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Abstract
Purpose  To establish a pathomic model using histopathological image features for predicting indoleamine 2,3-dioxygenase 
1 (IDO1) status and its relationship with overall survival (OS) in breast cancer.
Methods  A pathomic model was constructed using machine learning and histopathological images obtained from The 
Cancer Genome Atlas database to predict IDO1 expression. The model performance was evaluated based on the area under 
the curve, calibration curve, and decision curve analysis (DCA). Prediction scores (PSes) were generated from the model 
and applied to divide the patients into two groups. Survival outcomes, gene set enrichment, immune microenvironment, and 
tumor mutations were assessed between the two groups.
Results  Survival analysis followed by multivariate correction revealed that high IDO1 is a protective factor for OS. Further, 
the model was calibrated, and it exhibited good discrimination. Additionally, the DCA showed that the proposed model pro-
vided a good clinical net benefit. The Kaplan–Meier analysis revealed a positive correlation between high PS and improved 
OS. Univariate and multivariate Cox regression analyses demonstrated that PS is an independent protective factor for OS. 
Moreover, differentially expressed genes were enriched in various essential biological processes, including extracellular 
matrix receptor interaction, angiogenesis, transforming growth factor β signaling, epithelial mesenchymal transition, cell junc-
tion, tryptophan metabolism, and heme metabolic processes. PS was positively correlated with M1 macrophages, CD8 + T 
cells, T follicular helper cells, and tumor mutational burden.
Conclusion  These results indicate the potential ability of the proposed pathomic model to predict IDO1 status and the OS 
of breast cancer patients.
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Introduction

In 2020, breast cancer emerged as the most prevalent type 
of cancer worldwide with approximately 2.3 million new 
cases and a staggering number of over 680,000 deaths [1]. 
The primary approaches for battling breast cancer typically 
involve surgical procedures and regimens such as radiation, 
chemotherapy, hormone treatments, and targeted therapies. 

Endocrine therapy is commonly employed for hormone 
receptor-positive tumors; however, resistance development 
is a common issue. For HER2-positive tumors, targeted ther-
apy is often the preferred treatment approach. Few treatment 
options are available for hormone receptor-negative and 
HER2-negative breast cancers. Recently, immunotherapy 
has become a promising strategy against cancer by reacti-
vating the immune system.

Blocking the immunosuppressive effects of indoleam-
ine 2,3-dioxygenase 1 (IDO1) has emerged as a promis-
ing immunotherapeutic approach. IDO1 is an enzyme that 
converts tryptophan, an essential amino acid, into N-for-
myl-kynurenine. Although IDO1 is primarily expressed in 
mature dendritic cells, its expression is minimal or absent 
in regular tissues; however, it is inducible in most tis-
sues. [2]. Numerous studies have demonstrated that IDO1 
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overexpression in tumors correlates with an unfavorable 
prognosis in several tumors, including esophageal squa-
mous cell carcinoma [3], anal squamous cell carcinoma 
[4], and extrahepatic bile duct carcinoma [5]. Unexpect-
edly, Fang reported that higher IDO1 expression in breast 
cancer is associated with better overall survival (OS) [6]. 
The tumorigenic effects of IDO1 are mediated through 
multiple mechanisms, including the shaping of a tumor-
favorable immune microenvironment due to tryptophan 
shortages and the accumulation of tryptophan catabolites 
[2, 7, 8], as well as activation of pro-tumorigenic signaling 
pathways such as PI3K/AKT signaling and the transloca-
tion of β-catenin from the cytoplasm into the nucleus [9, 
10]. These findings imply that IDO1 can be a potential 
target for immunotherapy in cancers with IDO1 positivity. 
Therefore, extensive research has been conducted on IDO1 
inhibitors through clinical trials to explore their poten-
tial for enhancing cancer immunotherapy [11, 12]. IDO1 
inhibition could reverse the immunosuppressive effects 
of IDO1 and improve breast cancer outcomes [13–15]. 
Therefore, the sensitivity and accuracy of IDO1 detection 
are particularly important.

In current clinical practice, IDO1 status is determined 
through visual examinations of stained slides using 
immunohistochemical (IHC) assays. However, the IHC 
staining procedure is costly and time-intensive, and the test 
results could vary with differences in tissue preparation, 
antibodies, technician skill levels, and subjective 
interpretations of pathologists. Histopathologic image 
features derived from computer-aided pathological analyses 
have been used to make diagnostic assessments [16–19], 
prognostic predictions [20–22], and evaluate molecular 
expression levels [23–26] in breast cancer. Histological 
images were obtained from formalin-fixed tissue sections 
embedded in paraffin and stained with hematoxylin 
and eosin (H&E), which are widely used for pathologic 
diagnosis. H&E images could be easily obtained without 
the disadvantages of IHC staining.

In this study, we first identified the IDO1 expressions 
correlated with patient survival through bioinformatics 
analysis. Through our investigations on IDO1 in breast 
cancer, as well as its well-established immunomodulatory 
characteristics and the advantages of machine learning 
(ML) methods, we hypothesized that H&E image features 
could be useful for IDO1 status and outcome prediction in 
breast cancer; this approach remains unexplored. To test 
this hypothesis, we constructed an ML model, called the 
"pathomic model," using H&E image features extracted in 
The Cancer Genome Atlas (TCGA) database. Subsequently, 
the model performance was examined, and the potential 
mechanisms were explored. Our findings indicated that 
the pathomic model could be an easy‐to‐use surrogate 
for the assessment of IDO1 status, which might facilitate 

more objective, accurate, robust, and less expensive clinical 
decision-making.

Materials and methods

Data acquisition

First, data on breast cancer patients (n = 1,097) were 
downloaded from the TCGA database. The following 
patients were excluded: males (n = 12), those who are not 
newly diagnosed or treatment naïve (n = 15), those with 
missing survival data (n = 1), those with a survival duration 
of less than one month (n = 49), those with incomplete 
clinical data (n = 52), and those with lost expression 
data (n = 40). After applying the exclusion criteria, 928 
patients were included here. H&E histopathological images 
(n = 1062) were obtained from the TCGA database. Low-
quality images (n = 120) were eliminated, leaving 942 
patients. Finally, the intersection of the two samples was 
considered, and 791 patients with RNA-seq data, complete 
clinical information, and qualified pathological images were 
included. Supplementary Fig. S1 shows the inclusion and 
exclusion criteria.

Image segmentation and image feature extraction

To facilitate feature extraction, we employed Otsu's 
thresholding algorithm (accessible from https://​opencv.​
org/) to segment whole slide images. Initially, images at 
20 × magnification were divided into small sub-images 
with dimensions of 1024 × 1024 pixels, whereas images 
at 40 × magnification were divided into small sub-images 
with dimensions of 512 × 512 pixels and then upsampled 
to 1024 × 1024 pixels. Subsequently, pathologists reviewed 
each sub-image to remove images considered of poor quality 
(e.g., images with contamination, blurriness, or exceeding 
50% white space). Thereafter, 10 sub-images per patient 
were randomly selected for further analysis.

Next, we used the PyRadiomics library in Python (https://​
pyrad​iomics.​readt​hedocs.​io/​en/​latest/) to extract features 
from each sub-image. In total, 93 original features (including 
first- and second-order features) and higher-order features 
(including Wavelet [LL, LH, HL, HH], LoG [kernel size: 
1, 2, 3, 4, 5], Square, SquareRoot, Logarithm, Exponential, 
Gradient, and LBP2D) were extracted. Consequently, 1488 
image features were derived per sub-image. To obtain 
deeper insights, further investigations were conducted by 
calculating the mean value of the 10 sub-images for each 
patient as their pathomic feature value.

https://opencv.org/
https://opencv.org/
https://pyradiomics.readthedocs.io/en/latest/
https://pyradiomics.readthedocs.io/en/latest/
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Screening of image features and model construction

First, the maximum-relevance minimum-redundancy 
(mRMR) algorithm was employed to eliminate redundant 
and irrelevant features. This algorithm ranked the input 
pathomic features by maximizing their predictive ability 
while minimizing the mutual information among features 
and was implemented using the mRMRe R package (https://​
cran.r-​proje​ct.​org/​web/​packa​ges/​mRMRe/​index.​html). 
Second, the recursive feature elimination (RFE) algorithm 
(https://​www.​rdocu​menta​tion.​org/​packa​ges/​caret/​versi​ons/6.​

0-​92/​topics/​rfe) was applied to select important features and 
eliminate unimportant ones. This algorithm assessed the 
importance of each feature and ranked them according to 
their importance in model prediction and was implemented 
in the classification and regression training (caret) R package 
(https://​cran.r-​proje​ct.​org/​web/​packa​ges/​caret/​index.​html). 
Third, the selected important features were used for ML 
prediction model building using a gradient boosting machine 
(GBM) (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​gbm/​
index.​html) algorithm. This algorithm iteratively combined 
multiple weak decision tree learners through boosting to 
develop a robust predictive model. The GBM approach was 

Fig. 1   Survival analysis of 
IDO1: a Difference in IDO1 
expression between the tumor 
group and normal group; b 
Kaplan–Meier survival plot 
revealing no significant dif-
ference in OS between the 
tumor group and normal group. 
**p < 0.01

https://cran.r-project.org/web/packages/mRMRe/index.html
https://cran.r-project.org/web/packages/mRMRe/index.html
https://www.rdocumentation.org/packages/caret/versions/6.0-92/topics/rfe
https://www.rdocumentation.org/packages/caret/versions/6.0-92/topics/rfe
https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/web/packages/gbm/index.html
https://cran.r-project.org/web/packages/gbm/index.html
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Fig. 2   Univariate and multivariate logistic regression analysis: a Univariate logistic regression analysis did not reveal any significant difference 
in OS between the IDO1-low and IDO1-high groups; b Multivariate logistic regression analysis revealed that IDO1 was associated with OS
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implemented using the caret R package (https://​cran.r-​proje​
ct.​org/​web/​packa​ges/​caret/​index.​html).

Performance evaluation

Data of 791 patients were randomly classified into training 
(n = 555, 70%) and validation (n = 236, 30%) sets. Each 
feature in the training set was standardized using a z-score. 
Each feature in the validation set was standardized using 
the average and standard deviation values obtained from the 
training set, and the differences in clinical variables among 
the patients were analyzed. We constructed a predictive 
model using pathological imaging features and validated 
its performance on the validation set. Its accuracy was 
evaluated using the area under the curve (AUC). Moreover, 
a calibration curve was used to assess its calibration and a 
decision curve was generated to estimate its net benefit.

Survival analysis, GSEA, immune microenvironment 
analysis, and TMB analysis

We used the proposed model to generate prediction scores 
(PSes) for all H&E-stained images. To classify patients into 
high- and low-PS groups, we employed the survminer R 

package and Cutoff Finder web application to determine 
suitable cutoff values. Then, survival analysis, gene set 
enrichment analysis (GSEA), immune microenvironment 
analysis, and mutation analysis were conducted. For survival 
analysis, the Kaplan–Meier survival curve was plotted 
using the survival R package. The GSEA subroutine of 
the clusterProfiler R package was used for GSEA against 
the KEGG Gene Set Collection and Hallmark Gene Set 
Collection. Gene expression data were uploaded to the 
CIBERSORTx online platform. Immune infiltration in breast 
cancer samples was quantified using the CIBERSORTx 
algorithm. Immune cells include T, B, and NK, dendritic, 
and mast cells, as well as macrophages, eosinophils, and 
neutrophils. Mutation annotation format files provided on 
the TCGA database’s data portal for breast cancer were 
downloaded for tumor mutational burden (TMB) analysis. 
The calculation and visualization of the overall TMB were 
conducted in R using the maftools package.

Statistical analysis

To evaluate the associations between IDO1/PS and various 
clinical and pathological factors (such as age, TNM 
stage, ER, PR, HER2, margin status, histologic type, and 
treatment type), we employed either the Χ-square test or 
Fisher's exact test. Wilcoxon rank-sum test was performed 
to determine the differences between the two groups. The 
log-rank test was used for Kaplan–Meier survival analysis. 
Additionally, the impact of the selected variables on OS was 
determined through both univariate and multivariate Cox 
regression analyses. To calculate correlations, spearman-
rank correlation analysis was used. A p-value < 0.05 was 
considered to indicate statistical significance.

Results

Relationships between IDO1 expression, clinical 
variables, and survival

To assess the clinical significance of IDO1 in breast can-
cer, we investigated the associations between IDO1 expres-
sion, clinicopathological variables, and OS. Patients were 
divided into two groups based on their IDO1 levels: high 
(n = 433) and low (n = 358). The cut-off value of 0.9747 was 
determined using the survminer package. Notably, we found 
significant differences in T-stage, HER2_status, hormone 
receptor status, as well as histologic types and treatment 
types between the low- and high-IDO1 groups (all p < 0.05, 
see Supplementary Table 1). Additionally, the tumor group 
exhibited higher IDO1 expression levels than the normal 

Fig. 3   Optimal features selected by mRMR-RFE: a Accuracy of the 
first six features; b Importance of the six features in the GBM algo-
rithm

https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/web/packages/caret/index.html
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group (p < 0.01, Fig. 1a). Moreover, neither Kaplan–Meier 
curves (Fig. 1b) nor univariate logistic regression analysis 
(Fig. 2a) revealed any significant differences in OS between 
the two groups. However, after adjustment, multivariate Cox 
regression analysis (Fig. 2b and Supplementary Table 2) 
indicated that high IDO1 expression was a favorable prog-
nostic factor for OS (hazard ratio [HR] = 0.624, 95% con-
fidence interval [CI] 0.409–0.952, p = 0.029). Subgroup 
analyses revealed no significant interactions between clini-
cal variables in terms of OS (p > 0.05, see Supplementary 
Figure S2).

Pathomic feature extraction and selection

Considering the clinical importance of IDO1, our aim was 
to develop a pathomic model capable of predicting IDO1 
expression. Data of 791 patients were randomly classi-
fied into training (n = 555, 70%) and validation (n = 236, 
30%) sets. The patients in both sets had similar statistics 
in terms of their clinical and pathological characteristics 
(p > 0.05; Supplementary Table 3); hence, the two sets 
were comparable. Following the image segmentation and 
feature extraction process, 10 sub-images were randomly 
selected, and 1,488 imaging features were extracted from 
each sub-image. Subsequently, we calculated the mean 
values of the 10 sub-images. Our study aimed to deter-
mine the optimal predictive feature combination to con-
struct a model for breast cancer. First, the mRMR tech-
nique was applied to eliminate redundant and irrelevant 
features, and the top 20 features were retained. Second, 
we applied RFE to select the optimal features among 
the 20 mRMR features, and six features were identified 
(Fig. 3a). Figure 3b shows the importance of these six 
features.

Construction and validation of a pathomic model

Using the six pathological features described in the previous 
section, we developed a predictive model through the GBM 
algorithm based on the training set. To assess the predictive 
performance of the model in breast cancer, receiver operat-
ing characteristic curve, calibration and decision curves were 
plotted for the training and validation sets. As Fig. 4a and 4b 
show, the model performed well in predicting IDO1 expres-
sion (AUC = 0.809 for the training set and AUC = 0.711 for 
the validation set). From the calibration curves, this model 

showed a high degree of fit for IDO1 expression prediction 
compared to the actual IDO1 expression levels (p > 0.05, 
see Fig. 4c and 4d). Furthermore, decision curve analysis 
(DCA) revealed that the model offers a significant net benefit 
for predictions (Fig. 4e and 4f). These results suggest that 
our model based on HE slices can predict IDO1 expression.

PS and clinicopathological variables, OS

We further assessed the ability of the model to predict the 
prognosis of breast cancer in patients. Based on the cutoff 
value (0.5453) for PS, we separated the patient into high- or 
low-PS groups. As shown in Fig. 5a and 5b, patients in the 
high-IDO1 group exhibited a higher PS than those in the 
low-IDO1 group (p < 0.001). The low- and high-PS groups 
showed differences in age, hormone receptor status, as well 
as histological and treatment types (all p < 0.05; Table 1). 
Kaplan–Meier analysis (Fig. 5c) revealed that an elevated 
PS was associated with favorable OS (p = 0.015), and uni-
variate and multivariate Cox regression analyses (Fig. 6a 
and 6b, see Supplementary Table 4) revealed that PS was 
an independent favorable factor for OS (HR = 0.616; 95% CI 
0.407–0.933; p = 0.022). Subgroup analyses revealed no sig-
nificant interaction between PS and OS among the clinical 
variables (p > 0.05; Supplementary Fig. S3). These results 
suggest that our model, which was trained to predict IDO1 
expression, can also predict patients' OS.  

PS and pathways, immune microenvironment, TMB

To explore the potential molecular mechanism, we per-
formed GSEA on differentially expressed genes in patients 
with high and low PS. GSEA identified changes in 52 path-
ways annotated in the KEGG pathway gene sets (Fig. 7a) and 
30 pathways in the Hallmarks of Cancer gene sets (Fig. 7b). 
We found that these differentially expressed genes were 
involved in KEGG oxidative phosphorylation, transform-
ing growth factor β (TGF-β) signaling, extracellular matrix 
(ECM)-receptor interaction, peroxisome, p53 signal path-
way, tryptophan metabolism, and cell junction (i.e., cell 
adhesion molecules, adherent junction, focal adhesion) and 
overlapped with hallmark oxidative phosphorylation, peroxi-
some, p53 signal pathway, epithelial-mesenchymal transition 
(EMT), heme metabolism, and adipogenesis.

We further evaluated whether our model could guide 
patient immunotherapy. Figure 8a presents the variations 
in the expressions of genes associated with the immune 
system. The high-PS group exhibits considerably higher 
TIGIT, BTLA, ICOS, and PDCD1 expressions (p < 0.001). 
Figure 8b presents the relationship between the landscape 
of PS and the immune cell infiltration of the tumor. Notably, 
strong correlations between PS and M1 macrophages, CD8+ 
T cells, and T cell follicular helper cells were discovered. 

Fig. 4   Evaluation of the predictive performance of the pathomic 
model: a AUC on the training set; b AUC on the validation set; c 
Calibration curve analysis of the training set; d Calibration curve 
analysis of the validation set; e DCA of the training set; and f DCA of 
the validation set. AUC: area under the curve, DCA: decision curve 
analysis

◂
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Moreover, Fig. 8c indicates a positive correlation between 
PS and TMB (r = 0.17, p < 0.001).

Discussion

In this study, a pathomic model based on ML was 
constructed to predict IDO1 status and its relationship 
with prognosis directly from the six pathomic features of 
H&E-stained breast cancer sections. It was determined that 
IDO1 expression and PS were upregulated and associated 
with a better prognosis. The pathomic model yielded an 
accurate overall prediction performance. A higher PS was 
correlated with higher immune checkpoints expression, 
tumor-infiltrating immune cell levels and TMB.

It was observed that IDO1 expression and PS levels were 
elevated in breast cancer patients. These observations were 
consistent with those of previous studies. Higher IDO1 
expression has been observed in breast cancer [6, 11, 27] 
and other cancers [11], including colorectal cancer, esopha-
geal carcinoma, cervical squamous cell carcinoma, mela-
noma, and pancreatic cancer. Multiple reports [23–26] have 
described ongoing and promising efforts aimed at predict-
ing biomarker status in breast cancer using ML-based H&E 
image analysis. These studies focused on tissue microar-
ray datasets, whereas this study focused on RNA-seq data 
from TCGA to avoid the disadvantages of the IHC method. 
The enrichment analysis indicated that pathways such as 
ECM-receptor interaction, TGF-β signaling, angiogenesis, 
tryptophan metabolism, heme metabolic processes, EMT, 

Fig. 5   Survival analysis based 
on the PS: a Difference in 
PS between the training and 
validation sets; b Kaplan–Meier 
survival plot revealing a signifi-
cant difference in OS between 
the PS-low and PS-high 
groups.***p < 0.001
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and cell junction should be considered. TGF-β signaling, 
which is regulated by the ECM, induces EMT, resulting in 
the disintegration of cellular junctions, reconfiguration of 
the cytoskeletal architecture, and modifications of cellular 
polarity and morphology, all of which can potentially cause 
distinctive histopathological changes in images [28].

Elevated IDO1 expression and PS were positively corre-
lated with a better prognosis in breast cancer. Prior studies 
have consistently shown that high IDO1 expression levels 

are correlated with favorable outcomes in breast [6, 27] 
and other cancers [29, 30]. However, certain studies found 
that a high IDO1 level is associated with a poor prognosis 
[31]. Therefore, the intricate relationship between IDO1 
levels and clinical outcomes can be attributed to various 
factors such as age, sex, tumor type [6], follow-up time, 
study quality, IDO1/CD8 ratio [5], and IDO1 expression 
site [29]. Considering the strong heterogeneity of tumors, 
pathomic features based on H&E images could provide 

Table 1   Correlation between PS 
values and clinicopathological 
variables in 791 patients with 
breast cancer extracted from the 
TCGA database

The bold values mean the clinical variable with statistically significance

Variables Total (n = 791) Low (n = 363) High (n = 428) p

Age, n (%) 0.045
 ~ 59 439 (55) 187 (52) 252 (59)
60 ~  352 (45) 176 (48) 176 (41)
N_stage, n (%) 0.086
N0 365 (46) 180 (50) 185 (43)
N1/N2/N3/NX 426 (54) 183 (50) 243 (57)
T_stage, n (%) 0.61
T1 192 (24) 92 (25) 100 (23)
T2 466 (59) 207 (57) 259 (61)
T3/T4 133 (17) 64 (18) 69 (16)
M_stage, n (%) 0.517
M0 665 (84) 309 (85) 356 (83)
M1/MX 126 (16) 54 (15) 72 (17)
ER_status, n (%)  < 0.001
Negative 182 (23) 59 (16) 123 (29)
Positive 609 (77) 304 (84) 305 (71)
HER2_status, n (%) 0.072
Negative 415 (52) 182 (50) 233 (54)
Positive 133 (17) 55 (15) 78 (18)
Unknown 243 (31) 126 (35) 117 (27)
PR_status, n (%)  < 0.001
Negative 259 (33) 90 (25) 169 (39)
Positive 532 (67) 273 (75) 259 (61)
Histological_type, n (%) 0.048
Infiltrating Ductal Carcinoma 574 (73) 255 (70) 319 (75)
Infiltrating Lobular Carcinoma 143 (18) 64 (18) 79 (18)
Other 74 (9) 44 (12) 30 (7)
Margin_status, n (%) 0.681
Negative 665 (84) 301 (83) 364 (85)
Positive/Close 79 (10) 38 (10) 41 (10)
Unknown 47 (6) 24 (7) 23 (5)
Radiotherapy, n (%) 0.128
NO 381 (48) 186 (51) 195 (46)
YES 410 (52) 177 (49) 233 (54)
Chemotherapy, n (%) 0.001
NO 332 (42) 175 (48) 157 (37)
YES 459 (58) 188 (52) 271 (63)
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Fig. 6   High PS is a favorable prognostic factor in patients with breast 
cancer a Univariate logistic regression analysis revealing a significant 
difference in OS between the PS-low and PS-high groups; b Multi-

variate logistic regression analysis revealing that the PS was associ-
ated with OS
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Fig. 7   GSEA results: a Enriched pathways in the KEGG pathway gene sets (p < 0.05, q < 0.25); b Enriched pathways in the Hallmarks of Cancer 
gene sets (p < 0.05, q < 0.25)
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Fig. 8   Potential molecular mechanisms: a PS and the immune checkpoint genes; b PS and the tumor-infiltrating immune cells; and c) PS and 
TMB status
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more comprehensive and objective details corresponding to 
pathological factors, such as tumor proliferation, angiogen-
esis, tumor necrosis, and tumor immunity. Histopathological 
image features have been extensively employed in numer-
ous past investigations for survival prediction in various 
cancers, including hepatocellular carcinoma [32], head and 
neck squamous cell carcinoma [33], lung adenocarcinoma 
[34], colorectal cancer [35], colon adenocarcinoma [36], 
and glioma [37]. By adopting a similar digital workflow, 
a pathomic model was constructed that outputs PS values. 
PS is correlated with favorable OS and is an independent 
protective factor. Furthermore, immune microenvironment 
and TMB analyses indicated that a high PS was positively 
associated with 32 immune checkpoints, including PD-1, 
CTLA-4, and LAG-3, as well as relatively high immune 
cell infiltration and TMB. The tumor microenvironment 
plays a crucial role in the development of both primary and 
acquired resistance to breast cancer immunotherapy [38]. 
It was speculated that although patients with high PS had a 
higher immune cell invasion and tumor mutation load, they 
might also have a weak immune response due to the higher 
expression of immune checkpoint-related genes. Patients 
with a high PS might derive more benefits from treatment 
with immune checkpoint inhibitors. Therefore, PS poten-
tially plays a crucial role in facilitating the stratification of 
breast cancer patients for managing treatment. This suggests 
that healthcare professionals may use PS as a biomarker to 
improve prognosis predictions of breast cancer patients and 
select patients who would benefit more from IDO1 inhibitor 
immunotherapy.

The encouraging progress of ML methods and 
implementation of digital workflows in histopathology is 
noteworthy. These technological innovations have allowed 
the analysis of cancer biomarkers to be conducted on the 
slide-image level in many cases. The proposed pathomic 
model based on histological image features obtained 
through digital workflows could provide a new means of 
studying biomarker status conveniently, cheaply, robustly, 
and objectively, with high efficiency, accuracy, and 
generalizability.

This study had some limitations. Although the proposed 
pathomic model demonstrated significant predictive 
value, external validation studies and multicenter studies 
are necessary to verify its accuracy and practicability. In 
addition, the specific molecular mechanisms in this model 
are not well understood, and further investigation is required. 
Finally, as with any data-driven approach, the conclusions 
of the analysis are dependent on the accuracy of the initial 
input data.

Conclusion

This study demonstrated that a pathomic model based on 
ML and histopathological image features could predict IDO1 
status and prognosis in breast cancer patients. High IDO1/
PS was found to correlate with favorable OS, and patients 
with high IDO1/PS might benefit more from treatment with 
immune checkpoint inhibitors. The findings might offer 
valuable insights for healthcare providers to determine 
appropriate treatment strategies for patients with breast 
cancer, demonstrating that machine learning approaches, 
together with histological images and RNA-seq data, would 
be of significant value.
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