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Abstract

Epithelial ovarian cancer (EOC) has a low overall survival rate, largely due to frequent recur-

rence and acquiring resistance to platinum-based chemotherapy. EOC with homologous

recombination (HR) deficiency has increased sensitivity to platinum-based chemotherapy

because platinum-induced DNA damage cannot be repaired. Mutations in genes involved in

the HR pathway are thought to be strongly correlated with favorable response to treatment.

Patients with these mutations have better prognosis and an improved survival rate. On the

other hand, mutations in non-HR genes in EOC are associated with increased chemoresis-

tance and poorer prognosis. For this reason, accurate predictions in response to treatment

and overall survival remain challenging. Thus, analyses of 360 EOC cases on NCI’s The

Cancer Genome Atlas (TCGA) program were conducted to identify novel gene mutation sig-

natures that were strongly correlated with overall survival. We found that a considerable por-

tion of EOC cases exhibited multiple and overlapping mutations in a panel of 31 genes.

Using logistical regression modeling on mutational profiles and patient survival data from

TCGA, we determined whether specific sets of deleterious gene mutations in EOC patients

had impacts on patient survival. Our results showed that six genes that were strongly corre-

lated with an increased survival time are BRCA1, NBN, BRIP1, RAD50, PTEN, and PMS2.

In addition, our analysis shows that six genes that were strongly correlated with a decreased

survival time are FANCE, FOXM1, KRAS, FANCD2, TTN, and CSMD3. Furthermore,

Kaplan-Meier survival analysis of 360 patients stratified by these positive and negative gene

mutation signatures corroborated that our regression model outperformed the conventional

HR genes-based classification and prediction of survival outcomes. Collectively, our find-

ings suggest that EOC exhibits unique mutation signatures beyond HR gene mutations. Our

approach can identify a novel panel of gene mutations that helps improve the prediction of

treatment outcomes and overall survival for EOC patients.
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Introduction

Epithelial ovarian cancer (EOC) is cancer derived from the outer lining of the ovaries, the main

female reproductive organ [1]. It is the second most common gynecologic cancer in the United

States, amounting to about 14,000 deaths per year with a 5-year overall survival rate of 47% [2].

High grade serous EOC is the most common form of ovarian cancer, accounting for about 70%

of cases [3]. The high mortality rate is attributable to late-stage diagnosis that reduces the clini-

cal response to the treatment. Furthermore, due to a high rate of recurrence it is common for

patients to develop resistance to platinum-based chemotherapy and possibly poly ADP ribose

polymerase (PARP) inhibitor therapy [4, 5]. Eventually patients succumb to the disease because

chemo-resistant EOC cells no longer respond to most treatment modalities [6].

Using data from NCI’s Cancer Genome Atlas (TCGA) program, we aimed to survey the

landscape of gain-of-function mutations in oncogenes and loss-of function gene mutations in

tumor suppressor genes for the responses of EOC to platinum-based chemotherapy in EOC

patients. We analyzed 360 cases of EOC to identify common gene mutations that could poten-

tially predict clinical responses to treatment and survival outcomes in patients. Finding pat-

terns in gene mutations intimately associated with therapeutic responses can also help decide

appropriate therapy to improve long-term survival rates [7]. Homologous recombination

(HR) repair deficiency is the most prominent and characterized EOC phenotype that indicate

increased sensitivity to DNA damage therapies [8, 9]. EOC cells that have faulty HR repair are

not able to fix DNA double strand breaks (DSBs) induced by platinum-based chemotherapy or

PARP inhibitors [10]. However, it remains largely unknown that other gene mutations play a

role in EOC sensitivity to platinum-based chemotherapy and other cancer therapeutics.

Many EOC patients have a high mutational load with combinatory gene mutations that

have positive and negative effects on survival [11]. Taking account of all the effects of these

gene mutations, we established a statistical model that generated a prediction of whether a

patient had an increased or decreased survival. Our model offers a new perspective on the rela-

tionship between gene mutation profiles and patient survival outcomes. It would also provide

potential targets to spark future investigations and development of therapeutic interventions.

Materials and methods

Data acquisition

The data from the public database The Cancer Genome Atlas (TCGA) were acquired through

the cancer.gov website since June of 2020. The database is part of NCI’s Genomic Data Com-

mons (GDC) portal. Within the TCGA database, ovary was selected as the primary site in the

TCGA-OV project. A total of 582 EOC cases were collected. We chose 38 genes for the study

based on the frequency of mutation as well as the role that a gene plays in DNA damage repair

pathways such as HR repair and mismatch repair genes. Given that not all mutations have nega-

tive effects on gene functions, we selected 360 patients who had deleterious gene mutations

identified by one or more predictive algorithms: Variant Effect Predictor (VEP), Sorting Intol-

erant from Tolerant (SIFT), and Polymorphism Phenotyping (PolyPhen). Deleterious muta-

tions were classified as VEP Impact high or moderate, SIFT Impact deleterious or deleterious

low confidence, and PolyPhen probably or possibly damaging. Because 7 genes showed perfect

separation that hindered logistic regression analysis, we analyzed 31 common gene mutations

in relation to the survival outcomes of these EOC patients. Using the same approach, we addi-

tionally analyzed 25 deleterious mutations in relation to the survival outcomes of 437 uterine

cancer patients (corpus uteri in the TCGA-UCEC database), as well as 21 deleterious mutations

in relation to the survival outcomes of 176 cervical cancer patients (from the TCGA-CESC
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database). The data were entered into a Microsoft Excel spreadsheet as categorical variables (yes

vs no) for all gene mutations and survival outcomes of patients (days to death and overall sur-

vival). Mutations were defined as yes and no–if at least one deleterious mutation was present in

the gene, then the gene was categorized as mutated. The data were also counted for the mutation

frequency of each gene. The datasets of survival outcomes and gene mutations in EOC, uterine

cancer, and cervical cancer patients are listed in the Zenodo repository [12].

Logistic regression modeling

Logistic regression was used to model the pattern of 31 gene mutations in 360 EOC patients in

relation to their survival outcomes. Uterine and cervical cancer patients were analyzed in a

similar manner to EOC patients. The presence of a gene mutation was set as “1” and the

absence of a gene mutation is set as “0”. An alive patient was set as “1” and a deceased patient

was set as “0”. The analysis was performed using the Prism 9 software (GraphPad). The sur-

vival outcome was the logit function [Log (p/(1-p), where p is probability] of all 31 gene muta-

tions:

Log
p

1 � p

� �

¼ b0ðinterceptÞ þ b1� TP53þ b2� BRCA1þ b3� BRCA2þ b4� KMT2C

þb5� CDK12þ b6� CSMD3þ b7� TTNþ b8�MUC16þ b9�NF1

þb10� PALB2þ b11� RB1þ b12� PTENþ b13� FOXM1þ b14� BRIP1

þb15� KRASþ b16� RASA1þ b17� CHEK2þ b18� RAD50

þb19�MRE11Aþ b20�NBNþ b21� FANCEþ b22� FANCD2

þb23� ATRþ b24� ATMþ b25�MSH2þ b26� PMS2þ b27�MLH1

þb28� FAT1þ b29� FAT2þ b30� FAT3þ b31� FAT4

β1–31 was the estimate for each gene mutation. p = 0.5 was used as the cutoff; p> 0.5 pre-

dicted the alive outcome whereas p< 0.5 predicted the deceased outcome for a patient.

To evaluate the contribution of individual gene mutation to the survival outcome, the esti-

mates of all 31 genes were ranked. Positive estimate values contributed to an increase in the

probability of survival whereas negative estimate values contributed to a decrease in the proba-

bility of survival. Z-score, p-value, and odd ratio for each estimate was also shown to evaluate

the contribution of the gene mutation to the survival outcomes of patients.

Classification metrics and ROC curve

Classification metrics was used to evaluate the performance of the logistic regression model by

comparing predicted survival outcomes with actual survival outcomes.

True positive (TP): the model predicted the alive outcome correctly. True negative (TN):

the model predicted the dead outcome correctly. False positive (FP): the model predicted the

alive outcome incorrectly. False negative (FN): the model predicted the dead outcome incor-

rectly. Accuracy = (TP+TN)/(TP+TN+FP+FN) was defined as the overall correctness of the

model’s predictions. Precision = TP/(TP+FP) represented the accuracy of prediction.

Recall = TP/(TP+FN) quantified the accuracy of prediction. The receiver operating character-

istic (ROC) curve and the area under the ROC curve used to assess the performance of the

logistic regression model were generated by the Prism software.
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Kaplan-meier survival analysis

Kaplan-Meier survival analysis was conducted using the Prism 6 software (GraphPad). 360

EOC patients were grouped by the presence and absence of a gene mutation spectrum, such as

6 positive genes, 6 negative genes, or HR-deficient genes. The survival times of patients were

used to define the survival endpoints. If patients were still alive, 5,000 days were entered as the

endpoints. The median survival times were determined. The Log-rank (Mantel-Cox) test was

used to determine statistical significance between groups.

Pearson correlation analysis

Pearson correlation analysis was performed with the same dataset for logistic regression

modeling, using NCSS 2024 software (NCSS). The alive outcome and 31 gene mutations were

input as variables to identify pair-wise correlations and generate a matrix of the heat map and

hierarchical clustering of variables. The scatter plot of Eigenvectors of Pearson correlations

was generated to indicate the relatedness of the alive outcome to 31 genes.

Results

Using the data of 360 patients on TCGA, we analyzed 31 genes that were frequently mutated

in EOC patients. After analyzing the mutation frequency of each gene and its corresponding

survival rate, we listed mutated genes and showed their impacts on the survival of patients.

The averaged overall survival rate for all 360 EOC cases was 44.2%. TP53 was the most fre-

quently mutated gene at 96.4% and with a 44.1% survival rate (Table 1). TTN was the second

frequently mutated gene at 46.9% and with a 37.9% survival rate. BRCA1 mutation was associ-

ated with the highest survival rate of 72.7% and a 6.1% frequency. RAD50, MRE11A, and NBN

mutations also had a high survival rate of 66.7% but a low (0.8%) frequency. On the other

hand, the FANCE, FOXM1, and KRAS mutations caused the lowest survival rate of 14–25% at

relatively lower (1.1–2.5%) frequencies.

To gain the insights into the landscape of gene mutations in 360 patients in relation to sur-

vival outcomes, we compared the percentage of alive and deceased patients in each of 31

genes. The ratios of the percentage of alive to deceased patients were also calculated. The

results show that there was a greater percentage of alive patients that had mutations in genes

including BRCA1, RAD50, MRE11A, and NBN (Fig 1). In contrast, there was a higher per-

centage of deceased patients that had mutations in genes including FOXM1, KRAS, FANCE,

and FANCD2.

Because a vast majority of 360 EOC patients exhibited multiple mutations (2–10 mutations)

of these 31 genes analyzed, we determined whether there were patterns of combinatory gene

mutations that would better correlate with and predict the survival outcomes of patients. We

performed the logistic regression analysis to model the survival outcomes (alive and deceased)

as a function of the combination of 31 gene mutations in 360 patients. The estimates of 31

genes for the logistic regression model were obtained and ranked to evaluate the positive and

negative effects of gene mutations on survival. Of the 31 mutations, 16 genes with positive esti-

mates showed correlation with improved survival, and 15 genes with negative estimates were

correlated with decreased survival (Table 2). Despite that only the estimates of BRCA1 and

TTN were statistically significant, top-ranking positive and negative genes were highly corre-

lated with highest and lowest odd ratios, respectively, indicative of their strongest impacts on

survival outcomes. Mutations that cause HR deficiency were mostly correlated with increased

survival, while FA genes were all correlated with decreased survival. Based on the ranking,

BRCA1 mutation was the most positive predictor of increased survival whereas FANCE muta-

tion was the most negative predictor of decreased survival. The area under the ROC curve for
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this model is 0.651 ± 0.029 (95% CI, 0.5930–0.7080) (S1A Fig). The overall accuracy of this

model for EOC was 64.2%. The other classification metrics are shown in Table 3.

Based on our logistic regression model, we performed Kaplan-Meier survival analysis of

360 patients stratified by positive or negative gene mutations. The group of patients containing

any of the top 6 genes (BRCA1, NBN, BRIP1, RAD50, PTEN, and PMS2) correlated with

increased survival (positive gene group) was compared with the group of all other patients

lacking these mutations. The Kaplan-Meier survival curves show that the positive gene group

exhibited a significant longer survival time than the group of other patients (p = 0.0183)

(Fig 2A). The median survival times were >10 years for the positive gene group and 5.3 years

for the other patient group. Likewise, the group of patients containing any of the top 6 genes

(FANCE, FOXM1, KRAS, FANCD2, TTN, and CSMD3) correlated with decreased survival

(negative gene group) was compared with the group of all other patients lacking these

Table 1. Frequent gene mutations and survival rates in 360 EOC patients.

Mutated EOC % Mutated Alive with Mutation % Overall Survival

TP53 347 96.4 153 44.1

TTN 169 46.9 64 37.9

MUC16 52 14.4 21 40.4

CSMD3 41 11.4 13 31.7

KMT2C 39 10.8 20 51.3

FAT3 39 10.8 18 46.2

NF1 28 7.8 15 53.6

FAT4 28 7.8 14 50.0

FAT1 23 6.4 9 39.1

BRCA1 22 6.1 16 72.7

CDK12 20 5.6 8 40.0

FAT2 20 5.6 10 50.0

RB1 18 5.0 8 44.4

BRCA2 17 4.7 7 41.2

ATM 13 3.6 5 38.5

PTEN 10 2.8 5 50.0

ATR 10 2.8 5 50.0

PALB2 9 2.5 4 44.4

FOXM1 9 2.5 2 22.2

FANCD2 9 2.5 3 33.3

FANCE 7 1.9 1 14.3

MSH2 5 1.4 2 40.0

MLH1 5 1.4 2 40.0

BRIP1 4 1.1 2 50.0

KRAS 4 1.1 1 25.0

RASA1 4 1.1 2 50.0

PMS2 4 1.1 2 50.0

CHEK2 3 0.8 1 33.3

RAD50 3 0.8 2 66.7

MRE11A 3 0.8 2 66.7

NBN 3 0.8 2 66.7

The ranking of commonly mutated genes and associated survival rates identified by TCGA is shown. 360 cases of high-grade serous EOC cases were analyzed for their

number of mutations, mutation frequency, and overall 10-year survival rate.

https://doi.org/10.1371/journal.pone.0305273.t001
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mutations. The negative gene group displayed a significant shorter survival time than the

group of other patients (p = 0.0320) (Fig 2B). The median survival times were 4.8 years for the

negative gene group and >10 years for the other patient group.

To substantiate our findings, we further conducted the Kaplan-Meier survival analysis of

360 patients grouped by the conventional definition of HR status [13]. Patients that contained

mutations in BRCA1, BRCA2, ATM, ATR, BRIP1, CDK12, CHEK2, FANCD2, FANCE,

MRE11, NBN, PALB2, and RAD50 were categorized as the HR deficient group. Patients that

lacked these mutations were categorized as the HR proficient group. The analysis indicates

that the survival times of HR-deficient and HR-proficient groups were not statistically differ-

ent (p = 0.1971)(Fig 2C). The median survival times of HR-deficient and HR-proficient groups

were 7.5 and 5.5 years, respectively.

To further validate this predictive model with other gynecologic cancers, we performed

similar analyses on the dataset of 437 uterine cancer patients and 23 gene mutations from

TCGA. Based on the ranking of estimates and odd ratio, ATM, FANCD2, BRCA1, MSH6,

CHEK2, and MUC16 were identified as top 6 positive genes while CDK12, BRIP1, FAT3,

TP53, NF1, and PMS2 were identified as top 6 negative genes (S1 Table). The area under the

ROC curve for the uterine cancer model is 0.723 ± 0.032 (95% CI, 0.660–0.787) (S1B Fig). The

overall accuracy of this model for uterine cancer was 81.5%. The other classification metrics

are shown in S2 Table. Similar to EOC, we performed Kaplan-Meier survival analysis of 437

uterine cancer patients stratified by positive or negative gene mutations. The result showed

that patients with positive genes had a significantly better survival outcome (p = 0.0179) and

Fig 1. Comparison of gene mutations between alive and deceased EOC patients. A) The percentages of alive and deceased patients that

contained each of 31 gene mutations were determined. 159 patients were alive, and 201 patients were deceased. B) The ratios of the

percentages of alive to deceased patients were calculated. The bars indicate a fold change in the percentage of alive patients compared with

deceased patients in each gene.

https://doi.org/10.1371/journal.pone.0305273.g001
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patients with negative genes had a significantly worse survival outcome (p = 0.0020) than their

respective other patient groups (S2A and S2B Fig).

Moreover, we analyzed the dataset of 174 cervical cancer patients and 21 gene mutations

from TCGA. CSMD3, FAT1, BRCA1, PALB2, NF1, and RB1 were identified as top 6 positive

Table 2. Logistic regression analysis of 31 gene mutations and survival outcomes in 360 EOC patients.

Variable Estimate Estimate 95% CI |Z| p Odd Ratio Odd Ratio 95% CI

BRCA1 1.347 ± 0.530 0.357 to 2.469 2.541 0.011 3.84 1.429 to 11.81

NBN 1.116 ± 1.337 -1.404 to 4.354 0.835 0.404 3.05 0.246 to 77.77

BRIP1 0.733 ± 1.152 -1.626 to 3.173 0.636 0.525 2.08 0.197 to 23.88

RAD50 0.719 ± 1.316 -1.832 to 3.889 0.546 0.585 2.05 0.160 to 48.88

PTEN 0.621 ± 0.697 -0.769 to 2.035 0.892 0.373 1.86 0.463 to 7.651

PMS2 0.577 ± 1.082 -1.664 to 2.841 0.534 0.594 1.78 0.189 to 17.14

FAT2 0.513 ± 0.548 -0.567 to 1.610 0.937 0.349 1.67 0.567 to 5.001

NF1 0.343 ± 0.429 -0.499 to 1.197 0.799 0.425 1.41 0.607 to 3.311

MRE11A 0.307 ± 1.372 -2.346 to 3.559 0.224 0.823 1.36 0.0957 to 35.12

PALB2 0.305 ± 0.757 -1.236 to 1.824 0.403 0.687 1.36 0.291 to 6.195

FAT3 0.305 ± 0.375 -0.435 to 1.044 0.814 0.415 1.36 0.648 to 2.839

FAT4 0.279 ± 0.431 -0.573 to 1.133 0.646 0.519 1.32 0.564 to 3.105

KMT2C 0.260 ± 0.389 -0.507 to 1.026 0.670 0.503 1.30 0.602 to 2.791

CHEK2 0.162 ± 1.406 -3.073 to 3.162 0.115 0.909 1.18 0.0463 to 23.61

ATR 0.157 ± 0.723 -1.315 to 1.592 0.217 0.828 1.17 0.269 to 4.913

RB1 0.003 ± 0.524 -1.051 to 1.032 0.005 0.996 1.00 0.350 to 2.805

CDK12 -0.010 ± 0.506 -1.038 to 0.973 0.019 0.985 0.99 0.354 to 2.646

MSH2 -0.024 ± 1.007 -2.202 to 1.953 0.024 0.981 0.98 0.111 to 7.053

RASA1 -0.028 ± 1.187 -2.439 to 2.459 0.023 0.981 0.97 0.0873 to 11.69

TP53 -0.036 ± 0.693 -1.429 to 1.343 0.051 0.959 0.97 0.240 to 3.831

MUC16 -0.037 ± 0.334 -0.700 to 0.616 0.109 0.913 0.96 0.497 to 1.852

BRCA2 -0.038 ± 0.533 -1.126 to 0.996 0.071 0.943 0.96 0.324 to 2.707

Intercept -0.054 ± 0.709 -1.462 to 1.370 0.076 0.940 0.95 0.232 to 3.937

ATM -0.076 ± 0.632 -1.389 to 1.144 0.121 0.904 0.93 0.249 to 3.139

MLH1 -0.144 ± 1.061 -2.491 to 1.895 0.136 0.892 0.87 0.0829 to 6.656

FAT1 -0.222 ± 0.492 -1.221 to 0.731 0.452 0.652 0.80 0.295 to 2.076

CSMD3 -0.463 ± 0.381 -1.236 to 0.268 1.217 0.224 0.63 0.290 to 1.307

TTN -0.581 ± 0.238 -1.051 to -0.118 2.444 0.015 0.56 0.349 to 0.889

FANCD2 -0.738 ± 0.813 -2.487 to 0.804 0.908 0.364 0.48 0.0831 to 2.235

KRAS -1.035 ± 1.292 -4.209 to 1.316 0.801 0.423 0.36 0.0149 to 3.728

FOXM1 -1.392 ± 0.945 -3.525 to 0.321 1.472 0.141 0.25 0.0295 to 1.378

FANCE -1.564 ± 1.150 -4.585 to 0.365 1.360 0.174 0.21 0.0102 to 1.440

The table ranks the estimates for each gene mutation variable, 95% confidence interval (CI) for estimates, Z-score, p-value, odd ratio, and 95% CI for odd ratio in the

logistic regression model. The positive estimates of gene mutations were collectively associated with improved survival whereas the negative estimates of gene mutations

collectively contributed to poor survival.

https://doi.org/10.1371/journal.pone.0305273.t002

Table 3. Classification metrics for evaluation of the predictive model for the survival outcomes of 360 EOC patients.

Predicted dead (number of patients) Predicted alive (number of patients) Accuracy (%) Precision (%) Recall (%)

Actual dead 176 25 64.2 68.8 34.6

Actual alive 104 55

https://doi.org/10.1371/journal.pone.0305273.t003
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genes. MLH1, FANCD2, BRCA2, CDK12, TP53, and FAT3 were identified as top 6 negative

genes. (S3 Table). The area under the ROC curve for the cervical cancer model is

0.750 ± 0.045 (95% CI, 0.662–0.837) (S1C Fig). The overall accuracy of this model for cervical

cancer was 79.3%. The other classification metrics are shown in S4 Table. Kaplan-Meier sur-

vival analysis of 174 cervical cancer patients stratified by these positive or negative gene muta-

tions. The result was consistent with those of EOC and uterine cancer showing that patients

with positive genes had a significantly better survival outcome (p = 0.0040) and patients with

negative genes had a significantly worse survival outcome (p = 0.0088) than their respective

other patient groups (S2C and S2D Fig).

Collectively, these results suggest that our logistic regression model identifies gene mutation

profiles predictive of the survival outcomes of EOC patients and outperforms traditional HR

status-based approaches. The same approach is also applicable to uterine and cervical cancer

patients.

The gene mutation spectrums of BRCA-mutated EOC in 39 patients were analyzed and

compared with that of all EOC in 360 patients. The percentages of 30 gene mutations were pre-

sented in the pie charts except for TP53 because TP53 mutations were found in 96.4% of EOC

cases. BRCA1- and BRCA2-mutated EOC exhibited discernible mutation patterns (Fig 3A).

KMT2C and NF1 mutations considerably increased in BRCA1-mutated EOC. In contrast,

TTN and MUC16 mutations substantially elevated and accounted for 56% of all mutations

analyzed in BRCA2-mutated EOC. FAT1 mutation was absent in BRCA1-mutated EOC while

FAT1 mutation appeared to increase in BRCA2-mutated EOC. These results suggest that

BRCA1 mutation clusters with KMT2C and NF1 mutations and BRCA2 mutation clusters

with TTN and MUC16 mutations in EOC.

Fig 2. Kaplan-meier survival analysis of 360 EOC patients. Kaplan-Meier survival analysis was performed on the basis of stratified patient populations

containing mutations in positive genes (BRCA1, NBN, BRIP1, RAD50, PTEN, and PMS2) (A), negative genes (FANCE, FOXM1, KRAS, FANCD2, TTN,

and CSMD3) (B), and HR-deficient genes (BRCA1, BRCA2, ATM, ATR, BRIP1, CDK12, CHEK2, FANCD2, FANCE, MRE11, NBN, PALB2, and RAD50)

(C). The number of patients stratified (N) was also shown.

https://doi.org/10.1371/journal.pone.0305273.g002
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The gene mutation spectrum of EOC were comparatively analyzed in alive and deceased

patient populations. BRCA1 mutation was substantially greater in alive patients than in

deceased patients (Fig 3B). In contrast, FANCE mutation was noticeably enriched in deceased

patients compared with alive patients. These finding suggest that BRCA1 mutation is corre-

lated with an improved survival whereas FANCE mutation is associated with a decreased sur-

vival in patients.

To further corroborate the findings from our logistic regression model, survival analysis,

and gene mutation spectrums, we performed correlation matrix analysis on the alive outcomes

and 31 gene mutations in 360 EOC patients. The results of the Pearson correlation matrix

show that the BRCA1 mutation was the most positively associated with the alive outcome of

patients (Fig 4A). NF1, RAD50, ATR, and many gene mutations also exhibited a positive cor-

relation with the alive outcome to a various degree. By contrast, TTN, FANCE, CSMD3, and

FOXM1 gene mutations were more distantly related to the alive outcome. Furthermore, Eigen-

vector analysis of Pearson correlations demonstrated RAD50, BRCA1, NF1, ATR, and TP53

being clustered with the alive outcome (Fig 4B), suggesting that these gene mutations are the

most pertinent predictors of the alive outcome for EOC patients.

Discussion

In this present study, we analyzed 360 EOC cases on the NCI’s TCGA database to identify pat-

terns in mutation spectrum and frequency in relation to the survival outcomes of patients. It

should be noted that these EOC cases analyzed presumably received the standard regimen of

Fig 3. Mutation frequency in EOC populations. A) Gene mutation spectrums of BRCA1- and BRCA2-mutated EOC. The percentages of 30 gene mutations

are displayed in all, BRCA1-mutated, and BRCA2-mutated EOC cases. B) Gene mutation spectrums of EOC in alive and deceased patients. The percentages of

30 gene mutations are displayed for alive and deceased EOC patients. TP53 mutations are not included in the pie charts because these mutations are present in

96.4% of patients.

https://doi.org/10.1371/journal.pone.0305273.g003
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platinum-based chemotherapy. Current consensus is that HR deficiency is indicative of a

prominent phenotype of improved clinical responses of EOC to platinum-based chemother-

apy and/or PARP inhibitors. In theory, patients with HR deficient EOC would expect to have

notably improved survival. However, our study suggests that other gene mutations should be

taken into consideration to predict the survival outcomes of EOC patients.

We demonstrate that mutations in six genes strongly correlated with positive survival were

BRCA1, NBN, BRIP1, RAD50, PTEN, and PMS2. Of these genes, BRCA1, NBN, BRIP1, and

RAD50 are part of the HR pathway [14–16]. On the other hand, our analysis shows that muta-

tions in six genes strongly correlated with negative survival were FANCE, FOXM1, KRAS,

FANCD2, TTN, and CSMD3. Contrary to conventional wisdom, mutations in FA genes

FANCE and FANCD2 were strongly correlated with negative survival despite their presumed

role in the HR pathway [17, 18]. We speculate that the association of FA genes with HR repair

pathway is context-dependent. Future analysis in cancers of other tissue origins will help clar-

ify the perplexed functions of these genes in survival outcomes. The important known func-

tions of some genes possibly associated with the survival outcomes are summarized in Table 4.

Based on our logistic regression model, BRCA1 mutation has the strongest impact on

increased survival of EOC patients. We also observe that BRCA1 is identified among the posi-

tive genes of both uterine and cervical cancer patients. BRCA1 is a tumor suppressor gene

which plays a critical role in HR-mediated DNA double strand break (DSB) repair. Our Pear-

son correlation analysis corroborates that BRCA1 mutation is the most correlative with the

alive outcome in EOC patients. However, the positive link between the alive outcome and

BRCA2 mutation is obscure. Mutations in BRCA1 and BRCA2 lead to inaccurate repair by

nonhomologous end joining (NHEJ), thereby causing genome instability and DNA

Fig 4. Heat map matrix and Eigenvectors of Pearson correlation analysis of 31 gene mutations and the alive outcome in 360 EOC

patients. Pearson correlation analysis was performed to make pair-wise comparisons to identify correlations among variables (alive outcome

and 31 gene mutation). A) The correlation matrix is displayed as a heatmap. The correlations among variables are sorted to show hierarchical

clustering. B) The Eigenvectors of Pearson correlations are shown to cluster variables and identify their relatedness on the PC1 versus PC2

scatter plot. The blue dash circle highlights the close relationship among the alive outcome and gene mutations.

https://doi.org/10.1371/journal.pone.0305273.g004
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damaging-induced cell death. Therefore, it is believed that EOC with BRCA1 or BRCA2 muta-

tion is highly responsive to platinum-based chemotherapy and PARP inhibitor therapy. How-

ever, our analysis demonstrates that EOC patients with BRCA1 mutation have a higher overall

Table 4. Summary of the functions of genes associated with patient survival outcomes.

Gene FUNTION

BRCA1 BRCA1 is involved in the multiple steps of the HR repair pathway. It interacts with the MRN complex to

stimulate end resection and interacts with the PALB2-BRCA2-RAD51 complex to promote HR repair.

BRCA1 mutations cause HR deficiency. [19–21]

BCRA2 BRCA2 regulates RAD51 activity and is indispensable for the HR repair pathway. BRCA2 mutations

cause HR deficiency. [22, 23]

PTEN PTEN reduces the intracellular level of phosphatidylinositol 3-phosphate and negatively regulates AKT

signaling. PTEN mutations mimic the HR-deficient phenotypes of BRCA mutations. [24–26]

KMT2C KMT2C is a chromatin-modifying protein involved in transcriptional co-activation and histone

methylation activity. Knockdown of KMT2C causes decreased expression in several critical DNA

damage response and DNA repair genes including BRCA1, BRCA2, ATM, and ATR. [27–29]

NF1 NF1 prevents cell overgrowth by turning off the RAS protein that stimulates cell growth and division.

NF1 mutations cause uncontrolled cell proliferation. [30, 31]

RAD50 RAD50 interacts with MRE11A and NBN to form the MRN complex. The complex binds to DSBs to

facilitate end resection for HR and other DSB repair pathways. [32–34]

MRE11A MRE11 interacts with RAD50 and NBN to form the MRN complex. [33, 34]

NBN NBN interacts with MRA11A and RAD50 to form the MRN complex. [33, 34]

PALB2 PALB2 serves as an adaptor protein to bridge BRCA1 and BRCA2-RAD51 for nuclear localization and

HR repair. Loss of function mutations of PALB2 mimics RAD51 and BRCA2 mutations. [35, 36]

CDK12 CDK12 regulates the expression of genes involved in DNA repair. It is a key regulator of cell cycle

progression, transcription, and DNA damage response. It plays an indirect role in HR by affecting

critical transcription factors of HR genes such as BRCA1 and BRCA2. CDK12-inactivated cancers often

resemble BRCA1/2-inactivated cancers characterized by high genomic instability. [37–39]

BRIP1 BRIP1 interacts and with BRCA1 and is involved in HR repair. Mutations in BRIP1 increase the risk of

breast and ovarian cancers. [40]

ATM ATM is a serine/threonine kinase activated by DSBs and phosphorylates a variety of downstream targets,

including H2AX, p53, BRCA1, and CHK2, necessary for checkpoint activation and DSB repair. It

mainly responds to DSBs induced by ionizing radiation. [41, 42]

ATR ATR is a serine/threonine kinase activated by single stranded DNA when replication forks stall or DNA

repair intermediates occur. It phosphorylates downstream targets, such as Claspin and CHEK1, and

regulates the S phase checkpoint to ensure orderly DNA replication. It responds to both SSBs and DSBs.

[43, 44]

FATs FAT cadherins are cell adhesion molecules that function at the cell surface to regulate the tumor

suppressive Hippo signaling pathway. FAT-dependent regulation of mitochondrial activity is critical for

tissue growth. Loss of function facilitates metabolic changes, malformation of lymphatic system,

tumorigenesis, and metastasis. [45–47]

MMR MMRs genes including MLH1, MSH2, MSH6 and PMS2 mediate the repair of mismatch DNA.

Mutations in MMR genes lead to hypermutated phenotypes and high genomic instability. [48–50]

FANCD2 FA genes including FANCA, FANCB, FANCD2, and FANCE play a role in regulating the HR repair

pathway. FANCD2 is activated by the FA core complex in response to DNA damage and interacts with

BRCA1, RAD51, and BRCA2 to mediate HR repair. [51, 52]

FANCE FANCE is a part of the FA core complex responsible for sensing DNA damage and activating FANCD2.

[53, 54]

FOXM1 FOXM1 is a proliferation-associated transcription factor responsible for regulation of cell division, self-

renewal, and tumorigenesis. [55, 56]

KRAS KRAS is an oncogenic protein in the RAS/MAPK pathway that relays extracellular signals to promote

cell growth and proliferation. [57]

TTN TTN serves as a molecular spring that provides the passive elasticity of striated muscle. It is also

identified as a structural protein of chromosomes [58]

CSMD3 CSMD3 is one of CSMD proteins involved in cell-cell adhesion and expressed primarily in brain. [59]

MUC16 MUC16 is a diagnostic biomarker of EOC (CA125) for poor outcomes. It binds to mesothelin to initiate

the invasion of tumor cells to the peritoneum. [60]

https://doi.org/10.1371/journal.pone.0305273.t004
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survival rate than BRCA2-mutated EOC cases (72.7% vs 41.2%) (Table 1). BRCA1 is involved

in the multistep process of HR whereas BRCA2 serves a specific role in the later stage of the

HR pathway. Thus, mutations in BRCA1 may have a more profound effect on the HR pathway,

thereby translating to favorable prognosis and a high rate of response to platinum-based che-

motherapy, compared with BRCA2 mutations. We also speculate that BRCA2-mutated EOC

concurrently harbors other mutations in genes associated with decreased survival, such as

FAT1, MUC16, and TTN (Fig 3A).

A similar study has been conducted using TCGA mutational-signature-based homologous

recombination deficiency (HRD) measures, including HRD score and loss of heterozygosity

(LOH), to predict clinical responses to platinum/PARP inhibitors and the survival outcomes

[13]. It concludes that identifying HRD in EOC patients can accurately predict the long-term

survival. Our logistic model in principle corroborates this conclusion because 4 of the 6 posi-

tive genes are involved in the HR repair pathway. In contrast, our study additionally takes the

negative genes into account to predict the survival outcomes. Therefore, our model not only

provides predictive capacities when platinum/PARP inhibitors are properly used, but also

helps identify potential new targets (e.g. FOXM1, KRAS, PTEM) for future development of

therapeutic strategies [61, 62]. Furthermore, our model offers the flexibility to identify a gene

mutation signature/pattern unique to each type of gynecologic cancer patients (Tables 2, S1

and S3). It is generally believed that HRD is highly useful to predict the response of EOC to

platinum-based chemotherapy and PARP inhibitors (breast cancer to a lesser extent), but less

impactful for the treatment of other types of cancers.

Despite the utility of our predictive model across EOC, uterine, and cervical cancer patients,

there are weakness and limitations of our study that can be improved in the future investiga-

tion. We acknowledge that the accuracy of the predictive model for the survival outcomes of

EOC patients was only 64% whereas the accuracy for uterine cancer and cervical cancer

patients was 82% and 79%, respectively. This suboptimal accuracy for EOC patients may be

attributed to a low number of cases with some gene mutations (less than 10 patients), such as

KRAS, NBN, and MRE11A. In addition, EOC is the most lethal gynecologic cancers because it

is difficult to diagnose until advanced stage and frequently relapses [1]. Furthermore, some

critical confounding factors, including tumor grade/stage, tumor subtype, primary/recurrent

disease, treatment type/response, and age of diagnosis, was not included in this study. These

shortcomings can be addressed in the future when our analysis on the TCGA database

includes more patients and clinical information.
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