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Abstract: Marijuana has been used by humans for thousands of years for both medicinal and 
recreational purposes. This included the treatment of pain, inflammation, seizures, and nausea. In the 
1960s, the structure of the principal psychoactive ingredient 9-tetrahydrocannabinol was determined, 
and over the next few decades, two cannabinoid receptors were characterized along with the human 
endocannabinoid system and what it affects. This includes metabolism, the cardiovascular and 
reproductive systems, and it is involved in such conditions as inflammation, cancer, glaucoma, and 
liver and musculoskeletal disorders. In the central nervous system, the endocannabinoid system has 
been linked to appetite, learning, memory, and conditions such as depression, anxiety, schizophrenia, 
stroke, multiple sclerosis, neurodegeneration, addiction, and epilepsy. It was the profound 
effectiveness of cannabidiol, a non-psychoactive ingredient of marijuana, to relieve the symptoms of 
Dravet syndrome, a severe form of childhood epilepsy, that recently helped spur marijuana research. 
This has helped substantially to change society’s attitude towards this potential source of useful drugs. 
However, research has also revealed that the actions of endocannabinoids, such as anandamide and 2-
arachidonoylglycerol, and the phytocannabinoids, tetrahydrocannabinol and cannabidiol, were not just 
due to interactions with the two cannabinoid receptors but by acting directly on many other targets 
including various G-protein receptors and cation channels, such as the transient receptor potential 
channels for example. This mini-review attempts to survey the effects of these 4 important 
cannabinoids on these currently identified targets. 
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1. Introduction  

The cannabis plant, more commonly known as marijuana, has been used by humans for thousands 
of years but only recently has the cannabis genus (which includes the species Cannabis sativa, 
Cannabis indica, and Cannabis ruderalis) been investigated for its pharmacological potential. The first 
recorded medical use was in China over 5,000 years ago, where marijuana was used to treat pain, 
inflammation, seizures, and nausea. But it was also used recreationally and it was this use, especially 
in the West, that prevented its full medical potential from being explored [1,2]. Nearly 60 years ago, 
9-tetrahydrocannabinol (THC; see Figure 1) was isolated along with many other phytocannabinoids 
from marijuana [3]; this made possible the identification and characterization of the first endogenous 
cannabinoid receptor (CB1R) which is a G-protein coupled receptor (GPCR) [4,5]. This was soon 
followed by the identification of a second endogenous cannabinoid receptor (CB2R; also a  
GPCR) [6,7]. The expression of these 2 cannabinoid receptors, along with the presence of the principal 
endogenous endocannabinoids  N-arachidonoylethanolamine (AEA: anandamide; see figure 1) and 2-
arachidonoylglycerol (2-AG: see figure 1) helped define the endocannabinoid system [8–11]. The 
endocannabinoid system in the central nervous system (CNS) can affect appetite, learning, memory, 
and conditions such as depression, anxiety, schizophrenia, stroke, multiple sclerosis, 
neurodegeneration, addiction, and epilepsy [1,10,12,13]. In the peripheral nervous system and other 
tissues this system can affect metabolism, nociception, the cardiovascular and reproductive systems, 
and conditions such as inflammation, cancer, glaucoma, and liver and musculoskeletal  
disorders [14,15]. However, over the last couple of decades it became clear that the many actions of 
cannabinoids could not be just attributed to interactions with the two cannabinoid receptors. Now it is 
known that cannabinoids can interact with a wide variety of additional targets ranging from glycine 
receptors to opioid receptors to various transient receptor potential channels (TRPs). The purpose of 
this mini-review therefore is to summarize the current known direct targets of four important 
cannabinoids including cannabidiol (CBD; see Figure 1), THC, AEA, and 2-AG; the chemical 
structures of these cannabinoids are illustrated in Figure 1. In order to be included in this mini-review, 
the authors had to be able to state with a high degree of certainty that the cannabinoids were acting on 
the specific target and not via another pathway or receptor. This mini-review does not cover any 
transporter, metabolic, or indirect targets. No actions of metabolites or synthetic cannabinoids are 
discussed and the reader is referred to more specific reviews on these subjects. 

2. The agonists 

CBD was first isolated from marijuana in 1940 by Adams et al. and from hashish resin by Jacob 
and Todd [16,17], and its structure was later elucidated in the 1960’s by Mechoulam and Shvo [18]. 
In 1964, Gaoni and Mechoulam described the structure of the psychoactive phytocannabinoid  
THC [3]. It is interesting to note that although CBD and THC are considered the major active 
phytochemicals in marijuana they are not thought to be normally synthesized in the plant but rather 
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produced by heat-induced decarboxylation of other related phytocannabinoids such as cannabidiolic 
acid [19,20]. The endogenous cannabinoids AEA and 2-AG are arachidonic acid derivatives  
formed from the cell membrane components N-arachidonoyl phosphatidylethanolamine and 
diacylglycerol [21]. AEA was the first endocannabinoid identified that acted on cannabinoid receptors 
and was described in 1992 [8] while 3 years later 2-AG was also identified [9]. 

 

Figure 1. Representations of the structures of the 4 cannabinoids discussed in this review 
including Cannabidiol (CBD), 9-Tetrahydrocannabinol (THC), N-
Arachidonoylethanolamine (AEA) and 2-Arachidonoylglycerol (2-AG). 

3. Cannabinoid targets 

3.1. The cannabinoid receptors CB1R and CB2R 

CB1R is a 472 amino acid GPCR in humans which has been characterized [4,5,22–24] together 
with 3 isoforms that exhibit high levels of expression [25] throughout the CNS in areas such as the 
olfactory bulb, hippocampus, basal ganglia, and cerebellum and peripherally in sympathetic terminals, 
trigeminal ganglion, dorsal root ganglia, and nociceptive terminals [26–29]. As a GPCR, this receptor 
acts via the heterotrimeric G-protein Gi/o (-subunit) to inhibit adenylate cyclase (AC) and therefore 
lower the concentration of cyclic adenosine monophosphate (cAMP) in the cell [30]. It is thought that 
the /-heterodimer can itself activate some AC isoforms [31,32] and CB1R may also act via Gq/11 to 
increase intracellular calcium [33]. This receptor has also been reported to directly interact with certain 
calcium channels [34,35] and potassium channels [36,37] and may activate cell survival  
pathways [38,39]. CB2R is a 360 amino acid GPCR in humans which is found as 2 differentially 
expressed isoforms [6,7,40]. This cannabinoid receptor is expressed primarily outside the CNS in 
peripheral tissues such as the immune, cardiovascular, reproductive, and gastrointestinal  
systems [6,30]. This GPCR can also inhibit AC and therefore decrease intracellular cAMP, activate 
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the mitogen-activated protein kinase (MAPK) pathway affecting gene expression [41,42], and promote 
neuronal survival similarly to the CB1R [43]. Now, examining the actions of the 4 selected 
cannabinoids, CBD appeared to have little effect on receptor activation and may act as an antagonist 
on both receptors [44–46]. In fact, CBD can  negatively modulate the responses to THC and  
2-AG [47,48]. In 2019, Tham et al. demonstrated CBD acting as a negative allosteric regulator on 
CB1R and as a partial agonist on CB2R in HEK293A cells [49]. THC can act as a partial agonist on 
both cannabinoid receptors [30,50,51]. AEA is a high affinity partial agonist of CB1R but appears 
virtually inactive on CB2R [52] whereas 2-AG only exhibits moderate affinity as a partial agonist for 
both cannabinoid receptors [7]. 

3.2. G-protein coupled receptors 3, 6, 12, 18, and 55 

The current unnamed (orphan) GPCRs 3, 6, and 12 only appear to have been explored in their 
responses to CBD which acts as an inverse agonist for all 3 [53–55]. GPCR18 was isolated in 1997 by 
Gantz et al. and is typically coupled to Gi/o which inhibits cAMP production and is expressed at high 
levels in the brainstem, spleen, and testes [56,57]. CBD appears to have little effect on this receptor at 
physiological concentrations [58] whereas THC is a potent agonist in HEC-1B cells expressing this 
receptor [59]. AEA and 2-AG seem to have little effect on GPCR18 although McHugh reported that 
AEA could act as an agonist in HEC-1B cells expressing this receptor [59]. GCPR55 was characterized 
by Ryberg et al. in 2007 and is highly expressed in the CNS, adrenal glands, and gastrointestinal tract, 
and it acts primarily through activation of G13 [60,61]. Using HEK293 cells, this GPCR was also 
observed to couple to Gq [62]. CBD acts as an antagonist on this receptor [63] whereas Ryberg using 
HEK293 cells showed THC can be an agonist [61]. AEA may act as a partial agonist but 2-AG had 
little effect using an assay which observed increases in intracellular calcium in HEK293 cells and also 
in U2OS cells as evidence for GPCR55 activation [62,64]. 

3.3. Opioid receptors ,  and  

All opioid GPCRs couple principally to Gi/o and in most neurons reduce excitation by increasing 
potassium currents. In addition to inhibiting AC they activate MAPK [65]. It had been discovered in 
the 1970s that THC could reduce the symptoms of naloxone-induced opioid withdrawal due to 
interactions with the  receptor [66,67]. Labelled THC binding was observed at  opioid receptors in 
rat brain [68,69] and it was found both THC and CBD allosterically modulate both  and  opioid 
GPCRs negatively [70] while THC alone appears to interact with  opioid receptors [71]. AEA and 2-
AG had no apparent direct effect on opioid receptors, although there appears to be mounting evidence 
that cannabinoid receptors may directly interact with opioid receptors [72,73]. 

3.4. Purine and adenosine receptors 

Apart from being central in the energetic status of a cell, purines are involved in a wide range of 
physiological functions [74,75]; adenosine receptors are part of the purine family. Adenosine receptors 
are GPCRs that typically couple to Gs or Gi/o to activate or inhibit AC, respectively. They can also 
interact with calcium and potassium channels via the activated G-proteins. These receptors used to be 
known as P1 receptors but now they have been renamed after their primary ligand adenosine receptors 
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A1, A2A, A2B, and A3 [74,76]. CBD allosterically enhances adenosine receptors A1 and A2A [77,78] 
while 2-AG was found to allosterically inhibit A3 adenosine receptors [79]. THC and AEA appear not 
to have any actions on these receptors. 

3.5. Peroxisome proliferator-activated receptors (PPAR and PPAR) 

PPARs are ligand-activated transcription factors that are members of the nuclear hormone 
receptor family and which are important in regulating energy and metabolic homeostasis; in particular 
they are involved in insulin sensitivity and enhancing both glucose and fatty acid metabolism [80]. It 
has been shown that CBD and THC can activate PPAR–utilizing fatty acid binding proteins 
to transport them into the nucleus [85]. However, Alhamoruni saw little direct effect with either CBD 
or THC in Caco-2 cell cultures [86,87]. Apparently, AEA and 2-AG can activate both PPAR and 
PPAR–

3.6. Glycine receptor 

The ionotropic glycine receptor is a pentameric ligand-gated chloride channel which mediates 
neuronal inhibition both in the brain stem and spinal cord [92]. It belongs to the Cys-loop ionotropic 
family of receptors which also includes nicotinic acetylcholine, serotonin type 3, and GABAA  
receptors [93,94]. The effect of cannabinoids on these receptors appears to be subunit-dependent 
similarly to other such receptors in this family as discussed later. CBD and THC were found to 
potentiate glycine’s actions in mice and this effect required certain alpha subunits (-1, -1- 
and -3 subunits) in the receptor [95,96]. Hejazi et al. found that THC and AEA also potentiated 
glycine currents allosterically in Xenopus oocytes expressing glycine receptors [97]. However, 
Lozovaya et al. found in isolated rat hippocampal neurons and cerebellar Purkinje neurons that AEA 
and 2-AG inhibited glycine receptors and accelerated desensitization [98]. In HEK293 cells expressing 
glycine receptors of varying subunit composition AEA potentiated the effects of these receptors if 
containing -1 or -1-  subunits but had no effect on receptors made up of -2 or -3 subunits [99]. 
Alvarez et al. recently published a paper using computer modelling, among other methods, to 
investigate the molecular mechanisms possibly involved in the positive allosteric modulation of 
glycine receptors by THC [100]. 

3.7. Nicotinic receptor 

These ionotropic pentameric acetylcholine receptors that mediate excitation by sodium ion entry 
are found throughout the body specifically at autonomic ganglia and neuromuscular junctions (NMJ). 
In the CNS they are widespread and are typically found on presynaptic terminals where they can 
enhance or inhibit the release of other neurotransmitters. Additionally, their responses to cannabinoids 
are subunit dependent [101,102] as seen with glycine receptors that are also members of the Cys-loop 
family. CBD has been shown to inhibit synaptic transmission at frog NMJs, human nicotinic receptors, 
and rat hippocampal neurons whereas THC appears to have little effect [103–105]. AEA and 2-AG 
antagonize nicotinic receptors in Xenopus oocytes [103,106,107]. Cannabinoids seem most effective 
on these receptors if homologous for 7 subunits or 42 combinations [108]. 
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3.8. 5-Hydroxytryptamine (5-HT1A) receptor 

This receptor is a GPCR expressed in the CNS which is typically coupled to Gi/o which inhibits 
AC resulting in a decrease in cAMP and neuronal inhibition [109]. It has been reported that CBD is an 
agonist of this receptor [110,111]; the other 3 cannabinoids do not appear to have any effect on this 
receptor. 

3.9. 5-Hydroxytryptamine (5-HT3) receptor 

Of the 7 classes of 5-HT receptors, 5-HT3 is the only ionotropic cation channel Cys-loop  
member [112,113]. Activation results in depolarization mediating fast synaptic transmission [114]. 
However, unlike the previously discussed nicotine and glycine receptors, 5-HT3 receptors are 
homopentameric so there are no subunit variations [113]. There are 2 alternate 5-HT3 transcripts (A 
and B) but they do not appear to offer any functional differences [115]. CBD, THC, and AEA all 
appear to directly inhibit 5-HT3 receptors when expressed in Xenopus oocytes or HEK-293  
cultures [116–120]. Fan, as early as 1995, had observed AEA inhibition of these receptors in rat nodose 
ganglion neurons [121]. Interestingly, it was seen that the degree of inhibition of 5-HT3 receptors could 
vary with the expression system utilized and it has been suggested that this is due to different levels of 
receptor density at the plasma membrane [122]. 2-AG was not reported as having any effect on this 
receptor. 

3.10.Dopamine D2 receptor 

This is one of 5 GPCR dopamine receptors found throughout the CNS but especially in the cortex 
and limbic system; the D2 receptor is coupled to Gi/o and therefore inhibits AC resulting in a decrease 
in cAMP. Additionally, potassium channels are activated while calcium channels are inhibited 
resulting in a decrease in neuronal excitability [123]. Seeman has shown that CBD acts directly on D2 
receptors where it acts as a partial agonist [124], but it appears there is no other data on the possible 
effects of the other 3 cannabinoids on this or other dopamine receptors. 

3.11.Glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-

aspartate (NMDA) receptors 

Glutamate is the major excitatory transmitter in the human cortex. The 2 principal ionotropic 
receptor subtypes are the AMPA and NMDA ligand-gated cation selective tetramers that depolarize 
and, specifically with regards to the NMDA receptor, have a high calcium permeability [125]. CBD 
negatively allosterically modulates the currents caused by activation of AMPA receptors [126] while 
AEA inhibits recombinant AMPA receptors expressed in Xenopus oocytes [127]. THC and 2-AG 
appear to have little direct effect on either type of glutamate receptor. AEA appears to enhance NMDA-
induced currents expressed in Xenopus oocytes [128] and in the control of blood pressure in rats [129]. 
CBD appears not to have been tested on NMDA receptors. 


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3.12.-Aminobutyric Acid (GABAA) receptors 

This pentameric GABA ionotropic chloride channel is the main inhibitory mediator in the  
CNS [130]. Like glycine, nicotinic, and 5-HT3 receptors it is a member of the Cys-loop family of 
ionotropic ligand-gated channels. So far, 19 GABAA receptor subunit genes have been found in 
humans which can be assigned to 8 different categories. However, functional channels are normally 
formed from 2 copies from the  and  categories plus one copy from the others to form a 
heteropentamer [130,131]. Koe et al. used synthetic cannabinoid ligands to study GABAA binding, 
anticonvulsant, and analgesic effects in mice and proposed that cannabinoids might interact with this 
target [132,133]. Indeed CBD appears to cause potentiation by acting allosterically with certain -
containing subunits in multiple systems including Xenopus [134–136]. In HEK-293 cells expressing 
this receptor, THC was also shown to potentiate the response [137] while in the same system AEA and 
2-AG inhibited currents and increased desensitization of GABA receptors; this was also observed in 
isolated hippocampal neurons from rat brains [138]. 

3.13.Transient receptor potential (TRP) receptors 

TRP receptors compose a large family of cation channels mediating excitation and often calcium 
entry typically responding to chemical or physical stimuli such as temperature, pressure and pain 
mediators. They are composed of 4 subunits and can be homo- or heterotetramers and are expressed 
primarily on sensory neurons [139,140]. There is much evidence to suggest that many of these 
receptors are directly affected by cannabinoids to the extent that some in the field have given them the 
label of ionotropic cannabinoid receptors [7,141,142]. On TRPV1-4 receptors, all 4 cannabinoids 
(CBD, THC, AEA, and 2-AG) appear to act as agonists although the evidence for THC is slightly less 
compelling [143–145]. TRPA1 and TRPM8 are thought to be particularly associated with cold 
perception [146]. CBD, THC, and AEA all act as agonists on TRPA1 [143,145,147] and recently this 
was also confirmed for 2-AG by Heblinski et al. in HEK cells expressing these channels [148]. 
Interestingly, the TRPM8 receptor response to the agonists menthol and icilin is antagonized by CBD, 
THC, and AEA, although there appears to be no published data on the effects of 2-AG [145,149]. 

3.14.Voltage-gated sodium channels 

In most excitable cells the initial depolarizing phase of an action potential is mediated by voltage-
gated sodium channels [150–152]. These channels typically consist of 3 subunits; a pore-forming  
subunit plus 2  subunits. Nine  subunits (resulting in the classifications of Nav1.1 to 1.9) and 4  
subunits have been  identified and characterized in mammals [153]. Apart from the so-called gate that 
opens at the required membrane potential (threshold potential), these channels also inactivate using a 
second gate to limit excessive depolarization [154,155]. Using various human and mouse Nav1.1 to 
1.7 channels, it was found that CBD possibly inhibited these channels by stabilizing the inactivation 
state and preventing them from opening [156,157]. THC, although possessing some anticonvulsant 
properties, does not appear to have similar actions to CBD and due to its psychotropic effects is 
difficult to study in animal models [158]. However, Turkanis did report inhibition of sodium currents 
in mouse neuroblastoma cells by THC [159]. Direct effects on these channels by AEA and 2-AG have 
not been reported. 
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3.15.Voltage-gated calcium channels 

For many excitable cells, voltage-gated calcium channels are the primary source of calcium entry, 
allowing it to act as a secondary messenger for such important functions as neurotransmitter release 
and muscle contraction [153]. There are 6 classes of voltage-gated calcium channels based on such 
factors as threshold, pharmacology and rate of inactivation. The classification has now been updated 
to align with that used for other voltage-gated channels such as L-type calcium channels which are 
found in many tissues including heart, skeletal muscle and the nervous system that are now called 
Cav1.1 to 1.4. They are particularly involved in regulating contraction in cardiac and smooth muscle. 
P and Q-channels are found in the nervous system, smooth muscle, and other tissues and are now 
classified as Cav2.1 while N and R-channels, also found in the nervous system and other tissues 
including heart and lung, are now called Cav2.2 and 2.3, respectively. P, Q, and N-channels are 
involved in neurotransmitter and hormone release. Finally, T-channels that are found in the nervous 
system, heart, smooth muscle, and other tissues are now classified as Cav3.1–3 and help regulate 
repolarization in neurons and cardiomyocytes among other functions [160]. These channels are 
heteropentamers with the main pore-forming subunit 1 typically associating with a  and a  subunit 
and additionally -related gene products such as 2[153]. CBD appears to only affect L-type 
channels/Cav1.1 to 1.4 inhibiting them as shown by Ali et al. in rat ventricular myocytes [161]. 
Additionally, 2-AG inhibited these channels while THC had no effect [162]. AEA was found to inhibit 
both T-type channels/Cav3.1–3.3 and L-type/Cav1.1–1.4 [163,164]. 

3.16.Potassium channels 

The potassium channel family is very large and diverse and serves a variety of functions 
throughout the body, especially in excitable tissues. Repolarization after the sodium-mediated 
depolarization of the action potential, setting the refractory period/action potential timing and generally 
opposing excitability when necessary are the main effects of these channels [165,166]. Classification 
can generally be sub-divided into 4 smaller families including voltage-gated channels (Kv1 to 12.3/17 
members), calcium or sodium-activated channels (KCa1.1 to 5.1 and KNA1.1 and 1.2/8 and 2 members 
respectively), the so-called two-pore domain or “leak” channels that help establish the resting 
membrane potential of excitable cells (K2p1.1 to 18.1/15 members) and inwardly rectifying channels 
(KIR1.1 to 7.1/16 members) and delayed rectifying channels(KDR) [166]. Several fairly recent studies 
have demonstrated that CBD can enhance the currents of certain voltage-gated potassium channels 
such as human Kv7.2 and 7.3 expressed in Chinese hamster ovary cells (CHO) cells, mouse superior 
cervical ganglion cells and cultured rat hippocampal neurons [167]. Isaev and Topal independently 
observed inhibition of various potassium delayed rectifier channels and others by CBD using rat, rabbit 
and dog ventricular myocyte systems [168,169]. There appears to be little published data on the effects 
of THC on potassium channels, but back in 1996 Poling et al. published the observation that THC (and 
AEA) inhibited Kv1.2 channels in transfected fibroblasts [170]. AEA, apart from enhancing large-
conductance KCa1.1 channels in various systems [171] seems to inhibit most potassium channels. 
Those affected include several cardiac types including human Kv4.3 and rat myocyte KATP  
channels) [172–174], Kv3.1 voltage-gated channels [175], several delayed rectifier channels [176,177], 
KATP (cromakalin-induced) and K2p3.1 (TASK-1) channels [178]. Finally, 2-AG was also seen to 
inhibit several types of potassium channel including Kv4.3 myocyte channels [172] and IA current in 
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mouse dopaminergic neurons [179], delayed rectifier channels [177,180], and KATP channels in mouse 
insulinoma cells [180]. The direct actions of the 4 cannabinoids on these targets have been summarized 
in Table 1.  

Table 1. A summary of the direct targets of the 4 cannabinoids cannabidiol (CBD), 9-
tetrahydrocannabinol (THC), N-arachidonoylethanolamine (AEA), and 2-
arachidonoylglycerol (2-AG) complete with principal references as discussed in this mini-
review. When reporting the effects of these cannabinoids,  terminology is used as 
published. Abbreviations used include (SD) for subunit dependent, N/E for no effect, and 
N/T for not tested. 

EFFECTOR CBD THC AEA 2-AG References 
CB1R -Allosteric Partial Agonist Partial Agonist Partial Agonist [7,30,44–52] 
CB2R Partial Agonist  Partial Agonist N/E Partial Agonist [7,30,44–52] 
GPCRs 3,6&12 Inverse Agonist N/T N/T N/T [53–55] 
GPCR 18 N/E Agonist Agonist N/E [58,59] 
GPCR 55 Antagonist Agonist Partial Agonist N/E [60–64] 
 Opioid -Allosteric -Allosteric N/E N/E [66–70] 
 Opioid -Allosteric -Allosteric N/E N/E [70] 
 Opioid N/E Inhibit N/E N/E [71] 
Adenosine A1,2a +Allosteric N/E N/E N/E [77,78] 
Adenosine A3 N/E N/E N/E -Allosteric [79] 
PPARs Agonist Agonist Agonist Agonist [81–91] 
Glycine (SD) Potentiate +Allosteric  +Allosteric  Inhibit [95–99] 
Nicotinic (SD) Inhibit N/E Antagonist Antagonist [101–108] 
5-HT1A Agonist N/E N/E N/E [110,111] 
5-HT3 Inhibit Inhibit Inhibit N/E [116–122] 
Dopamine D2 Partial Agonist N/T N/T N/T [124] 
NMDA N/E N/E Enhance N/E [128,129] 
AMPA -Allosteric  N/E Inhibit N/E [126,127] 
GABAA (SD) +Allosteric Potentiate Inhibit Inhibit [132–138] 
TRPV1-4 Agonist Agonist Agonist Agonist [143–145] 
TRPA1 Agonist Agonist Agonist Agonist [143,145,147,148] 
TRPM8 Antagonist Antagonist Antagonist N/T [145,149] 
Nav1.1-1.7 Inhibit Inhibit N/T N/T [156–159] 
Cav1.1-1.4 Inhibit N/E Inhibit Inhibit [161–164] 
Cav3.1-3.3 N/T N/T Inhibit N/T [163,164] 
Kv7.2-7.3 Enhance N/T N/T N/T [167] 
KDR Inhibit N/T Inhibit Inhibit [168,169,177–180] 
Kv1.2 N/T Inhibit Inhibit N/T [170] 
KCa1.1 N/T N/T Enhance N/T [171] 
Kv4.3 N/T N/T Inhibit Inhibit [172–174] 
KATP N/T N/T Inhibit Inhibit [172,173,178,180] 
Kv3.1 N/T N/T Inhibit N/T [175] 
K2P3.1 N/T N/T Inhibit N/T [178] 

4. Future directions 

Both the endocannabinoid system and the potential of marijuana phytocannabinoids are now 
becoming recognized as important areas requiring proper research and appropriate funding. This is 
finally becoming a reality now that the social stigma associated with marijuana’s recreational use is 
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receding. This plant has been used by humans for thousands of years and proper investigation of all its 
potential uses, contraindications, potential problems with long-term use, etc. need to be fully 
investigated as its use for medical purposes becomes more widespread. This summary of the actions 
of 4 principal cannabinoids illustrates the wide array of targets these compounds can affect and 
underscores why the phytocannabinoids produced by the marijuana plant can have the potential to 
affect many body systems and disease states. CBD and THC can act as allosteric modulators, both 
positive and negative, plus other yet to be defined effects on many of these targets. CBD can infact 
negatively allosterically modulate CB1R itself. AEA and 2-AG have less compelling evidence for 
allosteric modulation as yet but are still observed to affect many of these targets. Due to the high 
threshold for inclusion in this mini-review, many papers were not considered as the authors could not 
state with a high degree of certainty how the cannabinoids were acting. Many publications state 
cannabinoid-receptor independent but cannot conclude with certainty how the cannabinoid is acting. 
To overcome this problem, many of the papers included were utilizing fairly simple primary cell 
cultures expressing specific receptors so they could be certain. It would be nice to see these initial 
results confirmed in more complex and relevant systems, but this will require the production of very 
specific synthetic agonists and antagonists to both elucidate mechanisms of action and develop more 
useful pharmaceuticals. This will also enable further understanding of the function of the 
endocannabinoid system itself which may reveal a whole new level of subtle modulation of these 
targets and systems. Hopefully this summary has captured the majority of known direct targets and 
will help the reader to gain an overall perspective and insight on the functions of these selected 
cannabinoids and the endocannabinoid system and direct to more specific and detailed resources. 
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