across different values of chronological age. The bars show the brain region feature 

importance list in descending order, with ring plots and glass brain representations of the most 

important network-edge connections. (d) Histogram of the prediction error when training in non-

LAC dataset and testing in LAC dataset. (e) Violin plot of the distribution and statistical 

comparison of training and testing with different regions using a permutation test (5000 iterations). 

(f) Violin plot of the distribution and statistical comparison of testing the models on females and 

males using a permutation test (5000 iterations). LAC = Latin American countries. 

 

Fig. 4. Groups, sex, and macrosocial influences in BAGs. Violin plots for the distribution of 

prediction gaps for different groups and sex effects using (a) fMRI and (b) EEG datasets. The 

statistical comparisons were calculated using subsample permutation testing with 5000 iterations. 

(c) Associations between macrosocial and disease disparity factors with BAGs were assessed with 

a multi-method approach comprising SHAP values, feature importance (mean decrease in 

impurity, MDI), and permutation importance. Plots show the mean importance values for each 

method, along with their 99% confidence interval, as well as the average R-squared and Cohen's 

f². * = Significant predictors. Shaded bars indicate significance across the three methods. LAC = 

Latin American countries, HC non-LAC = Healthy controls from non-LAC, HC LAC = Healthy 

controls from LAC, MCI = mild cognitive impairment, AD = Alzheimer’s disease, bvFTD = 
behavioral variant frontotemporal dementia, M = Males. F = Females, * p < 0.05, ** p < 0.01, *** 

p < 0.001. 

 

Fig. 5. Sensitivity analysis. Violin plots for the distribution of data quality metrics of (a) fMRI 

and (b) EEG datasets. Both panels indicate null results between groups in terms of data quality. 

(c) Linear regression effects of scanner type, evidencing that the fMRI data quality was not 

significantly associated with fMRI BAGs differences. (d) fMRI BAG differences across groups 

controlling for scanner differences. The statistical comparisons were calculated using subsample 

permutation testing with 5000 iterations. LAC = Latin American countries, HC = Healthy controls, 

MCI = mild cognitive impairment, AD = Alzheimer’s disease, bvFTD = behavioral variant 
frontotemporal dementia.  

 

Extended Data Fig. 1. Associations of sex and gender inequality with BAGs. Multi-method 

approach comprising SHAP values, features and permutation importance. Plot shows the mean 

importance values for each method, along with their 99% confidence interval, as well as the 

average R-squared and Cohen's f². Having a neurocognitive disorder, being female, and living in 

countries with larger gender inequality (particularly from LAC), were associated with higher 

BAGs. LAC = Latin American countries. 

 

Extended Data Fig. 2. Prediction gaps between fMRI datasets with either eyes open or eyes 

closed protocols. No significant differences were observed between participants with open vs. 

closed eyes within the same groups (permutation test = 5000 iterations). * p < 0.05, ** p < 0.01, 

*** p < 0.001. LAC = Latin American countries, OE = open eyes, CE = closed eyes. 

 

Extended Data Fig. 3. BAGs between subsamples of mild cognitive impairment (MCI) and 

Alzheimer’s disease (AD) groups matched by chronological age. Results were similar to those 

reported for the total MCI and Alzheimer’s disease datasets in Figs. 4a and b (permutation test = 
5000 iterations).  
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Methods 

The total dataset consisted of 5306 participants, with 2953 undergoing fMRI and 2353 EEG 

acquisitions. Of these, 3509 were controls, 517 had MCI, 828 Alzheimer's disease, and 463 

bvFTD. 

 

fMRI dataset 

The fMRI study involved 2953 participants from both non-LAC (USA, China, Japan) and LAC 

(Argentina, Chile, Colombia, Mexico, Peru), including 1444 healthy controls (HC). Two hundred 

fifteen participants met the Petersen criteria for MCI with a 24 MMSE cut-off value, 719 were 

diagnosed as probable AD61, and 402 fulfilled the diagnostic criteria for bvFTD62. LAC 

participants were recruited from the Multi-Partner Consortium to Expand Dementia Research in 

Latin America (ReDLat, with participants from Mexico, Colombia, Peru, Chile, and Argentina) 

63. Non-LAC participants were non-Latino individuals from ReDLat, the Alzheimer's Disease 

Neuroimaging Initiative (ADNI), and the Neuroimaging in Frontotemporal Dementia (NIFD) 

repository. The datasets were matched on sex, age, and years of education (Table 1). Sex 

information was determined by self-report. No information regarding gender was inquired. To 

ensure data reliability, we excluded subjects who reported a history of alcohol/drug abuse or 

psychiatric or other neurological illnesses. No participants reported a history of alcohol/drug 

abuse, psychiatric, or other neurological illnesses.  

 

EEG dataset 

The total dataset involved 2353 participants. Controls comprised 1183 participants, including 737 

from non-LAC (Turkey, Greece, Italy, United Kingdom, and Ireland) and 446 from LAC (Cuba, 

Colombia, Brazil, Argentina, and Chile). The participants presenting with clinical conditions were 



   

 

   

 

recruited from a multisite study with harmonized assessments25,36,63 in LAC (Argentina, Brazil, 

Chile, and Colombia). This dataset included 133 patients with MCI, 108 with Alzheimer's disease, 

and 57 with bvFTD. The controls datasets were matched on age, sex, and years of education 

concerning the clinical groups (MCI, Alzheimer's disease, and bvFTD) (Table 1). Sex information 

was determined by self-report. No information regarding gender was inquired. The Petersen 

criteria defined the MCI group with a 24 MMSE cut-off value. All individuals with Alzheimer's 

disease met the criteria for probable disease following international diagnostic guidelines61. The 

bvFTD group met the diagnostic criteria for probable bvFTD62. No subject in any of the clinical 

conditions reported a history of alcohol/drug abuse, psychiatric, or other neurological illnesses.  

 

Ethics approval 

The local institutions that contributed EEGs and/or fMRIs to this study approved the acquisitions 

and protocols (Supplementary Data S1), and all participants signed a consent form following the 

declaration of Helsinki. The overall study was approved by the consortium under multiple IRBs 

(FWA00028264, FWA00001035, FWA00028864, FWA00001113, FWA00010121, 

FWAA00014416, FWA00008475, FWA00029236, FWA00029089, and FWA00000068). Data 

collection and analysis posed no risks concerning stigmatization, incrimination, discrimination, 

animal welfare, environmental, health, safety, security, or personal concerns. No transfer of 

biological materials, cultural artifacts, or traditional knowledge occurred. The authors reviewed 

pertinent studies from all countries while preparing the manuscript.  

 

fMRI preprocessing 

The images were obtained from different scanners and in distinct acquisition settings 

(Supplementary Table 4). We included two resting-state recordings, closed and open eyes, to 



   

 

   

 

increase the sample size for rs-fMRI data. The type of resting-state recording was controlled by a 

dummy variable (open or closed eyes) when employing the functional connectivity metric64. The 

resting state of fMRI preprocessing was conducted using the fmriprep toolbox (version 22.0.2). 

Furthermore, additional preprocessing was performed using the toolbox CONN2264. The CONN 

toolbox preprocessing included smoothing with a Gaussian kernel of 6 x 6 x 6 mm, the signal 

denoising through linear regression to account for confounding effects of white matter, 

cerebrospinal fluid, realignment, and scrubbing. A band-pass filter (0.008-0.09) Hz was also 

applied. After time-series preprocessing, we employed region-of-interest (ROI) analysis based on 

the brain regions of the Automated Anatomical Labeling (AAL90) atlas to reduce the 

dimensionality of the fMRI data for machine learning algorithms.  

 

EEG preprocessing 

EEGs were processed offline using procedures implemented in a custom, automatic pipeline for 

computing brain functional connectivity in the EEG using a mesh model for multiple electrode 

arrays and source space estimation (see Supplementary Table 5 for acquisition parameters). The 

pipeline allows for the multicentric assessment of rsEEG connectivity and has been validated in a 

large-scale evaluation of connectivity in dementia65. Recordings were re-referenced to the average 

reference and band-pass filtered between 0.5 and 40 Hz using a zero-phase shift Butterworth filter 

of order 8. Data were downsampled to 512 Hz, referenced using the reference electrode 

standardization technique (REST), and corrected for cardiac, ocular, and muscular artifacts using 

two methods based on Independent Component Analysis (ICA).  ICLabel (a tool for classifying 

EEG independent components into signals and different noise categories) 66, and EyeCatch (a tool 

for identifying eye-related ICA scalp maps) were used67. Data were visually inspected after 



   

 

   

 

artifact correction, and malfunctioning channels were identified and replaced using weighted 

spherical interpolations.  

 

EEG normalization: Following guidelines for multicentric studies37, EEG was rescaled to reduce 

cross-site variability. The normalization was carried out separately for each dataset and consisted 

of the Z-score transformation of the EEG time series. The Z-score describes the position of raw 

data in terms of its distance from the mean when measured in standard deviation units. The Z-

score transformed EEG connectivity matrices display more prominent interhemispheric 

asymmetry and reinforced long-distance connections than unweighted connectivity 

representations65. 

 

EEG source space estimation: The source analysis of the rsEEG was conducted using the 

standardized Low-Resolution Electromagnetic Tomography method (sLORETA). sLORETA 

allows estimating the standardized current density at each of the predefined virtual sensors located 

in the cortical gray matter and the hippocampus of a reference brain (MNI 305, Brain Imaging 

Centre, Montreal Neurologic Institute) based on the linear, weighted sum of a particular scalp 

voltage distribution or the EEG cross-spectrum at the sensor level. sLORETA is a distributed EEG 

inverse solution method based on an appropriate standardized version of the minimum norm 

current density estimation. sLORETA overcomes problems intrinsic to the estimation of deep 

sources of EEG and provides exact localization to test seeds, albeit with a high correlation between 

neighboring generators. 

 

The different electrode layouts were registered onto the scalp MNI152 coordinates. A signal-to-

noise ratio of 1 was chosen for the regularization method used to compute the sLORETA 



   

 

   

 

transformation matrix (forward operator for the inverse solution problem). The standardized 

current density maps were obtained using a head model of three concentric spheres in a predefined 

source space of 6242 voxels (voxel size = 5mm3) of the MNI average brain. A brain segmentation 

of 82 anatomic compartments (subcortical and cortical areas) was implemented using the 

automated anatomical labeling (AAL90) atlas. Current densities were estimated for the 153600 

voltage distributions comprising the five minutes of rsEEG (sampled at 512 Hz). The voxels 

belonging to the same AAL region were averaged such that a single (mean) time series was 

obtained for each cortical region32,68,69. 

 

High-order interactions 

After preprocessing 82 time-series from the AAL brain parcellation for each modality (fMRI and 

EEG), we calculated the high-order interactions across triplets composed of a region i and region 

j and a set comprising all the brain regions without i and j. To this end, we evaluated high-order 

interactions using the organizational information (𝛺) metric. It is a multivariate extension of 

Shannon's mutual information, which assesses the dominant characteristic of multivariate systems 

(i.e., high-order interactions). In this case, to operationalize the Shannon Entropy, we used the 

Gaussian copula approximation, which estimates the differential Shannon's entropy from the 

covariance matrix of the Gaussian copula transformed data70. This is a mixture of a parametric 

and a non-parametric approach, as the copula is preserved in a non-parametric way but is then 

used to generate Gaussian marginals. The Ω quantifies the balance between redundancy and 

synergy in high-order interactions among brain regions. By definition, Ω > 0 implies that the 

interdependencies are better described as shared randomness, indicating redundancy dominance. 

Conversely, Ω < 0 suggests that the interdependencies are better explained as collective 



   

 

   

 

constraints, indicating synergy dominance. After normalization, its magnitude ranges from -1 to 

1. The Ω can be expressed as:  

𝛺(𝑋𝑛) = (𝑛 − 2)𝐻(𝑋𝑛) + ∑[𝐻(𝑋𝑗) − 𝐻(𝑋−𝑗𝑛 )]𝑛
𝑗=1  (1), 

where 𝑋𝑛 is the random vector that describes the system, and 𝐻 is the Shannon's entropy. When 𝑛 is reduced to three variables (𝑥, 𝑦, and 𝑧), Ω can be expressed as 𝛺(𝑥, 𝑦, 𝑧) = 𝐻(𝑥, 𝑦, 𝑧) − 𝐻(𝑥, 𝑦) − 𝐻(𝑥, 𝑧) − 𝐻(𝑦, 𝑧) + 𝐻(𝑥) + 𝐻(𝑦) + 𝐻(𝑧)     

(2). 

To analyze brain activity, 𝑧 can be considered a multivariate time series representing the activity 

of all brain regions except for 𝑥 and 𝑦. Therefore, 𝑂 𝑖𝑛𝑓𝑜 measures how synergistic or redundant 

is the relationship between two brain regions concerning the rest of the regions. 

 

Model input preprocessing 

As input to the models, the weighted adjacency matrix corresponding to the Ω metric was 

converted to a graph. This matrix defines the edges in the graph, where the weight of each edge 

reflects the Ω value between the corresponding regions. The feature vectors at each graph node 

are derived from the O-info matrix; specifically, each node's feature vector is the corresponding 

row in the Ω matrix. To this end, the connectivity matrices were first converted to tensors using 

the PyTorch deep learning library, enabling their efficient manipulation. Subsequently, these 

tensors were reshaped, organizing the connectivity data into a structure where each tensor 

represented the features of nodes within a graph. This transformation preserved the relational 

information from the original matrices, making it accessible for analysis by graph neural networks. 

To ensure the integrity of the data, graphs containing NaN values, either in their features or target 



   

 

   

 

values, were filtered out. The remaining graphs were then split into training and validation sets 

using a stratified split to ensure a balanced representation of age groups in both sets.  

Data augmentation 

We employed augmentation tailored for connectivity matrices to make the model more resilient 

to heterogeneity and generalizability. Linear interpolation between matrices corresponding to 

neighboring age values was used, in contrast to traditional image augmentation techniques such 

as random rotations or crops that are inappropriate for connectivity data.  

Given two matrices, M1 and M2, representing fMRI or EEG connectivity at ages a1 and a2, 

respectively, the interpolation to produce a matrix for a target age where a1 < at < a2 was conducted 

using the formula: 𝑀𝑡 = (1 − 𝛼)𝑀1 +  𝛼𝑀2     (3) 

Here, 𝛼 =  𝑎𝑡−𝑎1𝑎2−𝑎1 represents the interpolation factor. 

This augmentation method enabled the generation of fMRI and EEG connectivity matrices for age 

values previously absent in the data set. The derived matrices, through interpolation, ensure a 

smooth transition in the fMRI and EEG patterns from one age value to another, thereby 

maintaining the inherent physiological significance of the original data—preliminary validation 

against a hold-out dataset showed improvements in model fit against dataset heterogeneity. We 

included 500 samples with data augmentation only the training datasets for both modalities, half 

for the non-LAC and half for the LAC samples. 

 

The architecture of the models 

Two Graph Convolutional Networks (GCNs) 71 were designed for this study, specifically tailored 

to process graph-structured data. We employed the PyTorch Geometric code library based on the 

PyTorch library  to develop and train the models. Two models were created, one for the fMRI 



   

 

   

 

data and another for the EEG data. Unlike traditional convolutional networks suited for 

neuroimaging data, functional connectivity demands a specialized approach since neighboring 

data points are not necessarily close in native space (i.e., adjacent brain areas). The GCN employs 

adjacency matrices of graphs as inputs comprised of node features. Each node in the graph 

aggregates features from its neighbors through a series of operations, including multiplication by 

a normalized adjacency matrix, transformation using a weight matrix, and applying an activation 

function, here the ReLU72. The architecture employed in our work consisted of two Graph 

Convolutional layers. The input features (O-info matrix) were passed through the first 

convolutional layer, followed by a ReLU activation function and a dropout layer for 

regularization. The features were then passed through the second convolutional layer. Finally, 

average pooling was used to aggregate the output features. To train the two models, we combined 

Mean Squared Error (MSE) as the loss function and the Adam optimizer. Given the variability in 

the data and potential model configurations, we implemented a hyperparameter tuning process 

using a grid search over specified learning rates and epoch numbers. For each model for the 

controls, the data was initially split into 80% for training and validation, and 20% for hold-out 

testing. Within the 80% training and validation set, we applied 5-fold cross-validation to 

determine the optimal hyperparameters for the model. After determining the best hyperparameters 

through this cross-validation process, the final model's performance was evaluated on the 

remaining 20% hold-out test set to assess its generalization capability73.  

 

Statistical analyses 

Following hyperparameter tuning, each model was retrained using the best hyperparameters on 

the training set and evaluated on the test set. For a more comprehensive assessment, the predicted 

age values were compared to the actual age values using Pearson's correlation coefficient, R-



   

 

   

 

squared, and Cohen's f2 effect size for each model74. We used the method outlined below to 

evaluate if the model was predicting increased or decreased ages concerning the actual 

chronological age. 

 

The Mean Directional Error (MDE) is a diagnostic metric used to evaluate the prediction accuracy 

of the models, specifically focusing on the direction of prediction gaps rather than their magnitude 

to detect bias. It is calculated as follows: 𝑀𝐷𝐸 =  1𝑛  ∑ (𝑦𝑖 − 𝑦𝑖̂)𝑛𝑖=1        (4) 

The function "sign" yields a value of +1 if the prediction is above the actual value, -1 if below, 

and 0 if they are equal. yi is the real age of subject i and ŷi is the predicted age. An MDE value 

close to zero suggests a balanced number of overestimations and underestimations. Positive or 

negative values indicate systematic biases in the prediction method, where a positive MDE means 

the model generally overpredicts, and a negative MDE indicates underprediction. 

 

In our analysis when comparing models, we sought to examine potential regional biases in 

predictive accuracy and compare possible sex effects or signal acquisition noise. The statistical 

approach involved conducting permutation tests (5,000 subsample iterations each), a non-

parametric statistical test that does not assume a specific distribution of the data, thus offering 

flexibility in handling non-normal distributions. Given the nature of the permutation test, our 

analysis constituted two-sided tests, assessing the likelihood of observing the obtained difference 

under the null hypothesis of no difference between the models. While the permutation test 

alleviates the need for normality assumptions, making it resilient to deviations from normal 

distribution, it inherently addresses multiple comparison concerns by evaluating the empirical 

distribution of the test statistic under the null hypothesis. 



   

 

   

 

We compared the adequacy of the models employing the root mean square error (RMSE). This is 

a metric to quantify the discrepancies between predicted and observed values in modeling, given 

by the formula: 

 

𝑅𝑀𝑆𝐸 =  √1𝑁 ∑ (𝑦𝑖 −  𝑦𝑖̂)2𝑛𝑖=1           (6) 

 

In this equation, 𝑦𝑖 is the observed value, 𝑦𝑖̂ is the predicted value, and 𝑁 is the total number of 

observations. RMSE measures the average magnitude of errors between predicted and actual 

observations. The squaring process results in a higher weight to outliers, making it a useful 

measure to evaluate if a model is robust to outliers.   

To evaluate feature importance, we employed bootstrapping to assess the significance of 

individual nodes (i.e., brain areas) and edges (i.e., connections between brain nodes/regions) 

within the graph neural network. With this approach, we executed a two-step process to quantify 

the node and its edge's impact on the model's predictions. Initially, the model’s output was 

calculated with all nodes and its edges present to establish a baseline performance metric. 

Subsequently, the analysis was repeated after removing each node and edge at a time, thus 

simulating network information absence. The difference in the model's output, with and without 

each area and edge was quantified, providing a measure of the network node importance. This 

process was repeated across multiple bootstrap testing dataset samples (n=5000) to calculate 

confidence intervals. Finally, a feature importance list of nodes was generated in descending order 

of importance for brain age prediction. This methodological framework allowed for an analysis 

of network-level contributions to each model's overall predictive performance. 

Gradient boosting regression models 



   

 

   

 

We used gradient boosting regression models75 to investigate the impact of factors associated with 

the physical and social exposomes, and disease disparities, on BAGs between LAC and non-LAC 

populations. As predictors, we included country-level measures of: (i) air pollution (PM2.5 

exposure), (ii) socioeconomic inequality (the GINI index) 76, (iii) the burden of communicable, 

maternal, prenatal, and nutritional conditions, and (iv) the burden of non-communicable diseases. 

These indicators were sourced from the updated country-specific data provided on the World 

Bank’s platform (https://databank.worldbank.org/). Additionally, individual neurocognitive status 

(being controls versus having Alzheimer’s disease, MCI, or bvFTD) was included as predictor. 

BAGs from fMRI and EEG datasets were the outcomes. 

 

Models were trained using 90% of the dataset and subsequently tested on an independent 10% 

subset, employing a 10-fold cross-validation framework. The cross-validation was repeated 10 

times. Within each iteration, estimation coefficients for the predictors, as well as the R-squared, 

Cohen's f²77, and RMSE, were computed. We assessed feature importance using a multi-method 

approach incorporating permutation importance, features importance based on the mean decrease 

in impurity (MDI), and SHAP values78. We provided the mean importance values for each 

method, along with their 99% confidence interval, as well as the average R-squared and Cohen's 

f²77. Features whose lower confidence interval boundary crosses zero are considered non-

significant. In order to optimize Ridge's hyperparameters, Bayesian optimization was employed.  

Following the same multi-method approach, we conducted gradient boosting regressions to 

explore the effect of gender inequality and sex on BAGs. As predictors, we included: (i) the 

country level gender inequality index (GII), a composite metric measuring reproductive health, 

empowerment and the labor market, (ii) sex, (iii) region (LAC vs non-LAC) and (iv) individual 



   

 

   

 

neurocognitive status (HC versus Alzheimer's disease, MCI, or bvFTD). BAGs from fMRI and 

EEG were the outcomes 

 

Data quality assessment  

For the fMRI overall data quality (ODQ) metric, each timeseries was segmented in 20 repetition 

time (TR) length to evaluate the temporal signal-to-noise ratio (tSNR) 79, which is calculated as 

the mean fMRI signal divided by its standard deviation within each segment. Segments with tSNR 

above a threshold of 50 were classified as high quality79. As additional evaluations to consider 

overall acquisition quality, we checked the variability of the tSNR segments of all the time series 

in the brain to check for spatial consistency. Lastly, we checked for remaining outliers as signal 

spikes from movement or transient gradient artifacts. Thus, the fMRI ODQ was computed as a 

percentage of good segments considering its tSNR, low spatial variability, and the number of 

segments not having spikes from movement or transient gradient remaining artifacts. 

For the EEG data quality assessment, we followed the method proposed by Zhao et al80. The EEG 

signals were divided into 1-second segments, and the quality of each segment was evaluated using 

four specific metrics. These metrics included the detection of weak or constant signals based on 

standard deviation, the identification of artifacts through signal amplitude ratios, the presence of 

high-frequency noise, and low correlation between channels. The EEG ODQ was then calculated 

as the percentage of segments exhibiting good quality. A value of 0 indicated that all segments 

were of poor quality, while a value of 100 indicated that all segments were of high quality. 

 

Sensitivity analyses 

We examined whether variations in fMRI or EEG data quality explained the differences in brain 

age between the non-LAC and LAC, comparing different groups’ fMRI79 and EEG80 data quality 



   

 

   

 

metrics, with subsample permutation tests with 5000 iterations for each comparison. In addition, 

we conducted a linear regression to examine the association between the fMRI data quality metrics 

and the BAGs. To further control for scanner effects, we implemented an additional harmonization 

strategy in the fMRI training dataset. This method involves normalizing the BAG variable within 

each scanner type by scaling the data to a fixed range using the min-max scaler14. This ensures 

that the minimum and maximum values of the BAG variable are consistent across different 

scanners, thereby reducing variability due to scanner differences. Additionally, we accounted for 

the sign of the BAG after normalization to maintain the interpretability of positive and negative 

values. This procedure adjusts for location and scale differences (e.g., mean and variance) across 

sites, minimizing scanner-related variability. 

 

We used permutation tests (5000 subsample iterations each) to compare the BAGs between 

subsamples of participants undergoing fMRI with open versus closed eyes. We included 124 

controls with closed eyes and 86 with open eyes, 269 Alzheimer's disease with closed eyes and 

164 with open eyes, and 88 bvFTD with closed eyes and 69 with open eyes. Notably, all MCI 

participants underwent fMRI with open eyes. Our findings revealed no significant differences in 

BAGs when analyzing data from open versus closed eyes conditions across all group comparisons 

(permutation test = 5000 iterations). 

 

Ethics and inclusion statement 

This work involved a collaboration between researchers in multiple countries. Contributors from 

different sites are included as coauthors according to their contributions. Researchers residing in 

LMIC were involved in study design, study implementation, methodological procedure, writing 

and reviewing processes. The current research is locally relevant due to the larger disparities 



   

 

   

 

observed in LAC. Roles and responsibilities were agreed among collaborators ahead of the 

research. Ethics committees approved all research involving participants. To prevent any 

stigmatization, all identifying information has been removed to preserve the privacy of 

individuals. We endorse the Nature Portfolio journals’ guidance on LMIC authorship and 

inclusion. Authorship was based on the intellectual contribution, commitment, and involvement 

of each researcher in this study. We included authors born in LMICs and other underrepresented 

countries. 

 

Data availability 

All preprocessed data are openly available at: https://osf.io/8zjf4/. The fMRI and EEG datasets 

comprise sources (a) currently publicly available for direct download after registration and access 

application, (b) available after contacting the researcher, or (c) accessible after IRB approval of 

formal data-sharing agreement in a process that can last up to 12 weeks. The fMRI sources that 

are publicly available for direct download are the following: Alzheimer's Disease Neuroimaging 

Initiative (ADNI) (USA) (ida.loni.usc.edu/collaboration/access/appLicense.jsp), Chinese Human 

Connectome Project (CHCP) (China) 

(scidb.cn/en/detail?dataSetId=f512d085f3d3452a9b14689e9997ca94#p2), The frontotemporal 

lobar degeneration neuroimaging initiative (FTLDNI) (USA) 

(ida.loni.usc.edu/collaboration/access/appLicense.jsp), and Japanese Strategic Research Program 

for the Promotion of Brain Science (SRPBS) (Japan) (bicr-resource.atr.jp/srpbsopen/). The fMRI 

sources available after contacting the researcher include ReDLat USA by contacting Bruce Miller 

at UCSF through datasharing@ucsf.edu. The fMRI sources that require IRB approval and a formal 

data sharing agreement include: ReDLat pros (Argentina, Chile, Colombia, Mexico, Peru) by 

contacting Agustín Ibañez at agustin.ibanez@gbhi.org, Centro de Gerociencia Salud Mental y 

Metabolismo (GERO) (Chile) by contacting Andrea Slachevsky at andrea.slachevsky@uchile.cl, 

https://osf.io/8zjf4/


   

 

   

 

ReDLat pre (Argentina) by contacting Agustín Ibañez at agustin.ibanez@gbhi.org, ReDLat pre 

(Peru) by contacting Nilton Custodio at ncustodio@ipn.pe, ReDLat pre (Colombia) by contacting 

Diana Matallana at dianamat@javeriana.edu.co, ReDLat pre (Colombia -II) by contacting Felipe 

Cardona at felipe.cardona@correounivalle.edu.co, ReDLat pre (Mexico) by contacting Ana Luisa 

Sosa at drasosa@hotmail.com, ReDLat pre (Chile) by contacting María Isabel Behrens at 

behrensl@uchile.cl, and ReDLat pre (Chile) by contacting Andrea Slachevsky at 

andrea.slachevsky@uchile.cl. The EEG sources that are publicly available for direct download 

are Centro de Neurociencias de Cuba (CHBMP) (Cuba) 

(www.synapse.org/Synapse:syn22324937). The EEG sources that are available after contacting 

the researcher include BrainLat (Argentina) by contacting Agustina Legaz at 

alegaz@udesa.edu.ar, BrainLat (Chile) by contacting Agustina Legaz at alegaz@udesa.edu.ar, 

Izmir University of Economics (Turkey) by contacting Gorsev Gener at gorsev.yener@ieu.edu.tr, 

Trinity College Dublin (Ireland) by contacting Francesca Farina at 

francesca.farina@northwestern.edu, Universidad de Antioquia (Colombia) by contacting 

Francisco Lopera at floperar@gmail.com, Universidad de Sao Paulo (Brazil) by contacting Mario 

Parra at mario.parra-rodriguez@strath.ac.uk, Universidad de Roma La Sapienza (Italy) by 

contacting Susana Lopez at susanna.lopez@uniroma1.it, University of Strathclyde (UK) by 

contacting Mario Parra at mario.parra-rodriguez@strath.ac.uk, Istanbul Medipol University 

(Turkey) by contacting Tuba Aktürk at takturk@medipol.edu.tr, and Takeda (Chile) by contacting 

Daniela Olivares at danielaolivaresvargas@gmail.com. For additional details, see 

Supplementary Data S1.  

Code availability 

The code used to preprocess and analyze the data of this work is available in an Open Science 

Foundation repository at the following address: https://osf.io/8zjf4/ 

https://osf.io/8zjf4/
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Figures

Figure 1

Datasets characterization and analysis pipeline. Datasets included Latin American countries(LAC) and
non-LAC healthy controls (HC, total N = 3509) and participants with Alzheimer’s disease (AD, total N =
828), behavioral variant frontotemporal dementia (bvFTD, total N = 463), and mild cognitive impairment
(MCI, total N = 517). The functional magnetic resonance imaging dataset (fMRI, yellow lines) included
2953 participants from LAC (Argentina, Chile, Colombia, Mexico, and Peru) as well as non-LAC (the USA,
China, and Japan). The electroencephalography dataset (EEG, blue lines) involved 2353 participants
from Argentina, Brazil, Chile, Colombia, and Cuba (LAC) as well as Greece, Ireland, Italy, Turkey, and the
UK (non-LAC). Circles represent the number of participants per group, scaled between the number of



participants in the largest and smallest groups for each region to facilitate visualization. Line thickness
represents the number of participants with fMRI (yellow lines) and EEG (blue lines) per country. The raw
fMRI and EEG signals were preprocessed by �ltering and artifact removal and the EEG signals were
normalized to project them into source space. A parcellation using the automated anatomical labeling
(AAL) atlas for both the fMRI and EEG signals was performed to build the nodes from which we
calculated the high-order interactions using the Ω-information metric. A connectivity matrix was obtained
for both modalities, which was later represented by graphs. Data augmentation was performed only in
the testing dataset. The graphs were used as input for a graph convolutional deep learning network
(architecture shown in the last row), with separate models for EEG and fMRI. Finally, age prediction was
obtained, and the performance was measured by comparing the predicted vs. the chronological ages.
This �gure was partially created using Biorender under Team license.



Figure 2

fMRI training and testing the deep learning model in different samples. (a) Ordinary least squares (OLS)
regression comparing chronological age vs. predicted age with the feature importance list for training
and testing in the whole sample. (b) Regression comparing chronological age vs. predicted age with the
feature importance list for training and testing in the non-LAC dataset. (c) Regression comparing
chronological age vs. predicted age with the feature importance list for training and testing in the LAC



dataset. For (a), (b) and (c), data point colors indicate the kernel density estimation to provide a visual
representation of the density of prediction errors across different values of chronological age. The bars
show the brain region feature importance list in descending order, with ring plots and glass brain
representations of the most important network-edge connections. (d) Histogram of the prediction error
when training in non-LAC dataset and testing in LAC dataset. (e) Violin plot of the distribution and
statistical comparison of training and testing with different regions using a permutation test (5000
iterations). (f) Violin plot of the distribution and statistical comparison of testing the models on females
and males using a permutation test (5000 iterations). LAC = Latin American countries.



Figure 3

EEG training and testing the deep learning model in different samples. (a) Ordinary least squares (OLS)
regression comparing chronological age vs. predicted age with the feature importance list for training
and testing in the whole sample. (b) Regression comparing chronological age vs. predicted age with the
feature importance list for training and testing in the non-LAC dataset. (c) Regression comparing
chronological age vs. predicted age with the feature importance list for training and testing in the LAC



dataset. For (a), (b) and (c), data point colors indicate the kernel density estimation to provide a visual
representation of the density of prediction errors across different values of chronological age. The bars
show the brain region feature importance list in descending order, with ring plots and glass brain
representations of the most important network-edge connections.(d) Histogram of the prediction error
when training in non-LAC dataset and testing in LAC dataset. (e) Violin plot of the distribution and
statistical comparison of training and testing with different regions using a permutation test (5000
iterations). (f) Violin plot of the distribution and statistical comparison of testing the models on females
and males using a permutation test (5000 iterations). LAC = Latin American countries.

Figure 4

Groups, sex, and macrosocial in�uences in BAGs. Violin plots for the distribution of prediction gaps for
different groups and sex effects using (a) fMRI and (b) EEG datasets. The statistical comparisons were
calculated using subsample permutation testing with 5000 iterations. (c) Associations between
macrosocial and disease disparity factors with BAGs were assessed with a multi-method approach
comprising SHAP values, feature importance (mean decrease in impurity, MDI), and permutation
importance. Plots show the mean importance values for each method, along with their 99% con�dence
interval, as well as the average R-squared and Cohen's f². * = Signi�cant predictors. Shaded bars indicate
signi�cance across the three methods. LAC = Latin American countries, HC non-LAC = Healthy controls
from non-LAC, HC LAC = Healthy controls from LAC, MCI = mild cognitive impairment, AD = Alzheimer’s
disease, bvFTD = behavioral variant frontotemporal dementia, M = Males. F = Females, * p < 0.05, ** p <
0.01, *** p < 0.001.



Figure 5

Sensitivity analysis. Violin plots for the distribution of data quality metrics of (a) fMRI and (b) EEG
datasets. Both panels indicate null results between groups in terms of data quality. (c) Linear regression
effects of scanner type, evidencing that the fMRI data quality was not signi�cantly associated with fMRI
BAGs differences. (d) fMRI BAG differences across groups controlling for scanner differences. The
statistical comparisons were calculated using subsample permutation testing with 5000 iterations. LAC
= Latin American countries, HC = Healthy controls, MCI = mild cognitive impairment, AD = Alzheimer’s
disease, bvFTD = behavioral variant frontotemporal dementia.
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