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Abstract

MIR125B, particularly its 5p strand, is apparently involved in multiple cellular processes,
including osteoblastogenesis and osteoclastogenesis. Given that MIR125B is transcribed
from the loci Mir125b1 and Mir125b2, three mature transcripts (MIR125B-5p, MIR125B1-
3p, and MIR125B2-3p) are generated (MIR125B-5p is common to both); however, their
expression profiles and roles in the bones remain poorly understood. Both primary and
mature MIR125B transcripts were differentially expressed in various organs, tissues, and
cells, and their expression patterns did not necessarily correlate in wild-type (WT) mice. We
generated Mir125b2 knockout (KO) mice to examine the contribution of Mir125b2 to
MIR125B expression profiles and bone phenotypes. Mir125b2 KO mice were born and grew
normally without any changes in bone parameters. Interestingly, in WT and Mir125b2 KO,
MIR125B-5p was abundant in the calvaria and bone marrow stromal cells. These results
indicate that the genetic ablation of Mir125b2 does not impinge on the bones of mice, attract-
ing greater attention to MIR125B-5p derived from Mir125b1. Future studies should investi-
gate the conditional deletion of Mir125b1 and both Mir125b1 and Mir125b2in mice.

Introduction

MicroRNAs (miRNAs) are small non-coding RNAs that play a central role in silencing gene
expression by binding to partially complementary sequences of target mRNAs, causing their
translational repression or degradation [1]. Currently, nearly 2,700 mature human miRNAs
that may be involved in multiple cellular processes and diseases have been identified (https://
www.mirbase.org). One miRNA may regulate many target genes, and likewise, one gene may
be targeted by many miRNAs. Moreover, miRNAs play crucial roles in cell-cell communica-
tion as extracellular vesicle cargo [2], making them participants in complex processes.
Increased levels of MIR125B-5p can be detected in the sera or bones in osteoporotic patients
(see for example, [3-6]). Concomitantly, transfection of mouse bone marrow-derived
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mesenchymal stem cells (BM-MSCs) with an MIR125B-5p mimic suppressed BMP2-depen-
dent osteogenic differentiation by inhibiting Cbfb [7]. Similar results were obtained in human
BM-MSCs transfected with an Mir125b lentiviral vector targeting BMPRIB [8]. An MIR125B-
5p mimic also targeted Traf6 and enhanced the ratio of RANKL/OPG via the JAK2/STAT3
pathway in mouse osteoblastic MC3T3-E1 cells [6]. We previously demonstrated that
MIR125B-5p is contained in matrix vesicles budding from MC3T3-E1 cells and that
MIR125B-5p targeted Prdm1, inhibiting osteoclast formation [9]. Transgenic mice overexpres-
sing Mir125b1 in osteoblasts exhibited high bone mass with decreased bone resorption while
maintaining osteoblastic bone formation [9]. These results suggest that MIR125B-5p is
involved in bone metabolism under both physiological and pathological conditions.

Mature MIR125B transcripts are encoded by two different genes in humans: Mir125b1
located on chromosome (chr)11 (accession #, M10000446, http://www.mirbase.org/) and
Mir125b2 on chr21 (MI0000470). In mice, the former resides on chr9 (MI0000725), and the
latter on chr16 (MI0000152). miRNAs are transcribed into hairpin-containing primary tran-
scripts (pri-miRNAs), which are then processed into precursor miRNAs that are approxi-
mately 70 nucleotides long. Eventually, one of the single-stranded miRNAs is generated
(termed the “guide strand”), and the other strand (termed the “passenger strand”) is generally,
but not always, destroyed [10]. The 5p mature strand, MIR125B-5p, is common to Mir125b1
and Mir125b2 genes, whereas the 3p strands, MIR125B1-3p and MIR125B2-3p, are different
from each other. However, the functional roles of Mir125b genes remain largely unknown.
Thus. We generated Mir125b1 and Mir125b2 knockout (KO) mice. Although homozygotes of
the former were embryonically lethal, those of the latter were born normally. We examined the
expression profiles of MIR125B transcripts in wild-type (WT) mice and the impact of
Mir125b2 deficiency on their expression and bone phenotype.

Materials and methods

Mice

Mir125b2 KO mice were generated with a C57BL/6] background using the CRISPR/Cas9 System.
Two single guide RNAs (ACTCTAATTCCCAAGCTGTC and AACAGGCATAGATTCTGCAT,
32.15 ng/pL each; Thermo Fisher Scientific, Waltham, MA, USA) were co-injected with Cas9
mRNA (62.5 ng/uL; SBI, Palo Alto, CA, USA) into zygotes, according to the manufacturer’s
instructions, to target the Mir125b2 coding region. In the mouse Mir125b2 gene (NCBI Gene
database), the target genomic locus did not contain any known coding sequences. The founder
lines were genotyped using PCR (see the primer set in S1 Table) and DNA sequence analysis.
Among the several lines of Mir125b2 KO mice (homozygotes) obtained, we chose Mir125b2 KO
line #2, which carried a 199 bp deletion (S1 Fig) based on their similar appearance, live birth, and
body weight changes. Animal use and procedures were approved by the Institutional Animal
Care and Use Committee of the Central Institute for Experimental Animals and the Committee
of Animal Experimentation at Hiroshima University (#A20-3-4).

Serum biochemical analysis

Sera were obtained from 12- to 14-week-old male WT and Mir125b2 KO mice and analyzed using
a biochemical automatic analyzer (7180 Clinical Analyzer; Hitachi High-Tech, Tokyo, Japan).

RNA isolation and real-time RT-PCR

Total RNA was extracted from crushed frozen tissues of 12-week-old male mice and cultured
using RNAiso Plus (Takara Bio, Shiga, Japan). The miReasy Mini Kit (QIAGEN, Hilden,
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Germany) was used according to the manufacturer’s instructions. Serum small RNAs were iso-
lated using the miRNeasy Serum/Plasma Advanced Kit (QIAGEN). Genomic DNA was
digested using Dnase I (QTAGEN), and cDNA was synthesized using M-MuLV Reverse Tran-
scriptase (New England BioLabs, Ipswich, MA) and ReverTra Ace (TOYOBO, Osaka, Japan)
for miRNAs and mRNAs/pri-miRNAs, respectively. Quantitative real-time PCR was per-
formed using FastStart Universal Probe Master (Roche, Basel, Switzerland) with the TagMan
MicroRNA Assay (Thermo Fisher Scientific) for mature miRNAs, according to the manufac-
turer’s recommendations. THUNDERBIRD Next SYBR qPCR Mix (TOYOBO) was used with
primer sets for pri-miRNAs and Actb (S1 Table). The TagMan Pri-miRNA Assay was used for
the quantitative analysis of pri-miRNAs (Thermo Fisher Scientific). Rnu6 and Actb were used
as internal controls to normalize the miRNA and pri-miRNA levels, respectively. A Caenor-
habditis elegans MIR39 mimic (Thermo Fisher Scientific) was used to normalize serum sRNA
levels [11]. All analyses were performed using the comparative Ct method with a StepOnePlus
real-time PCR system (Thermo Fisher Scientific).

Micro-computed tomography (uCT) analysis

Left tibiae were dissected from 12-week-old male mice, fixed in 4% paraformaldehyde (PFA)
in PBS (FUJIFILM Wako Pure Chemical, Osaka, Japan) at 4°C for 24 h and stored in 70% eth-
anol at 4°C until use. Whole tibiae were scanned using SkySkan 1176 (Bruker, Kontich, Bel-
gium), and the datasets were reconstructed using Nrecon (v1.7.4.6, Bruker), followed by
alignment using Data Viewer (v1.5.6.2, Bruker). The scanning and reconstruction conditions
are listed in S2 Table. CT'An (v.1.20.8.0, Bruker) was used to measure bone parameters in the
trabecular bone (1.0 mm in width, 0.5 mm below the growth plate). The tibial length was mea-
sured from the proximal end of the superior articular surface to the distal end of the medial
malleolus.

Bone histomorphometry

Calcein (10 mg/kg body weight) was injected intraperitoneally twice to 12-week-old male mice
at an interval of 5 d. Tibiae were collected 2 d after the second calcein administration and fixed
in 4% PFA in PBS for 24 h. After washing with PBS, the fixation solution was replaced with
70% ethanol. The tibiae were then stained with Villanueva bone stain, dehydrated using a
graded series of ethanol, and embedded in methyl methacrylate. Plastic sections (5 um thick-
ness) were prepared, and histometric analysis was performed using a semiautomatic graphic
system (Histometry RT CAMERA, System Supply, Nagano, Japan).

Bone marrow stroma cell (BMSC) and bone marrow macrophage (BMM)
cultures

Bone marrow cells (BMCs) were isolated from the femurs and tibiae of 10—15-week-old male
mice as described previously [12]. Briefly, after removing soft tissues, both epiphysial ends
were cut, and BMCs were flushed out using «MEM (Thermo Fisher Scientific) containing
antibiotics (100 U/ml penicillin and 100 pg/ml streptomycin (Sigma Aldrich, St. Louis, MO,
USA)). Cells from 2 to 5 mice were pooled, suspended, and passed through a cell strainer

(70 pm; Corning, Glendale, AZ, USA). Resuspended cells were cultured in 10 cm dishes with
oMEM supplemented with 20% FBS (Sigma Aldrich) and antibiotics (growth medium) at
37°C in humidified 5% CO, with hypoxia (5% oxygen) [13]. The next day, nonadherent cells
were carefully removed by washing, and the cells were maintained for an additional 10 d to
obtain osteogenic BMSCs.
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To obtain the osteoclast progenitor BMMs, BMCs were hemolyzed in ACK lysis buffer
(0.15 M NH,CI, 0.01 M KHCO;3, and 1 mM Na,EDTA, pH 7.4), as previously described [9].
After gentle agitation for 2 min, cells were rinsed and cultured in nonadherent cell culture
dishes with aMEM supplemented with 10% FBS and 200 ng/mL M-CSF (PeproTech, Cran-
bury, NJ) for 2 d at 37°C in humidified 5% CO,. After removing nonadherent cells by washing,
BMMs were collected.

Statistical analysis

Data are expressed as mean * standard deviation. Statistical analyses were performed using
GraphPad Prism 9.2.0 (GraphPad Software, San Diego, CA, USA). The Mann-Whitney U test
was used to compare the means between the two groups. Differences between more than two
groups were examined using the Kruskal-Wallis test, followed by Dunn’s multiple comparison
test. Statistical significance was set at P<0.05.

Results
The expression profiles of MIR125B transcripts in WT mice

We first evaluated levels of pri-Mir125b1 and pri-Mir125b2 in the brain, heart, liver, lung, kid-
ney, spleen, testis, skeletal muscle, inguinal adipose tissue, femur (including bone marrow),
and calvaria (Fig 1A). Both pri-miRNAs were most abundant in the brain and heart, followed
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Fig 1. Transcriptional profiling of Mir125b genes in wild-type (WT) mice. Relative levels of pri-Mir125b1 and pri-Mir125b2 (A), MIR125B-5p (B),
MIR125B1-3p, and MIR125B2-3p (C) in various organs/tissues of 12-week-old male mice are shown. Actb (A) and Rnu6 (B, C) were used as internal controls.
n=4-6.

https://doi.org/10.1371/journal.pone.0304074.g001
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WT

by calvaria, skeletal muscle, and adipose tissue for pri-Mir125b1 and the calvaria, kidney, and
testis for pri-Mir125b2. In bones, pri-Mir125b1 and pri-Mir125b2 were more abundant in the
calvaria than in the femur, including in BMCs. We then examined MIR125B-5p expression in
most of the above organs/tissues and found that MIR125B-5p levels were highest in the cal-
varia (Fig 1B). MIR125B1-3p and MIR125b2-3p, previously identified in the rat heart [14],
human brain [15], kidney [16], and liver [17], were also found to be among the most abundant
in organs/tissues (Fig 1C). These results suggest that Mir125b1 and Mir125b2 may contribute
to the levels of three mature MIR125B transcripts in an organ/tissue-dependent manner and
that all mature MIR125B transcripts may be abundant in the calvaria.

General features of Mir125b2 KO mice

We used CRISPR/Cas9-mediated genome editing to delete Mir125b2 and designed guide
RNAs. The genomic sequences of the mutant FO mice are shown in S1 Fig. These mice were
further mated with C57BL/6] mice, thereby obtaining F1 mutant mice, before their genotypes
were confirmed using PCR product sequencing. Mir125b2 KO mice (line #2, homozygotes)
were born normally at the expected Mendelian ratio (WT, 16.73+11.20; KO, 14.34+10.41 in
the interbreeding of heterozygous mice). The appearance of Mir125b2 KO mice was identical
to that of WT mice (Fig 2A). There were no significant differences in body weight changes
between WT and Mir125b2 KO mice in both males and females (Fig 2B). Serological findings
in WT or Mir125b-2 KO male mice are summarized in Table 1.

The expression profiles of MIR125B transcripts in Mir125b2 KO mice

We demonstrated the effect of Mir125b2 deficiency on levels of MIR125B transcripts in repre-
sentative organs and tissues, including the bones. Concomitant with Mir125b2 deficiency, pri-
Mir125b2 (S2A Fig) and MIR125B2-3p (S2B Fig) were undetectable in Mir125b2 KO mice.
This reflects the lower levels of MIR125B-5p in the heart, kidneys, spleen, liver, testes, and
femurs of Mir125b2 KO than in WT mice (Fig 3A). Interestingly, despite Mir125b2 deficiency,
MIR125B-5p levels in the brain, calvaria, and serum of Mir125b2 KO mice were comparable to
those of WT mice (Fig 3A). We found no significant differences in MIR125B1-3p levels in the
heart, brain, or bones of Mir125b2 KO and WT mice (Fig 3B), whereas pri-Mir125b1 levels
were unexpectedly suppressed in Mir125b2 KO hearts and femurs (Fig 3C).
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Fig 2. The gross appearance of WT and Mir125b2 KO mice and their growth curves. (A) Representative images of 12-week-old male mice. (B) Body
weight changes in mice from 3-12 weeks of age. n = 15-18 (males) and 7-9 (females).

https://doi.org/10.1371/journal.pone.0304074.9002
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Table 1. Serum biochemical analysis of WT and Mir125b2 KO male mice.

Parameters WT Mir125b2 KO P value
Mean SD Mean SD
TP (g/dL) 5.200 0.1826 5.114 0.1773 0.5402
ALB (g/dL) 3.243 0.1272 3.243 0.1813 0.6096
BUN (mg/dL) 23.70 2.499 21.93 3.931 0.3357
CRE (mg/dL) 0.1171 0.009512 0.1100 0.01265 0.3275
Na (mEq/L) 154.6 2.507 156.4 1.718 0.1521
K (mEq/L) 4314 0.3288 4.286 0.5113 0.9732
Cl (mEq/L) 105.4 1.272 103.9 5.014 0.3998
Ca (mg/dL) 9.143 0.1902 9.357 0.4721 0.2896
IP (mg/dL) 10.46 1.938 10.87 1.525 0.8788
AST (IU/L) 103.0 40.11 141.4 73.61 0.4557
ALT (IU/L) 29.57 9.289 30.86 9.263 0.5565
LDH (IU/L) 582.9 104.6 549.0 249.0 0.7104
AMY (IU/L) 2080 319.6 2247 544.7 0.9015
T-CHO (mg/dL) 70.86 14.40 78.86 11.78 0.2593
TG (mg/dL) 23.86 13.91 24.57 14.34 0.7389
HDL-C (mg/dL) 41.29 10.29 45.00 8.622 0.3293
T-BIL (mg/dL) 0.1286 0.06466 0.1086 0.04634 0.5554
GLU (mg/dL) 160.3 64.32 175.9 48.31 0.3176

WT, wild-type; KO, knockout; SD, standard deviation; TP, total protein; ALB, albumin; BUN, blood urea nitrogen; CRE, creatinine; Cl, chloride; Na, sodium; K,
potassium; Ca, calcium; IP, inorganic phosphate; AST, aspartate aminotransferase; ALT, alanine aminotransferase; LDH, lactate dehydrogenase; AMY, amylase;
T-CHO, total cholesterol; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; T-BIL, total bilirubin; GLU, glucose

https://doi.org/10.1371/journal.pone.0304074.t001

Bone morphometric parameters in Mir125b2 KO mice

To confirm the effect of Mir125b2 deletion on bone, uCT scans of tibiae were obtained from
WT and Mir125b2 KO mice. No statistical differences between the two genotypes were found
in long axis length, bone mineral density, bone volume in the proximal metaphysis, or other
trabecular bone parameters (Fig 4A). We further demonstrated the histomorphometry of tra-
becular bones in WT versus Mir125b2 KO tibiae. Microscopic images with Villanueva staining
did not exhibit any remarkable differences in the growth plate, trabecular bone, or marrow
cells between the two genotypes (Fig 4B). Quantitative histomorphometry also revealed that
parameters such as the number of osteoblasts and osteoclasts, mineral apposition rate, and
eroded surface/bone surface in Mir125b2 KO mice were not significantly different from those
in WT mice (Fig 4C and S3 Fig).

BMSCs and BMMs in Mir125b2 KO mice

To further clarify the effects of Mir125b2 deficiency on bone, BMCs and their corresponding
BMSCs were isolated from Mir125b2 KO and WT mice. Regardless of Mir125b2 deficiency,
MIR125B-5p was equally present in BMCs and BMSCs in WT and Mir125b2 KO mice, and
its levels were significantly higher in BMSCs than in BMCs (Fig 5). These expression pat-
terns were the same in MIR125B1-3p. MIR25B2-3p was undetectable in Mir125b2 KO
BMCs and BMSCs, whereas it was relatively abundant in WT BMSCs (Fig 5). Levels of
MIR125B-5p and MIR125B1-3p in BMMs were lower or undetectable in both genotypes
(Fig 5B).
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https:/doi.org/10.1371/journal.pone.0304074.9g003

Discussion

To date, MIR125B-5p has been detected in the lungs [18, 19], brain [20, 21], heart [22, 23],
liver [24], testis [25], adipose tissue [26], bone [9], and skeletal muscles [27] of mice. However,
little information is available regarding the expression profiles of MIR125B transcripts and
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Th, trabecular thickness; Tb.Sp, trabecular separation. n = 9-10. (B) Representative images of longitudinal sections with Villanueva staining are shown.
The scales in the upper and lower panels represent 500 pm and 100 um, respectively. (C) Trabecular bone parameters were assessed by bone
histomorphometry. BV, bone volume; OV, osteoid volume; Ob. N/BS, number of osteoblasts per bone surface; Oc. N/BS, number of osteoclasts per bone
surface; MAR, mineral apposition rate; ES/BS, eroded surface per bone surface. n = 5.

https://doi.org/10.1371/journal.pone.0304074.9004

their genetic origins. Mouse MIR125B transcripts in the TissueAtlas database (https://ccb-
web.cs.uni-saarland.de/tissueatlas2) were only available for a limited number of organs and tis-
sues. To our knowledge, this is the first study to demonstrate the expression patterns of three
mature MIR125B transcripts and their pri-miRNAs in the major mouse organs or tissues.
There have also been no reports on our finding that bone cells, especially BMSCs, abundantly
express mature MIR125B transcripts. Our previous study demonstrated that among the
MIR125B transcripts, MIR125B-5p was identified by miRNA microarray analysis of matrix
vesicles obtained from mouse osteoblastic MC3T3-El1 cells [9], although MIR125B1-3p and
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Fig 5. Levels of mature MIR125B transcripts in BMCs, BMSCs, and BMMs of WT and Mir125b2 KO mice. Bone marrow stroma cells
(BMSCs) and bone marrow macrophage (BMM:s) were obtained from bone marrow cells (BMCs) of 10-15-week-old male mouse femurs
and tibiae. Relative levels of MIR125B-5p, MIR125B1-3p, and MIR125B2-3p in BMCs, BMSCs, and BMMs are shown. Femurs of
12-week-old WT male mice were used for comparison. Rnu6 was used as internal control.

https://doi.org/10.1371/journal.pone.0304074.9005

-2-3p were highly expressed in calvaria and BMSCs in this study. As in chondrocyte matrix
vesicles [28], this suggests a yet-undefined mechanism underlying the selective enrichment of
mature MIR125B transcripts in matrix vesicles.

Li et al. found a reduction in litter size in Mir125b2 KO mice, with a reduced number of
sperm cells [21]; however, we could not obtain results supporting this. As described for
Mir125b2 KO mice lacking GACCCTA from the region of MIR125B2 transcripts [22], we did
not observe obvious alterations in the appearance and biochemical parameters of male or
female Mir125b2 KO mice. The Mir125b2 locus overlaps only with Mir99ahg, a long non-cod-
ing RNA, not only on mouse chr16 but also on human chr21 (NCBI Gene database). Although
a few studies described MIR99AHG as a tumor suppressor and promoter [29-31], the roles of
MIR99AHG have remained largely unknown.

The expression patterns of all three mature MIR125B transcripts and their pri-miRNAs in
multiple organs, tissues, and cells did not correlate exactly with each other, suggesting that the
transcriptional and post-transcriptional regulation of Mir125b1 and Mir125b2 genes may
depend on the organ, tissue, or cell in question. Decreased MIR125B-5p levels in the heart,
kidneys, spleen, liver, testes, and femurs of Mir125b2 KO mice indicate that cells in these
organs predominantly express pri-Mir125b2 rather than pri-Mir125b1. In contrast, Mir125b1
rather than Mir125b2 may contribute to MIR125B-5p levels in BMSCs, calvaria, and blood.
These results may be linked to the lack of differences in tibial trabecular bone parameters
between Mir125b2 KO and WT mice. Mir125b2 KO mice neither mirrored the high bone
mass seen in Tg mice [9] nor replicated changes in the osteoblastogenesis of human and
mouse osteogenic cells transfected with MIR125B or its inhibitor [6-8, 32]. The lower levels of
pri-Mir125b1 in the heart and femur of Mir125b2 KO vs. WT mice remain unclear. A similar
tendency was reported for pri-MiR125b2 levels in cardiac-specific Mir125b1 KO mice [19],
implying the necessity for future investigation of the link between Mir125b1 and Mir125b2.

Ex vivo studies on BMSC and BMM cultures may help to better understand the exact roles
of mature MIR125B transcripts in bone. Levels of MIR125B-5p and MIR125B1-3p not only in
WT BMSCs but also in Mir125b2 KO BMSCs were remarkably higher than those in WT
femurs, BMCs, and BMMs. MIR125B-5p may be the most abundant of the three mature
MIR125B transcripts in BMSCs, assuming that their PCR amplification efficiencies were
nearly equal (MIR125b-5p in WT, Ct = 22-26 versus MIR125B-1-3p and -2-3p in WT,

Ct = 34-40). These results suggest that Mir125b2 and MIR125B2-3p are not involved in osteo-
blastogenesis. We found that BMMs showed barely detectable levels of the three mature
MIR125B transcripts with or without Mir125b2 deficiency (see also our previous data on
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MIR125B-5p, [9]), suggesting that MIR125b expressed in BMMs may not participate in osteo-
clastogenesis. Of the three mature MIR125B transcripts, MIR125B-5p has drawn attention for
its relevance in several diseases, including cardioprotection after acute myocardial infarction
[33], progression of renal cell carcinoma [34], resistance of hepatocellular carcinoma to trans-
arterial chemoembolization [35], and promotion of osteoporosis [3, 4]. Serum levels of
MIR125B-5p have also been implicated in some diseases of the liver [36-38], heart/kidney [39,
40], and bone [3-5]. Taken together with our data and previous studies showing that exoge-
nous application of MIR125B-5p suppressed the osteogenic differentiation of human BMSCs
[8, 32] and C3H/10T1/2 cells, a mouse mesenchymal cell line [7], these findings suggest that
MIR125B-5p, rather than MIR125B2-3p, impacts bone formation.

The fact that the phenotypic analysis of bone structure in vivo was performed only in the
tibia may have made the evaluation of bone structure in Mir125b2 KO mice localized and is
one of the limitations of this study. To gain further insight into Mir125b2 KO mice with
organ- or tissue-specific expression patterns, systemic bone structure needs to be evaluated
(e.g., vertebrae, skull, and femur). Furthermore,future studies should include a research
agenda for conditional deletion of Mir125b1 and both Mir125b1 and Mir125b2 in mice.
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