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Multi‑objective energy 
management in a renewable 
and EV‑integrated microgrid 
using an iterative map‑based 
self‑adaptive crystal structure 
algorithm
Arul Rajagopalan 1*, Karthik Nagarajan 2, Mohit Bajaj 3,4,5*, Sowmmiya Uthayakumar 6, 
Lukas Prokop 7 & Vojtech Blazek 7

The use of plug‑in hybrid electric vehicles (PHEVs) provides a way to address energy and 
environmental issues. Integrating a large number of PHEVs with advanced control and storage 
capabilities can enhance the flexibility of the distribution grid. This study proposes an innovative 
energy management strategy (EMS) using an Iterative map‑based self‑adaptive crystal structure 
algorithm (SaCryStAl) specifically designed for microgrids with renewable energy sources (RESs) and 
PHEVs. The goal is to optimize multi‑objective scheduling for a microgrid with wind turbines, micro‑
turbines, fuel cells, solar photovoltaic systems, and batteries to balance power and store excess 
energy. The aim is to minimize microgrid operating costs while considering environmental impacts. 
The optimization problem is framed as a multi‑objective problem with nonlinear constraints, using 
fuzzy logic to aid decision‑making. In the first scenario, the microgrid is optimized with all RESs 
installed within predetermined boundaries, in addition to grid connection. In the second scenario, 
the microgrid operates with a wind turbine at rated power. The third case study involves integrating 
plug‑in hybrid electric vehicles (PHEVs) into the microgrid in three charging modes: coordinated, 
smart, and uncoordinated, utilizing standard and rated RES power. The SaCryStAl algorithm showed 
superior performance in operation cost, emissions, and execution time compared to traditional 
CryStAl and other recent optimization methods. The proposed SaCryStAl algorithm achieved optimal 
solutions in the first scenario for cost and emissions at 177.29 €ct and 469.92 kg, respectively, within a 
reasonable time frame. In the second scenario, it yielded optimal cost and emissions values of 112.02 
€ct and 196.15 kg, respectively. Lastly, in the third scenario, the SaCryStAl algorithm achieves optimal 
cost values of 319.9301 €ct, 160.9827 €ct and 128.2815 €ct for uncoordinated charging, coordinated 
charging and smart charging modes respectively. Optimization results reveal that the proposed 
SaCryStAl outperformed other evolutionary optimization algorithms, such as differential evolution, 
CryStAl, Grey Wolf Optimizer, particle swarm optimization, and genetic algorithm, as confirmed 
through test cases.
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Abbreviations
AER  All-electric range
ASAPSO  Adaptive simulated annealing particle swarm optimization algorithm
BES  Bald eagle search
BESS  Battery energy storage system
BS  Battery storage
BWO  Beluga whale optimization
CBOA  Chef-based optimization algorithm
CHP  Combined heat power
CO2  Carbon dioxide
DERs  Distributed energy resources
DGs  Distributed generators
DO  Dandelion optimizer
DR  Demand response
DRP  Demand response program
EMS  Energy management strategy
EV  Electric vehicle
FC  Fuel cell
FSAPSO  Fuzzy self-adaptive PSO
GA  Genetic algorithm
GSA-PS  Gravitational search and pattern search
GWO  Grey wolf optimizer
HRES  Hybrid renewable energy system
HS  Heat storage
KH  Krill herd algorithm
LV  Low voltage
MDP  Markov decision process
MG  Microgrid
MGCC   Microgrid central controller
MGO  Mountain gazelle optimizer
MGT  Micro gas turbine
MPC  Model predictive control
MT  Microturbine
MV  Medium voltage
NA  Not available
Nox  Nitrogen dioxide
OGGWO  Oppositional gradient-based grey wolf optimizer
PAFC  Phosphoric acid fuel cell
PDF  Probability density function
PEV  Plug-in electric vehicles
PHEV  Plug-in hybrid electric vehicle
PLR  Peak load reduction
PSO  Particle swarm optimization
PV  Photovoltaic
RES  Renewable energy sources
RUN  Runge Kutta optimization
SaCryStAl  Self-adaptive crystal structure algorithm
SO2  Sulfur dioxide
SOC  State of charge
WOA  Whale optimization algorithm
WT  Wind turbine

List of symbols
N  Population size
N  Maximum no. of iterations
h  Total number of hours
NDG  Total number of distributing generation units
NST  Total number of storage units
NKL  Total number of load levels
Ui(h)  Status of unit i at hour h
PDGi(h)  Active power output of ith distributed generating unit at hour h
PSTj(h)  Active power output of jth storage unit at hour h
PGR(h)  Active power exchanged with the grid through buying or selling at hour hr
BDGi(h)  The bid of the ith distributed generation (DG) source during hour h
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BSTj(h)  The bid of the jth storage option during hour h
BGR(h)  The bid of grid during hour h
SDGi  Costs associated with starting up or shutting down the ith distributed generation (DG) 

unit
SSTj  Costs associated with starting up or shutting down the jth storage unit
EDGi(h)  Emission in kg/MWh for ith distributed generation (DG) unit during hour h
ESTj(h)  Emission in kg/MWh for jth storage unit during hour h
EGRD(h)  Emission in kg/MWh for grid during hour h
CO2DGi

(h)  Carbon dioxide emissions from the ith distributed generation (DG) unit during hour h
SO2DGi

(h)  Sulphur dioxide emissions from the ith distributed generation (DG) unit during hour h
NOXDGi

(h)  Nitrogen oxide emissions from the ith distributed generation (DG) unit during hour h
CO2STj

(h)  Carbon dioxide emissions from the jth storage unit during hour h
SO2STj

(h)  Sulphur dioxide emissions from the jth storage unit during hour h
NOXSTj

(h)  Nitrogen oxide emissions from the jth storage unit during hour h
CO2GRD (h)  Carbon dioxide emissions from the grid during hour h
SO2GRD (h)  Sulphur dioxide emissions from the grid during hour h
NOXGRD (h)  Nitrogen oxide emissions from the grid during hour h
PLLk  The quantity of the kth load level
NKL  Total number of load levels
PDG,min(h)  Minimum active power generation of ith DG during hour h
PST ,min(h)  Minimum active power generation of jth storage unit during hour h
PGR,min(h)  Minimum active power generation of grid during hour h
PDG,max(h)  Maximum active power generation of ith DG during hour h
PST ,max(h)  Maximum active power generation of jth storage unit during hour h
PGR,max(h)  Maximum active power generation of grid during hour h
Eb(h)  Energy stored in the battery at time h
Pch/Pdisch  Rate of charge/discharge allowed over a specific timeframe.
ξch/ξdisch  Battery efficiency in the process of charging and discharging.
Emin
b /Emax

b   Limits for the storage capacity of the battery, both minimum and maximum.
Pch,max/Pdisch,max  The highest permissible charge/discharge rate within each time segment, represented as 

the inertia weight parameter
Ri
up  Ramp-up of the ith DG output power

Ri
down  Ramp-down of the ith DG output power

�h  Time step
w  Weighting factor
ρ  Price penalty factor

Microgrids have become a cutting-edge method for tackling the challenges of contemporary energy systems, 
providing targeted and flexible capabilities for generating, distributing, and managing  energy1,2. Microgrids, in 
contrast to conventional centralized grids, are decentralized networks capable of functioning alone or in tandem 
with the primary grid, offering enhanced resilience, reliability, and  efficiency3,4. The incorporation of renewable 
energy sources (RESs), such as solar photovoltaics (PV) and wind turbines (WT), has played a crucial role in the 
advancement of  microgrids5,6. Renewable energy sources provide environmentally friendly and sustainable meth-
ods of generating energy, hence decreasing dependence on fossil fuels and minimizing the release of greenhouse 
 gases7. Furthermore, advancements in energy storage technologies, such as lithium-ion batteries and pumped 
hydro storage, have significantly enhanced the capacity of microgrids to store excess energy for subsequent 
 use8,9. This advancement has led to a more stable power grid and improved integration of intermittent renew-
able  sources10,11. The emergence of microgrid technology has paralleled the growing adoption of Plug-In Hybrid 
Electric Vehicles (PHEVs), presenting both opportunities and challenges in energy  management12,13. PHEVs 
serve as both efficient and environmentally friendly modes of transportation, while also serving as mobile energy 
storage  units14,15. When incorporated into microgrid operations, plug-in hybrid electric vehicles can actively 
engage in demand response programs, offer assistance to the grid, and function as alternative power sources in 
times of  emergencies16,17. Addressing multi-objective energy management within a microgrid incorporating plug-
in electric vehicles (PEVs) represents a crucial and intricate challenge within the realm of energy  systems18,19. 
A microgrid is defined as a localized aggregation of electrical loads and distributed energy resources capable of 
functioning either in a grid-connected or standalone  capacity20–22. PEVs are becoming increasingly popular as a 
means of reducing carbon emissions and dependency on fossil  fuels23. The integration of PEVs into a microgrid 
creates a new set of challenges and opportunities for energy  management24,25. PEVs offer the advantage of serving 
as mobile energy storage units, contributing flexibility and resilience to the  microgrid26. However, the charging 
and discharging of PEVs require careful management to fulfill the energy demands of the microgrid while also 
addressing the requirements of individual PEV  owners27,28. Multi-objective energy management in a microgrid 
incorporating PEVs entails the optimization of multiple competing objectives, including minimizing energy 
expenses, mitigating greenhouse gas emissions, and guaranteeing a dependable and resilient power  provision29–31. 
This problem requires sophisticated algorithms and models that can handle the complexity and uncertainty of 
energy systems. Overall, multi-objective energy management in a microgrid with the integration of PEVs is an 
important and challenging problem that requires interdisciplinary research and collaboration between experts 
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in energy systems, optimization, and control  theory32–36. Its successful implementation can lead to significant 
benefits, including reduced energy costs, increased energy efficiency, and reduced carbon  emissions37,38.

In39, a multi-objective economic dispatch model for microgrids incorporating electric vehicles and transfer-
able loads was implemented. Simulation was carried out on four different case studies. The objective functions 
under consideration included the operational cost of the microgrid, the utilization rate of photovoltaic energy, 
and the power fluctuation between the microgrid and the  utility40. A two-stage optimization strategy was imple-
mented to perform the environmental and economic scheduling of microgrid with the integration of electric 
 vehicles41. In our previous  study42, we conducted multi-objective energy management in a microgrid integrating 
plug-in electric vehicles. The model suggested provided a state of charge curve for microgrids, considering the 
state of charge limits of plug-in electric vehicle batteries to prevent overcharging and over-discharging. Addi-
tionally, an enhanced grey wolf algorithm was proposed to address the multi-objective energy management 
problem. Moreover,  in43, an adaptive simulated annealing particle swarm optimization algorithm (ASAPSO) was 
introduced for the multi-objective optimal scheduling of microgrids incorporating electric vehicles. The objective 
functions considered were operational cost and emissions. To strike a better balance between these objectives, 
coordination of renewable energy consumption and load management was achieved using the linear weighting 
method, grounded on a two-player zero-sum game. Microgrid energy management strategies with peak load 
reduction (PLR)-based demand response program was proposed to lower end-user energy costs and lower the 
peak load demand on the power  grid44. The optimal management of a microgrid equipped with renewable energy 
sources and electric vehicles (EVs) alongside responsive loads has been undertaken to achieve cost savings and 
emissions  reduction45. To address uncertainties stemming from wind turbine (WT) and photovoltaic (PV) power 
generation, a demand response program (DRP) was devised to manage required grid reserves. Furthermore, 
 in46, an optimal microgrid operation considering charging patterns for plug-in hybrid electric vehicles (PHEVs) 
was proposed. To regulate the charging and discharging processes of PHEVs within the microgrid, along with 
responsive loads, a smart charging approach was  recommended46. The study  in47 delved into the stochastic opera-
tion planning of a microgrid (MG) incorporating Battery Energy Storage System (BESS), renewable energies, and 
non-renewable energy sources. They devised a stochastic optimization model with a sole objective and proposed 
employing a hybrid approach combining the whale optimization algorithm with the pattern search algorithm to 
tackle the optimization challenge. An ideal energy management system for microgrids, incorporating distributed 
generation and electric vehicles, was proposed  in48, aiming to reduce operational expenses and environmental 
pollutants. The optimization approach accounts for the performance of electric vehicles in both petrol and electric 
modes. In another  study49, a scenario-based stochastic management approach is utilized to achieve the optimal 
operation of a multi-carrier microgrid (MG). This microgrid incorporates various components such as a wind 
turbine, photovoltaic panel, fuel cell, microturbine, boiler, combined heat and power unit, along with electrical, 
thermal, and hydrogen loads, as well as storage facilities for electrical energy, hydrogen, and thermal energy. 
To further reduce overall running costs, a novel approach for scheduling electric vehicles and battery storage 
in tandem while considering the demand response program (DRP) is proposed  in50. Additionally, the impact 
of DRP collaboration and optimal scheduling of electric vehicles and energy storage systems on operational 
expenses, power transactions with the upstream grid, hourly distributed energy resources, and system technical 
parameters is explored. Finally,  in51, a two-stage energy management framework employing stochastic chance 
constraint model predictive control (MPC) is introduced to solve the microgrid energy management problem 
with the integration of electric vehicles. The framework adopts a mixed-stage optimization approach, gradually 
optimizing the problem across various time scales. A detailed investigation into energy management systems 
(EMS) for microgrids was carried out, emphasizing EMS components and the optimization methodologies inte-
grated into the EMS framework. Extensive literature review on microgrid energy management systems (EMS) 
was performed, categorizing them according to four criteria: the optimization methods employed, the grid type 
under consideration, the microgrid’s operational mode (connected to the main grid or operating independently), 
and the software/solvers used as a basis for addressing EMS  challenges52. An oppositional gradient-based grey 
wolf optimizer (OGGWO) was proposed to implement the multi-objective optimal scheduling of a  microgrid53. 
Table 1 presents an overview of the research contributions in microgrid energy management covering objective 
functions, optimization methods, test system components, and notable remarks. Since its inception, the crystal 
structure algorithm has gained widespread popularity due to its remarkable adaptability, simple structure, and 
lack of predefined parameters. Despite CryStAl’s superior performance in several areas, the crystal structure 
algorithm still has certain flaws. There is not enough exploration since CryStAl is sensitive to local extremes 
during iteration. To address the limitations of the crystal structure algorithm, we propose the Iterative Map 
Self-Adaptive Crystal Structure Algorithm (SaCryStAl). The efficacy of the proposed optimization technique 
was examined across three distinct scenarios to assess its performance.

The contribution to the knowledge section of this paper lies in several key areas. Firstly, we introduce a novel 
energy management technique tailored specifically for microgrids (MGs) integrated with renewable energy 
sources (RESs) and Plug-In Hybrid Electric Vehicles (PHEVs). This technique utilizes the SaCryStAl algorithm, 
which efficiently distributes energy among various units within the grid-connected MG. Secondly we address 
the dual objectives of minimizing MG operating costs and reducing pollutant emissions, a critical considera-
tion in contemporary energy systems. By formulating an objective function that accounts for both economic 
and environmental factors, we provide a comprehensive framework for optimizing MG operation. Thirdly, 
we compare the performance of our proposed algorithm with existing evolutionary optimization approaches, 
demonstrating its superiority in terms of stability, convergence, and performance. Additionally, we present a 
true collection of Pareto-optimal solutions, offering system operators a range of options to tailor power dispatch 
strategies according to their economic and environmental objectives. Lastly, our study highlights the impact of 
widespread PHEV and RES adoption on grid functioning, underscoring the need for advanced optimization 
techniques in managing these complex systems. Overall, our contributions advance the field of sustainable energy 
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management by providing practical insights and effective solutions for optimizing MG operation in the context 
of evolving energy landscapes.

The primary contributions of this paper can be outlined as follows:

• Presenting a multi-objective framework for the short-term scheduling of a microgrid (MG) incorporating a 
plug-in hybrid electric vehicle (PHEV), with cost and emissions as dual objective functions.

• Incorporating the proposed SaCryStAl optimization technique to simultaneously minimize costs and emis-
sions, generate Pareto optimal solutions, and determine the optimal compromise solution using a fuzzy 
satisfaction method.

• The proposed SaCryStAl is investigated on three different scenarios including the operation of PHEVs’ in 
three different modes.

• The proposed SaCryStAl algorithm produced exceptional results when compared to recently published pub-
lications in terms of cost, emission, and solution time.

The rest of the paper is structured as follows:

Table 1.  Exploring optimization strategies for energy management in microgrid: a review.

References Year Components of test system used Objective functions Methodology Remarks

54 2024 WT, PV, battery, MT, diesel genera-
tor, FC Operation cost Intelligent golden jackal optimization Integration of electric vehicle is not 

considered

55 2023 PV, battery, MT, thermal generator, 
CHP Operation cost, emission Epsilon constraint algorithm Integration of WT and FC not 

considered

56 2024 WT, PV, battery, MT, diesel genera-
tor, FC Operation cost, emission Manta ray foraging optimization

Analysis of environmental pollution 
is ignored. Multi-objective optimiza-
tion not implemented

57 2023 CES, EES, CAES, EHP, AC, heat 
pump Operation cost, emission Blue whale optimization algorithm

Integration of WT, PV, and MT not 
considered. Different charging modes 
of EV not analyzed

58 2023 PV, WT, battery MG and EV cost
Enhanced variant multi-objective 
particle swarm optimization algo-
rithm

Analysis of environmental pollution 
is ignored

59 2023 CHP, gas boiler, WT, PV, HS, BS Operating cost of multi-microgrid, 
profit of the distribution company

Mixed-integer linear programming, 
ε-constraint approach, mixed-integer 
nonlinear programming

Analysis of environmental pollution 
is ignored

60 2023 WT, PV, battery, MT, diesel generator, 
FC and grid Operation cost, emission Improved shuffled frog leaping 

algorithm
Different charging modes of EV not 
analyzed

61 2023 thermal generators, battery and grid operation cost, emission efficient black widow optimization 
algorithm,

Integration of renewable energy 
sources is ignored

62 2023 PV, diesel generator, grid and battery
Energy consumption, life cycle of 
battery, practicality of the renewable 
energy usage

Extended optimal ε-variable tech-
nique

Analysis of operating cost and emis-
sion is ignored

63 2024 Battery, supercapacitor Battery capacity loss, state of charge NSGA-III, Integration of renewable energy 
sources is ignored

64 2023 WT, MT, PV, FC and battery Generation cost, penalty cost of 
frequency overrun Back Propagation neural network Analysis of environmental pollution 

is ignored

65 2023 PV, WT, CHP, boiler, battery Operation cost, emission Lexicography-compromised pro-
gramming Integration of MT and FC is ignored

66 2022 WT, PV
Voltage deviation, energy not sup-
plied, overall annual cost of energy in 
a microgrid

Jellyfish search optimizer Integration of MT and FC is ignored

67 2024 PV, battery Electricity consumption costs, vari-
ability in grid-side energy supply

Multi-objective particle swarm 
algorithm

Analysis of environmental pollution 
is ignored

68 2024 WT, PV, diesel generator, MGT, 
battery Operation cost, emission Improved PSO algorithm Integration with EV is ignored

69 2023 PV, WT, battery Operating cost, voltage deviation, 
active power loss Wavelet neural network Analysis of environmental pollution 

is ignored

70 2023 WT, PV
Operating cost, rate of renewable 
energy, cost of the distribution net-
work operators, cost of electric vehicle 
users, profit of microgrid operators

Improved PSO algorithm
Analysis of environmental pollution 
is ignored. Integration of MT and FC 
is ignored

71 2024 WT, PV, battery and grid Operation cost, emission, voltage 
deviation, active power loss

Multi-objective artificial vultures 
optimization algorithm Integration of MT and FC is ignored

72 2023 WT, PV, battery Operating cost PSO
Analysis of environmental pollution 
is ignored. Integration of MT and FC 
is ignored

73 2023 WT, PV, battery Cost of electric vehicle aggregator Twin delayed deep deterministic 
policy gradient algorithm

Analysis of environmental pollution 
is ignored. Integration of MT and FC 
is ignored
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In section “Iterative map-based self-adaptive crystal structure algorithm (SaCryStAl)”, we delve into the 
implementation of the proposed Iterative map-based Self-Adaptive Crystal Structure Algorithm (SaCryStAl) 
to address the multi-objective energy management problem. Section “Modeling of a microgrid test system” is 
dedicated to the modeling of the microgrid test system under consideration. Section “Problem formulation” 
outlines the formulation of the multi-objective energy management problem aimed at minimizing operating 
costs and emissions. In section “Fuzzy logic-based selection of optimal compromise solution”, we elaborate 
on the formulation of fuzzy logic assortment for determining the optimal compromise solution. The concept 
of microgrid modelling is covered in section “Uncertainty models for wind and solar energy”. Lastly, section 
“Modeling of microgrid” presents a comprehensive demonstration of the superior performance and feasibility 
of the proposed SaCryStAl algorithm, juxtaposed with other meta-heuristic optimization algorithms such as 
FSAPSO, KH, PSO, WOA, GA and GWO.

Iterative map‑based self‑adaptive crystal structure algorithm (SaCryStAl)
Classical crystal structure algorithm (CryStAl)
The mathematical model of CryStAl, which applies the fundamental ideas of crystal formulation with the appro-
priate adjustments, is described in this part. All possible solutions to the optimization procedure are viewed 
as individual crystals in the solution space in this model. Initial crystals are generated  randomly74. The idea of 
adding a basis to lattice points to create crystals served as the inspiration for the crystal structure algorithm. 
Siamak Talatahar suggested this crystal structure algorithm in 2021 based on this  idea75.

The initial population is randomly generated within the bounds using Eq. (1).

where Xi,j is the jth variable in the ith solution vector, where m is the problem’s dimension and N is the number 
of crystals or potential solutions. “ r “ is a random number between [0, 1], Lj and Uj are the variables, lower and 
upper bounds. The structure of the initial population matrix is shown in Eq. (2).

Based on the concept of ‘basis’ in crystallography, all the crystals at the corners are considered as the main 
crystals ( CrM ). The crystal with the best fitness value is taken as Crb and the mean values of randomly-selected 
crystals are denoted by Fc . The new crystals are generated in the search space by using the following Eqs. (3–6). 
This process will be repeated for N number of iterations considered.

 (i) Simple cubicle:

 (ii) Cubicle with the best crystals:

 (iii) Cubicle with the mean crystals:

 (iv) Cubicle with the best and mean crystals:

where, in the four equations above, CrN is the new position, CrO is the old position, and r, r1 , r2 and r3 are 
random numbers related to one another.

Steps involved in the proposed Iterative map‑based self‑adaptive crystal structure algorithm
Step 1 Generate N number of initial crystals 

(

Xi,j

)

 using the Eq. (1) and find the opposite values for all the crystals 
(

Xij

)

 using the Eq. (7).

Calculate the fitness function value for all the crystals, arrange them in ascending order, and take the first N 
as the initial population size.

Step 2 Generate the random (r) value using an iterative map 76 Eq. (8).

‘a’ represents a parameter that can be adjusted. Its value ranges from 0 to α. Based on our experience, the 
optimal value of ‘a’ is fixed as 0.48 and the starting rand ( rn ) value is 0.26.

(1)Xi,j = Li,j + r ∗
(

Ui,j − Li,j
)

, i = 1, 2, ..., N , j = 1, 2, ..., m.

(2)C =











Ci1

Ci2

...
CiN











=











x1,1 · · · x1,m
x2,1 . . . x2,m
... · · ·

...
xN ,1 . . . xN ,m











, i = 1, 2, . . . , N& j = 1, 2, . . . , m.

(3)CrN = CrO + rCrM

(4)CrN = CrO + r1CrM + r2Crb, where r1 = (1− r)& r2 = r1/N

(5)CrN = CrO + r1CrM + r2Fc

(6)CrN = CrO + r1CrM + r2Crb + r3Fc , where r3 = r2/N

(7)Xij = Ui + Li − Xij , i = 1, 2, . . . , N&j = 1, 2, . . . , n

(8)rn+1 = sin (a /rn)
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Step 3 Generate four new crystals using Eqs. (3–6) and find their opposite values using Eq. (7). Select the best 
crystal out of the eight newly created values and compare its fitness value with the fitness values of the initial 
population. If the best crystal replaces any one of the worst crystals in the initial population then maintain the 
rn values in the Eq. (3). Otherwise, generate a new value rn using Eq. (8). The detailed working mechanism of 
the proposed algorithm is given in Fig. 1.

Arbitrarily generate random values for the initial positions ( ) of initial crystals ( ) & Evaluate the 

fitness values for all crystals. Generate opposite values for all initial crystals and assess their fitness 

values. Combine the initial crystals with their opposites. Arrange them in ascending order based on their 

Select the initial population for subsequent iterations by taking the first N crystals 

Generate random “ r ” value using Iterative map (8 ) 

Generate . Create a new crystal ( ) using (4) and its opposite values. Compute the 

fitness value for the new crystal and its counterpart. Retain the superior one. 

Generate . Create a new crystal ( ) using (5) and its opposite values. Determine the fitness 

values for both the new crystal and its opposite. Retain the one with the higher fitness value

Generate . Create new crystal ( ) using (6) and its opposite values. Compute the fitness 

value for the new crystal and its counterpart. Retain the superior one. 

Create new crystals ( ) using (7) and its opposite values. Calculate the fitness values for 

both the new crystal and its counterpart. Preserve the one with the higher fitness value.

Examine the four superior solutions for comparison. Establish the top-performing one as the 

global solution. Evaluate whether the global crystal/solution violates any boundary constraints. If 

there are no violations, replace the worst crystal in the initial population with the global solution 

Iter = Iter + 1 

If  Iter = Maxiter 

Stop

If the fitness of  

surpasses that of any 

crystal in the initial 

population, do not alter 

the “ r ”value.

Start 

Initialize population size (N), Maxiter (N),  Iter = 0, r = 0.26, a = 0.48

Yes 

No 

Figure 1.  Flowchart outlining the SaCryStAl algorithm.
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Pseudo‑code of SaCryStAl
Initializing the positions of crystals Cij and Cij using (1) & (7).

Calculate the fitness value for all the crystals.
Generate random “ r “ value using Eq. (8)
while N <  Nmax do.
for (every crystal) do.
Create CrM.
Create new crystals through formula (3) and its opposite value.
Generate  Crb.
Construct new crystals through formula (4) and its opposite value.
Create Fc.
Create new crystals through formula (5) and its opposite value.
Create new crystals through formula (6) and its opposite value.
if (all the newly created crystal exceeds the limits) then adjust the location of the new crystal.
end if.
Compute the fitness values for all the newly generated crystals.
Revise the population with the best fitness value.
end for.
N = N + 1.
end while.
Display the best crystal.
To assess the efficacy of the suggested algorithm, we select five standard mathematical test functions and 

proceed with its implementation. The outcomes from our method surpass those of the conventional approach 
and other methods referenced in Ref.77, while matching the performance of the ABC method in terms of qual-
ity. Table 2 presents the test data from applying the classical and proposed algorithm to benchmark functions.

Modeling of a microgrid test system
This research investigates a grid-connected microgrid (MG) comprising a wind turbine (WT), photovoltaic 
(PV) array, microturbine (MT), fuel cell (FC), storage battery, plug-in hybrid electric vehicles (PHEVs), and 
loads, connected to the main grid via a 20 kV/400 V  transformer78,79. The microgrid configuration under study 
is adapted from the topology outlined in Ref.78. The PHEV represents a unique vehicle with various charging 
options and a transportation system enabling the use of fossil fuels during extended journeys if the battery’s 
charge  depletes80,81. Factors such as the state of charge (SOC) of the PHEV’s battery, charger size, charging dura-
tion, and vehicle volume influence its charging  rate82,83. Considering the unpredictable charging demands of 
these vehicles, our research encompasses multiple charging methods—coordinated, uncoordinated, and smart 
charging—to comprehensively characterize this  phenomenon84,85.

In the initial charging pattern being examined, termed uncoordinated charging, the plug-in hybrid electric 
vehicles (PHEVs) have the flexibility to connect to the grid for charging at any time they  desire86,87. These vehicles 
typically undertake two daily trips, with the first occurring in the morning and the second in the evening as they 
return home. Upon arriving home at 6:00 PM, it is assumed that the vehicles have the opportunity to connect to 
the grid for charging purposes. The probability density function (PDF) can be used to develop  this88 as follows:

where a and b represent constants referring to the time.

(9)f (tstart) =
1

b− a
a ≤ tstart ≤ ba = 18, b = 19

Table 2.  Exploration of the proposed SaCryStAl algorithm to benchmark test functions. CM classical method 
& PM proposed method.

S.No
Name of the 
function Objective function Characteristics Dime-nsions Range Method fop Mean Std.Dev

1 Sphere
f1(x) = 

n
∑

i=1

x2i Unimodal separable 30 [− 100,100]
CM 0.00982 0.0693 0.2736

PM 0 0 0

2 Schwefel 1.2
f2(x) = 

n
∑

i=1

(

i
∑

j=1

xj

)2

Unimodal non-separable 30 [− 100,100]
CM 0.00875 0.0946 0.0438

PM 0 0 0

3 Rosenbrock f3(x) =  n−1
∑

i=1

(

100
(

xi+1 − x2i
)2
)

+ (xi − 1)2
Unimodal non-separable 30 [− 30,30]

CM 0.00948 1.096897 0.09576

PM 0 0.0887707 0.077390

4 Quartic
f4(x) = 

n
∑

i=1

ix4i + random[0, 1) Unimodal separable 30 [− 1.28,1.28]
CM 0.00264 0.04858 0.02623

PM 0 0.030017 0.004868

5 Rastrigin
f5(x) = 

n
∑

i=1

[

x2i − 10 cos (2πxi)+ 10
]

Multimodal separable 30 [− 5.12,5.12]
CM 0.00035 0.000257 0.000537

PM 0 0 0
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In the coordinated charging pattern, owners of plug-in hybrid electric vehicles (PHEVs) opt to connect their 
vehicles to the grid during off-peak hours to circumvent peak times and associated high prices. Consequently, 
they typically initiate charging sessions after 9:00 PM. This preference for off-peak charging is articulated  in88.

In a smart charging pattern, PHEVs are connected to the grid when power prices are at their lowest or when 
energy is  abundant89. This pattern can be represented using a standard PDF as seen  below88:

where µ and σ represent the standard deviation and mean respectively.
With the use of all-electric range (AER), the SOC of PHEVs during the charging process may be calculated 

as follows:

Here, m represents the mileage of the PHEV in miles. Our study focuses on the PHEV-20 model, and charger 
availability data is sourced  from90. We illustrate the charging process in residential areas using level 1 and level 
2 chargers, which are the focus of this research. Level 3 chargers are designated for commercial and public 
transportation purposes.

Problem formulation
In this study, we introduce a precise mathematical model for short-term energy management aimed at minimiz-
ing operating costs and pollution emissions within a microgrid. Achieving optimal performance in a microgrid 
involves utilizing a multi-objective optimization approach. The key aim of multi-objective energy management in 
a typical microgrid setting is to identify the best power generation levels and determine the suitable operational 
states (ON or OFF) for distributed generation units. This process must optimize both the microgrid’s operating 
costs and its net emissions, all while complying with predefined equality and inequality constraints. This study 
introduces a detailed mathematical model tailored for short-term energy management, aiming to cut costs and 
reduce emissions within the microgrid.

Objective functions
Optimizing both cost and emissions in a grid-connected microgrid is essential for balancing economic efficiency, 
environmental sustainability, regulatory compliance, and social responsibility. By targeting these goals simultane-
ously, microgrid operators can enhance their operations to benefit stakeholders and society at large. This study 
examines two key objective functions: operational costs and pollution emissions.

Operating cost
Operational costs form a foundational aspect of energy management strategies, significantly influencing their 
effectiveness and efficiency. These costs play a vital role in ensuring the economic sustainability and viability of 
microgrid  operations91. Total operational expenses for the microgrid, calculated in Euro cents (€ct), encompass 
fuel costs for distributed generation units, startup and shutdown expenses, and costs associated with power 
exchange between the utility and the microgrid. The aim of managing overall operating costs is to achieve opti-
mal power flow from energy sources to load centers over a given period, while prioritizing cost-effectiveness.

Operational costs contribute to bolstering the resilience and stability of microgrid systems. By accounting 
for factors such as fuel and maintenance expenses and penalties for deviations from operational constraints, 
these costs help identify robust energy management strategies that can endure uncertainties and disturbances, 
ensuring a reliable and continuous power  supply91.

(10)f (tstart) =
1

b− a
a ≤ tstart ≤ ba = 21, b = 24

(11)f (tstart) =
(

1

σ
√
2π

)

e
0.5

(

tstart−µ
σ

)2

µ = 1, σ = 3

(12)SOC =
{

0m > AER
AER−m
AER × 100m ≤ AER

(13)min fT .C(X) =
T
∑

h

(

TCh
DG + TCh

ST + TCh
GR

)

(14)TCh
DG = Ch

PV + Ch
WT + Ch

MT + Ch
FC

(15)Ch
PV = UPV (h) · PPV (h) · BPV (h)+ SPV · |UPV (h)− UPV (h− 1)|

(16)Ch
WT = UWT (h) · PWT (h) · BWT (h)+ SWT · |UWT (h)− UWT (h− 1)|

(17)Ch
MT = UMT (h) · PMT (h) · BMT (h)+ SMT · |UMT (h)− UMT (h− 1)|

(18)Ch
FC = UFC(h) · PFC(h) · BFC(h)+ SFC · |UWT (h)− UFC(h− 1)|
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At hour h , the variables UPV , UWT , UMT , UFC , and UBT represent the operating states of the solar photovol-
taic system, wind turbine, microturbine, fuel cell, and battery, respectively. Similarly, the bids for distributed 
generators (DGs), storage devices, and the grid at hour hr are denoted by BPV , BWT , BMT , BFC , BBT and BGR . 
The power outputs of the solar photovoltaic, wind turbine, microturbine, fuel cell, and battery unit at time h are 
represented by PPV (h) , PWT (h), PMT (h), PFC(h) and PBT (h) respectively. The start-up and shut-down costs of 
the solar photovoltaic, wind turbine, microturbine, fuel cell, and battery units are indicated by SPV , SWT , SMT , 
SFC and SBT respectively. Additionally, PGR(h) denotes the quantity of power traded with the market at hour hr, 
as referenced  in74,91.

This study focuses on the design variables, which include the generated power outputs and the operating 
states of the generation units. The decision variables, consisting of the active power of the units and their cor-
responding states, are represented by the vector X , as defined  in91.

Here NDG characterizes the number of distributed generators (DGs) installed in the microgrid (MG), whilst 
NST signifies the number of storage units.

Objective function for pollution
The objective function for emissions is essential for evaluating the environmental impact of microgrid 
 operations92. Microgrids emit pollutants due to various components such as the grid, generation units, and 
energy storage  resources93. By quantifying emissions of pollutants such as  CO2,  SO2, and  NOx, this function 
provides a comprehensive measure of the ecological footprint of energy generation and consumption within 
the microgrid. This is particularly significant in addressing climate change and mitigating air pollution, as it 
allows stakeholders to monitor and reduce the environmental effects of energy  production94. The emissions 
objective function plays a crucial role in aligning energy management strategies with regulatory standards 
and sustainability goals. By incorporating emissions considerations into the optimization process, it supports 
compliance with emissions regulations and fosters proactive environmental stewardship. This helps microgrid 
operators avoid potential penalties and regulatory challenges while positioning them as leaders in promoting 
clean energy practices. Additionally, the emissions objective function enhances the overall efficiency and resil-
ience of microgrid systems. By optimizing energy management strategies to minimize emissions while meeting 
operational needs, it encourages the adoption of cleaner and more sustainable technologies. The mathematical 
formula for calculating emissions, including nitrogen dioxide  (NOx), carbon dioxide  (CO2), and Sulfur dioxide 
 (SO2), is presented  below91.

Min

Here EDGi(h) , ESTj(h) , and EGR(h) denote the amount of pollutants from ith distributed generating unit, jth 
storage unit, and the market, at hour h , in kg/MWh correspondingly.

The emission variables are symbolized as  follows91:

Here CO2DGi
(h) , SO2DGi

(h) and NOxDGi
(h) characterize the emissions of CO2 , SO2 , and NOx correspondingly 

from the ith DG sources during the hour h of the day.

Here CO2STi
(h) , SO2STi

(h) and NOxSTi
(h) signify the emissions of CO2 , SO2 , and NOx correspondingly from 

the jth storage unit at hour h.

(19)CTh
ST = UBT (h) · PBT (h) · BBT (h)+ SBT · |UBT (h)− UBT (h− 1)|

(20)CTh
GR = PGR(h) · BGR(h)

(21)X =
[

PDG , PST ,UDG,UST

]

(22)PDG = [PDG1, PDG2, . . . ,PDGi , PGRD]∀ ∈ NDG

(23)PST =
[

PST1, PST2, . . . , PSTj
]

∀ ∈ NST

(24)UDG = [UDG1,UDG2, . . . ,UDGi]

(25)UST =
[

UST1,UST2, . . . ,USTj

]

(26)min fT .E(X) =
T
�

h=1







NDG
�

i=1

[Ui(h)PDGi(h)EDGi(h)]+
NST
�

j=1

�

Uj(h)PSTj(h)ESTj(h)
�

+ (PGR(h)EGR(h))







(27)EDGi(h) = CO2DGi
(h)+ SO2DGi

(h)+NOxDGi
(h)

(28)ESTj(h) = CO2STi
(h)+ SO2STi

(h)+NOxSTi
(h)

(29)EGR(h) = CO2GR (h)+ SO2GR (h)+NOxGR (h)
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Here CO2GR (h) , SO2GR (h) and NOxGR (h) represent the emissions of CO2 , SO2 , and NOx correspondingly from 
the macro-grid or utility during the hour h of the day.

Constraints and limitations
Load‑generation balance

Here, PLLk represents the load magnitude of the kth load, whilst NKL denotes the total number of load levels 
present within the utility, as defined in Ref.91.

Generated power
The entire set of units, including the market, storage units, and distributed generators (DG), has defined lower 
and upper limits that regulate their power generation capacities, as described in Ref.91. The output power from 
the MG components should achieve the following  constraints53.

The formula provided in Eq. (9) stipulates that the power generated from distributed generation (DG), bat-
tery, and grid sources must fall within their designated minimum and maximum limits, denoted by “min” and 
“max” respectively.

DGs’ ramp rate constraints
This constraint pertains to the adjustment of the output power from distributed generators (DGs), describing 
the condition as  follows78:

where Ri
down and Ri

up are the ramp-down and ramp-up of the ith DG output power, respectively, and �h is the 
time step in hours.

Battery charging/discharging states
To avoid the damage of the battery, the following constraint should be  achieved78,95:

where Emin
b  represents the minimum stored energy in the battery while Emax

b  denotes the maximum stored 
energy, Pratedch  is the battery rated charge power, and Prateddisch  represents the battery rated discharge power during 
each time interval �h.

The battery stored energy can be calculated as  follows78:

where ξch is the charging efficiency while ξdisch represents the discharging efficiency.
Here Eb(h) and Eb(h− 1) represent the energy stored in the battery at hours h and h− 1 , respectively. Pch is 

the permissible charging rate, while Pdisch is the permissible discharging rate during a specific time interval ( �h ). 
The battery’s charging and discharging efficiency are denoted by ξch and ξdisch  respectively96,97.

Formulation of multi‑objective energy management problem
The multi-objective energy management problem is formulated as follows:

In this context, fT .C represents the objective function focused on cost minimization, while fT .E is the objec-
tive function targeting emissions reduction. By integrating a price penalty factor (ρ), the multi-objective energy 
management problem can be transformed into a single-objective optimization problem, as shown in Eq. (26). 
The approach for determining the value of ρ is detailed  in98.

(30)
NKL
∑

k=1

PLLk(h)+
NPHEV
∑

m=1

PPHEV ,m(h) =
NDG
∑

i=1

[PDGi(h)]+
NST
∑

j=1

[

PSTj(h)
]

+ (PGR(h))

(31)
PDGi,min(h) ≤ PDGi(h) ≤ PDGi,max(h)

PSTj,min(h) ≤ PSTj(h) ≤ PSTj,max(h)

PGR,min(h) ≤ PGR(h) ≤ PGR,max(h)

(32)Ri
down ·�h ≤ P(h)i − P(h− 1)i ≤ Ri

up ·�h

(33)Emin
b ≤ Eb(h) ≤ Emax

b

(34)Pch(h) ≤ Pratedch , Pdisch(h) ≤ Prateddisch

(35)Eb(h) = Eb(h− 1)+ ξchPch(h)�h−
1

ξdisch
Pdisch(t)�h

(36)MinimizefCE
(

fT .C , fT .E
)
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In this context, the weighting factor ‘ w ’ signifies the degree of importance assigned to a specific objective 
function. With ‘ w ’ set to 1, the optimization primarily emphasizes the reduction of operational costs. Conversely, 
assigning ‘ w ’ a value of 0 prioritizes the minimization of emissions. In the context of multi-objective energy 
management, the ‘ w ’ value is systematically reduced from 1 to 0, and at each decrement, a compromised solu-
tion is generated. Ultimately, the best compromised solution (BCS) is determined using the fuzzy membership 
approach outlined in section “Fuzzy logic-based selection of optimal compromise solution”, where a decrease in 
‘ w ’ leads to a simultaneous increase in operational costs and a reduction in pollutant emissions.

Fuzzy logic‑based selection of optimal compromise solution
Before making a decision, it is crucial to determine the optimal compromise solution from the available set of 
optimal  solutions99,100. To identify the best compromise solution, the author employed a fuzzy membership 
 approach101. In jth objective function, fj of individual k is characterized by a membership function µk

j  due to 
indefinite characteristic of decision maker’s conclusion which is represented as  follows102:

where f max
j  denote the maximum value of jth fitness function while the latter’s minimum value is represented by 

f min
j  in the pool of non-dominated solutions. Here, the normalized membership function µk is also determined 

accordingly for each non-dominated solution k as  follows103:

Here, the overall number of non-dominated solutions is denoted by r. The best compromise solution is 
composed of maximum value, µk .

Uncertainty models for Wind and Solar Energy
Different types of PDFs (Probability Density Function) have been deployed for the characterization of stochas-
tic output power from the RESs. The wind turbine-based power relies upon the speed of the wind. As per the 
 literature104–106, Weibull PDF forms the basis for wind speed probability.

Here, the shape parameter of Weibull PDF is denoted by α whereas � corresponds to the scale of Weibull PDF. 
These variable values are sourced from the  literature104. The following Eq. (41) shows the average of Weibull PDF.

The equation given below (25) describes the Ŵ function.

The fluctuations that occur in wind speed for the wind farm are shown in Fig. 2. As per the  literature7, both 
scale and shape parameter values are decided. On the other hand, the PDF parameter values are chosen accord-
ing to the study conducted  earlier104,107. The aggregated rated output generated by the wind farm with capacity 
of 15 MW is achieved by connecting 5 wind generators in the considered microgrid test system. Each individual 
wind generator has a capacity of 3 MW. The subsequent Eq. (43) describes the power produced by the wind 
generators that relies upon the speed of the wind.

Here, PWr corresponds to a single turbine’s rated power whereas the cut-in speed is denoted by vin . On the 
other hand, the cut-out speed is characterized by vout and the rated speed is denoted by vr . In this research work, 
various Weibull parameters are considered for the distribution of wind speed in line with  literature104,107. From 
the wind generators, rated power is generated within the wind speed range that falls between the cut-in and 
cut-out thresholds. As per the  literature104,107, the probability of such discrete zones is shown in the Eq. (44).

(37)MinimizefCE =
N
∑

i=1

((

w × fT .C
)

+
(

ρ × (1− w)× fT .E
))

(38)µk
j =















1 fj ≤ f min
j

f max
j −fj

f max
j −f min

j
f min
j < fj < f max

j

0 fj ≥ f max
j

(39)µk =
∑N

j=1 µk
j

∑r
k=1

∑N
j=1 µ

k
j

(40)fwv(v) =
(α

�

)( v

�

)(α−1)
exp[−(

v
� )]α for 0 < v < ∞

(41)Mw = � ∗ Ŵ
(
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)

(42)Ŵ
(

x′
)

=
∞
∫
0
e−t tx

′−1dt

(43)PWG =
0 for v ≤ vin
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)

for vin ≤ v ≤ vr

PWr for vr ≤ v ≤ vout
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In continuous region, the probability distribution for wind power is as follows.

Likewise, the power generated by solar PV system completely relies upon the solar irradiance (G) that suits 
the guidelines as per lognormal  PDF104,107. As per the  literature108, the following equation shows the probability 
of solar irradiance with mean as well as standard deviation.

The subsequent Eq. (48) yields the mean of lognormal distribution ( MLgn)

Figure 3 shows the frequency distribution for lognormal fitting and solar irradiance in case of simulating the 
Monte-Carlo scenario using 8,000 samples. The solar PV output power is expressed herewith.

In a standard environmental setting, solar irradiance is denoted as Gstd , with specific irradiance represented 
by RC . For Gstd , the value assumed is 800 W/m2 , while RC is set at 120 W/m2 . For the PV module, the rated 
output power PPVr is specified as 25 MW.

Modeling of microgrid
Utilizing individual distributed generators (DGs) can introduce numerous challenges, highlighting the impor-
tance of adopting a system approach. This approach treats generation and associated loads as a subsystem or 
 microgrid109,110. By aggregating distributed generators (DGs) within a microgrid and harnessing renewable ener-
gies in large quantities, various issues related to economy, technology, and environment can be carefully studied 
within the target system, enabling informed decisions for improved operational  management111,112. Furthermore, 
distributed generation encompasses a diverse array of prime mover technologies, including internal combus-
tion (IC) engines, gas turbines, microturbines, photovoltaic systems, fuel cells, and wind power. These emerging 
technologies typically exhibit lower emissions and have the potential to achieve lower costs, thus challenging 
traditional economies of  scale78. For instance, fuel cells, which generate electricity from hydrogen and oxygen, 

(44)fPWG = 1− exp
[

−
(vin

�
)α
]

+ exp
[

−
(vout

�
)α
]

for (PWG = 0)

(45)fPWG = exp
[

−
(vr

�
)α
]

− exp
[

−
(vout

�
)α
]

for (PWG = PWR)

(46)fPWG =
α(vr − vin)

�α ∗ Pwr

[

vin +
PWG

Pwr
(vr − vin)
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(
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Pwr
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�

)α

(47)fPV (G) =
1

Gσ
√
2π

exp

[

−
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2σ 2

]

for G > 0

(48)MLgn = exp

(

µ+
σ 2

2

)

(49)PPV (G) =
PPVr

(

G2
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)

for 0 ≤ G ≤ RC

PPVr

(

G
Gstd

)

for G ≥ RC

Figure 2.  Wind speed variation for wind farm.
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primarily emit water vapor. However, during the reformation of natural gas or other fuels, they may produce some 
NOX and CO2  emissions113,114. Despite their higher initial costs, fuel cells are generally more efficient and have 
lower emissions compared to microturbines. In this paper, a typical low-voltage (LV) microgrid is considered, 
incorporating various DGs such as microturbines (MT), low-temperature fuel cells (PAFC), photovoltaic (PV) 
arrays, wind turbines (WT), and storage devices like lead-acid  batteries78. It is assumed that all DG sources gen-
erate active power at unity power factor without requesting or producing reactive power. Additionally, a power 
exchange link exists between the microgrid and the utility (LV network), facilitating energy trading throughout 
various hours of the day based on decisions made by the microgrid central controller (MGCC).

Results and discussion
The microgrid test system under examination comprises a distributor and various distributed generators (DGs), 
including photovoltaic panels (PV), wind turbines (WT), microturbines (MT), fuel cells (FC), and  batteries92. In 
the proposed model, the objective function aggregates the total cost of the microgrid, encompassing power gen-
eration costs and startup/shutdown costs of units, in addition to the net emission of pollutants. This problem is 
addressed through three distinct scenarios. The primary case, where all units are dispatched based on their actual 
constraints. In the second scenario, both the wind turbine (WT) and solar photovoltaic (PV) systems operate at 
their maximum output levels. In the third scenario, the utility is treated as an unbounded unit that can exchange 
energy with the microgrid without any constraints. The total load demand within the microgrid for a typical day 
includes primarily residential areas, one industrial feeder serving a small workshop, and one feeder with light 
commercial consumers, as documented in Ref.92. The cumulative energy demand for the specified day amounts 
to 1695 kilowatt-hours (kWh). Furthermore, the study takes into account the real-time variation in energy prices 
in the market for the specified day, as documented in the earlier  study92. To ensure the flexible operation of the 
microgrid, the optimization algorithm dynamically assigns “on” or “off ” states to three distributed generation 
(DG) units—MT (Micro Turbine), PV (Photovoltaic), and WT (Wind Turbine)—during the power dispatch 
problem, considering both objectives. Similarly, since the microgrid operates in grid-connected mode, the util-
ity is consistently set to the “on” state. In order to comprehensively evaluate the impact of the battery and PAFC 
(Proton Exchange Membrane Fuel Cell) on grid operation and to maximize the benefits of these resources, the 
“on” state is deliberately chosen for these respective units. The minimum and maximum generation limits of the 
DG sources are obtained from Ref.92. Furthermore, the bid coefficients in cents of Euro (€ct) per kWh, as well as 
emissions in kilograms per MWh, assumed by the DG sources, are extracted from Ref.92. To streamline our analy-
sis, all units under consideration in this research study are assumed to operate exclusively in electricity mode, 
without requiring heat during the analyzed period. It’s important to highlight that the enhanced integration of 
renewable energies stands as a key motivation behind micro-grid installations. In actual micro-grid operations, 
forecasts of future requirements are crucial for preparing flexible systems to respond appropriately. Although 
renewable energy may not follow traditional operational patterns, its behavior can be anticipated, and forecast 
information becomes crucial for optimizing system efficiency within microgrids. In this study, the power output 
of photovoltaic (PV) and wind turbine (WT) units is projected using an expert prediction model. However, this 
aspect falls beyond the scope of the current paper and will be addressed in future research. Table 3 provides 
an overview of the forecasted output of these units. The maximum allowable daily power extracted from the 
PV and WT are taken from the earlier  study92. The daily load power and the energy market price in the typical 
micro-grid considered are taken from Ref.92.

To assess the effectiveness of the suggested SaCryStAl technique, a simulation is conducted comprising 50 trial 
runs aimed at minimizing operating costs. The controlling parameters of the proposed algorithm are selected 
as population size of 30 and maximum iteration of  100078. The input data, including bids, technical coefficients, 
and emission coefficients of the DG sources for the microgrid test system under consideration, are sourced from 

Figure 3.  Solar irradiance distribution for solar PV.
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Ref.92. Five distributed generation (DG) sources with associated characteristics generate electricity within the 
micro-grid. Any excess or shortfall of energy within the grid is balanced through exchange with the utility at the 
point of common coupling. All units, including the utility sourced from the macro grid, are obliged to operate 
within their power limits while meeting specified constraints. The output power levels of the wind turbine and 
solar cell based on the predicted values are presented in Table 3 92.

Case‑I: operation of distributed energy sources within prescribed bounds
The first test case analyzed in this study entails operating all distributed generators (DGs) and the grid within 
predefined constraints, as detailed in Table 4. Furthermore, Table 4 illustrates the optimal generation schedule for 
24 h aimed at minimizing both cost and emissions. It is evident from Table 4 that, following the new approach, a 
substantial portion of the load is initially supplied by the fuel cell within the grid and utility via the point of com-
mon coupling during the early hours of the day. This preference is due to the lower bids of these units compared 
to others during this timeframe. As demand and utility bids rise in subsequent hours, distributed generation 
(DG) units adjust their output levels based on priority, prioritizing lower costs and emissions accordingly. Con-
sequently, DG units start up sequentially as requested by the micro-grid regulatory controller and energy import 
from the macro grid is replaced by export actions to enhance revenue and reduce net emissions during this 
period. Additionally, it’s worth noting that battery charging occurs during the early hours when prices are low, 
while discharge actions are postponed to midday when the load curve peaks. Furthermore, leveraging renewable 
energy sources such as wind and solar reduces pollution but may increase the operating cost. Hence, the utiliza-
tion of energy from these resources should be constrained, taking into account emission and economic factors.

Tables 5 and 6 present the statistical outcomes of optimization algorithms, along with a concise comparison 
of their performances in the primary scenario. When evaluating performances based on both the best and worst 
solutions for cost and emission objectives, it becomes evident that the proposed optimization algorithm not only 
delivers superior outcomes but also demonstrates faster convergence. Additionally, statistical indices such as 
average and standard deviation further validate the algorithm’s advantage in the optimization process. Tables 5 
and 6 showcase standard deviation values for cost and emission objectives with the new algorithm limited to 
0.006 and 0.005, respectively, indicating the excellent performance of the proposed model. By incorporating an 
oppositional population mechanism during the optimization process, the proposed algorithm explores further 
enhancements in both performance characteristics and optimal solutions. To provide a deeper insight into 
SaCryStAl’s performance, the convergence characteristics of SaCryStAl and CryStAl algorithms for the best 
solution and each single objective are separately illustrated in Figs. 2 and 3. The operation cost was minimized by 
assigning the weighting factor w as unity. The proposed algorithm provides the least operation cost of 124.15 €ct 
compared with CryStAl,  FSAPSO91,  GA91,  GWO91,  PSO91,  WOA91, and  KH91. The optimization findings indicate 

Table 3.  Predicted values of WT and  PV92.

Hour WT(kW) PV(kW) Load (kW) Electrical energy price €ct/kWh

1 1.7850 0 52.00 0.2300

2 1.7850 0 50.00 0.1900

3 1.7850 0 50.00 0.1400

4 1.7850 0 51.00 0.1200

5 1.7850 0 56.00 0.1200

6 0.9150 0 63.00 0.2000

7 1.7850 0 70.00 0.2300

8 1.3050 0.200 75.00 0.3800

9 1.7850 3.750 76.00 2.5000

10 3.0900 7.525 80.00 4.0000

11 8.7750 10.45 78.00 4.0000

12 10.410 11.95 74.00 4.0000

13 3.9150 23.90 72.00 1.5000

14 2.3700 21.05 72.00 4.0000

15 1.7850 7.875 76.00 2.0000

16 1.3050 4.225 80.00 1.9500

17 1.7850 0.550 85.00 0.6000

18 1.7850 0 88.00 0.4100

19 1.3020 0 90.00 0.3500

20 1.7850 0 87.00 0.4300

21 1.3005 0 78.00 1.1700

22 1.3005 0 71.00 0.5400

23 0.9150 0 65.00 0.3000

24 0.6150 0 56.00 0.2600
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Table 4.  Optimal generation schedule for minimization of operating cost and emission (Case-I).

Hour Pd(kW) Ppv(kW) Pwt(kW) Pmt(kW) PFC(kW) PBatt(kW) Pgrid(kW)

1 52 0 0 13.87 25.32 − 4.52 17.32

2 50 0 0 17.33 22.83 10.25 − 0.41

3 50 0 0 11.92 26.11 0.42 11.55

4 51 0 0 7.89 20.86 − 0.63 22.87

5 56 0 0 20.93 20.25 5.91 8.91

6 63 0 0 12.84 29.55 4.59 16.02

7 70 0 0 24.83 30 9.54 5.63

8 75 0 0 20.32 27.95 11.82 14.91

9 76 0 1.57 23.78 30 13.99 6.66

10 80 12.13 3.24 30 30 27.84 − 23.21

11 78 12.13 8.42 27.45 30 30 − 30

12 74 4.51 11.22 27.33 30 29.91 − 28.97

13 72 1.24 1.63 28.57 29.78 28.21 − 17.43

14 72 7.85 4.16 30 29.98 30 − 29.99

15 76 1.45 2.33 28.31 30 30 − 16.09

16 80 1.15 0.55 28.31 28.18 28.36 − 6.55

17 85 2.31 0 20.23 30 19.13 13.33

18 88 0 0 22.35 30 11.43 24.22

19 90 0 0 21.14 25.87 21.17 21.82

20 87 0 0 24.97 29.98 4.93 27.12

21 78 0 0 21.32 29.92 30 − 3.24

22 71 0 0 23.14 27.46 24.69 − 4.29

23 52 0 0 14.56 20.45 4.12 12.87

24 50 0 0 20.05 19.32 4.51 6.12

Table 5.  Statistical comparative results with other algorithms for minimization of operating cost (Case-I).

Algorithm Mean (€ct) Standard deviation (€ct) Max (€ct) Min (€ct) CPU time (s)

SaCryStAl 126.89 0.003 147.83 124.15 97.19

CryStAl 127.72 0.005 149.16 125.03 97.32

FSAPSO91 125.91 0.006 125.92 125.91 NA

GA91 151.89 36.23 210.46 125.91 114.67

GWO91 151.57 40.20 824.30 128.93 132.17

PSO91 145.28 53.52 830.83 126.16 556.64

WOA91 129.05 8.99 307.55 126.09 149.17

KH91 148.57 0.009 1337.7 105.94 104.17

Table 6.  Statistical comparison of results with other algorithms for emission minimization (Case-I).

Algorithm Mean (kg) Standard deviation (kg) Max (kg) Min (kg) CPU time (s)

SaCryStAl 420.96 0.002 428.04 419.14 76.41

CryStAl 422.03 0.004 429.25 420.89 76.83

FSAPSO91 422.02 0.005 422.03 422.02 NA

GA91 506.78 89.25 680.33 422.02 119.85

GWO91 580.88 300.97 2699.2 451.54 167.44

PSO91 500.44 216.42 2943.4 425.43 523.87

WOA91 428.79 68.54 2135.3 423.25 124.92

KH91 436.59 0.004 118.97 420.57 79.41
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a close alignment between the minimum operating cost and its mean value, underscoring the precision of the 
proposed algorithm. By adjusting the weighting factor from 1 to 0, we achieved an optimal emission value of 
419.14 kg. Figures 4 and 5 depict that the cost objective function reaches its minimum after around 670 iterations 
with the new method and remains stable thereafter, contrasting with the CryStAl algorithm, which converges 
in approximately 690 iterations. Similarly, the emission objective function reaches its minimum after about 
428 iterations with the new method, while the CryStAl algorithm converges in about 417 iterations. Addition-
ally, Fig. 6 highlights the superior performance of all mentioned algorithms when considering both objectives. 
Employing a fuzzy logic approach enabled the proposed algorithm to achieve the global best compromise solution 
for both generations cost and emission minimization.

Figure 6 depicts the Pareto fronts of the respective trade-off objectives obtained from various comparison 
methods, alongside the best compromise solutions. Additionally, the distribution of non-dominated solutions 
along the Pareto optimal front, as observed in Fig. 6, validates the effectiveness of the proposed algorithm in 
addressing nonlinear multi-objective optimization problems. Moreover, the computational time for both operat-
ing cost and emission minimization using the proposed algorithm is notably shorter, indicating the high solution 
quality achieved. Overall, the optimization results strongly support the proposed algorithm’s capability to address 
challenges related to equality and inequality in energy management problems.

Case‑II: operation of microgrid with rated wind power
The WT is run at its rated power of 15 kW in the second scenario that is taken into  consideration115. In this 
scenario, the proposed SaCryStAl is used to distribute the load to the MG components. While the PV genera-
tion is nil and the battery is in the charging stage, the MT, WT, FC, and grid actively contribute to meeting the 

Figure 4.  Convergence characteristic for the minimization of operating cost (Case-I).

Figure 5.  Convergence profile for emission minimization (Case-I).
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electrical load during the first eight hours. The PV began to share the load with the other mounted devices dur-
ing the second interval. In this instance, extra electricity is sold to the grid. The load is supported during the last 
hours by WT, MT, FC, and  battery115. Table 7 lists the best outcomes and statistical variables that were taken into 
account in this situation. Setting the weighting factor to 1 prioritizes the minimization of operating costs. Figure 7 
illustrates the convergence characteristics achieved by SaCryStAl and CryStAl for operating cost minimization. 
To minimize emissions, the weighting factor ‘w’ is set to 0, as shown in Fig. 8. SaCryStAl achieved the lowest 
operating cost of 53.92 €ct, while CryStAl yielded the maximum of 371.28 €ct. SaCryStAl also demonstrated 

Figure 6.  Trade-off characteristic between emissions and costs (Case-I).

Table 7.  Optimal generation schedule for minimization of operating cost and emission (Case-II).

Hour Pd(kW) Ppv(kW) Pwt(kW) Pmt(kW) PFC(kW) PBatt(kW) Pgrid(kW)

1 52 0 15 24.0394 7.4902 − 24.5295 30

2 50 0 15 12.9382 22.0562 − 29.9921 30

3 50 0 15 29.984 19.05328 − 30 15.9641

4 51 0 15 22.1806 14.9835 − 30 28.8297

5 56 0 15 29.9752 12.6371 − 30 28.3875

6 63 0 15 29.9806 29.9812 − 30 18.0382

7 70 0 15 29.9997 24.9988 − 30 30

8 75 0.263 15 29.9542 29.9732 − 30 29.813

9 76 3.26 15 27.5054 29.9239 30 − 29.6893

10 80 7.603 15 29.9231 4.7821 30 − 7.3029

11 78 11.289 15 29.8834 29.2381 16.8032 − 24.2131

12 74 14.093 15 12.0971 30 30 − 27.1892

13 72 24.752 15 29.9837 30 2.2645 − 30

14 72 23.198 15 10.2093 15.3921 18.9835 − 10.7824

15 76 8.0732 15 27.3891 22.0891 30 − 27.5498

16 80 6.309 15 29.6034 29.1138 29.7023 − 29.7213

17 85 1.752 15 29.5402 30 30 − 21.2874

18 88 0 15 29.7835 30 30 − 16.7832

19 90 0 15 22.6131 30 − 15 22.3891

20 87 0 15 28.0372 30 30 − 16.0348

21 78 0 15 29.6608 30 30 − 26.6608

22 71 0 15 30 30 25.9874 − 29.9874

23 65 0 15 30 20 − 29.9752 29.9752

24 56 0 15 30 12.9098 28.0733 − 29.9823



19

Vol.:(0123456789)

Scientific Reports |        (2024) 14:15652  | https://doi.org/10.1038/s41598-024-66644-3

www.nature.com/scientificreports/

superior variance, standard deviation, and elapsed time. In terms of emissions, SaCryStAl produced the least at 
135.186 kg, whereas CryStAl reached a maximum of 439.0481 kg. Detailed results are summarized in Tables 8 
and 9. Decreasing the weighting factor ‘w’ from 1 to 0 in steps of 0.001 generates compromise solutions where 
operating costs increase and emissions decrease simultaneously. Tables 8 and 9 provide a statistical compari-
son of optimization results for operating cost and emissions, respectively. Through a fuzzy logic approach, the 
proposed algorithm achieved the global best compromise solution for both objectives. Figure 9 illustrates the 
trade-off relationship between operating cost and emissions achieved through the utilization of SaCryStAl and 
CryStAl algorithms. Table 10 presents the comparison of best comparison solution obtained using SaCryStAl, 
CryStAl and other optimization algorithms for Case I and II. The proposed SaCryStAl algorithm provided a better 
optimal solution compared to CryStAl. This aims to excel, particularly with the distinctly differentiated Pareto 
front achieved by SaCryStAl for complex nonlinear optimization problems. In terms of fitness value variation, 
the SaCryStAl performed well in both goals since it quickly arrived at the best answer. Additionally, SaCryStAl 
exhibited shorter computational times compared to other optimization algorithms. The optimization results 
strongly support SaCryStAl’s capability to address the complexities of both equality and inequality present in 

Figure 7.  Convergence characteristic for the minimization of operating cost (Case-II).

Figure 8.  Convergence profile for emission minimization (Case-II).
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microgrid energy management challenges, particularly with the incorporation of RES and PHEVs. The obtained 
simulation results showed excellent performance when WT was operating at its rated power.

Table 8.  Statistical analysis of optimization results for operating cost minimization (Case-II).

Algorithm

Operating cost (€ct)

CPU time (s)Min Max Mean Median Variance Std. dev

SaCryStAl 53.92 349.74 56.79 109.25 17.8127 4.1805 551.684

CryStAl 54.75 371.28 57.46 112.37 18.1084 4.2358 573.841

HBA115 55.58 435.65 60.39 55.58 18.3 4.2779 614.053

DAOA115 56.676 535.89 134.53 139.22 18.681 4.3222 784.503

ARO115 55.724 630.61 67.508 56.44 18.417 4.2914 840.684

TDO115 55.582 939.29 63.146 56.291 18.301 4.278 1144.693

CHIO115 60.165 933.87 97.845 67.705 19.928 4.4641 1250.64

MRFO115 57.764 434.75 72.105 63.149 19.567 4.4234 1575.98

AO115 63.4926 722.509 278.832 337.697 22.131 4.7043 1584.589

Table 9.  Statistical analysis of optimization results for emission minimization (Case-II).

Algorithm

Emission (kg)

CPU time (sec)Min Max Mean Median Variance Std. dev

SaCryStAl 135.186 439.048 138.905 154.49 0.5629 0.0237 597.062

CryStAl 138.205 447.204 140.752 157.282 0.5803 0.0243 599.604

HBA115 137.008 708.795 141.685 137.65 0.0006 0.0246 607.052

DAOA115 324.958 459.245 356.798 358.102 12.1629 3.4875 651.459

ARO115 145.945 600.313 157.656 146.073 0.6042 0.7773 790.374

TDO115 145.944 752.899 148.77 145.946 0.6042 0.7773 1069.83

AO115 146.876 744.895 207.053 207.112 0.5858 0.7654 1142.79

MRFO115 146.171 550.711 158.956 147.267 0.5985 0.7736 1176.13

CHIO115 159.634 658.708 211.261 187.347 0.9825 0.9912 1507.5

Figure 9.  Trade-off characteristic between emissions and costs (Case-II).
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Case‑III: operation of microgrid integrated with PHEVs
In this analysis, the integration of PHEVs with the microgrid is explored. It is assumed that 30% of the 70 EVs 
are linked to the  MG77. The objective in this scenario is to minimize operating costs. Here, the uncoordinated, 
coordinated, and intelligent charging modes of PHEVs are investigated. The optimal generation schedule of 
microgrid with the integration of PHEVs for the minimization of operating cost for uncoordinated, coordinated 
and smart charging modes are presented in Tables 11, 12 and 13 respectively. Table 14 presents the optimal value 
of the operation cost obtained using SaCryStAl and other optimization algorithms for the three different charging 
methods considered. It is evident from the optimization results, the proposed SaCryStAl performed better than 
CryStAl algorithm. In the uncoordinated, coordinated, and smart charging modes, the SaCryStAl algorithm 
attained optimal fitness values of 319.9301 €ct, 160.9827 €ct, and 128.2815 €ct, respectively. Figures 10, 11 and 
12 present the convergence characteristics for the minimization of operating cost for uncoordinated, coordinated 
and smart charging modes respectively. The convergence behavior curve regarding operating cost minimization 
demonstrates that the proposed SaCryStAl algorithm exhibits smoother and more rapid convergence compared 
to the CryStAl algorithm across all three charging modes investigated. Moreover, Figs. 10, 11, and 12 illustrate 
that the SaCryStAl algorithm delivers swift and resilient performance, effectively mitigating optimization chal-
lenges encountered in diverse power systems. In order to supply the PHEVs from the MG, there is a limitation in 
the utility generating to acquire the full power capabilities. When using coordinated and smart charging modes, 
there is less integration between MT and the grid. As a result, both modes’ running costs are better than the 
uncoordinated charging mode’s. According to Tables 11, 12 and 13, the FC serves as the primary energy source 
during the day, with the grid being used at night and in the morning. MT generation is roughly constrained. 
The RESs and batteries assist in meeting the demand at midday, and any extra electricity is then sold to the grid. 

Table 10.  Comparison of best compromise solution for Case-I and Case-II. NA not available.

Algorithm SaCryStAl CryStAl ALO91 FSAPSO91 Lexicographic optimization  algorithm110

Case-I
Operating cost (€ct) 177.29 178.13 187.81 191.042 180.4

Emission (kg) 469.92 471.89 473.12 721.076 529.3

Case-II
Operating cost (€ct) 112.02 113.46 NA NA NA

Emission (kg) 196.15 198.63 NA NA NA

Table 11.  Optimal generation schedule for minimization of operating cost for Case-III (uncoordinated 
charging).

Hour Pd(kW) Ppv(kW) Pwt(kW) Pmt(kW) PFC(kW) PBatt(kW) Pgrid(kW)

1 52 0 2.39 29.99 22.5 − 30 59.99

2 50 0 2.42 29.99 5 − 18.91 60

3 50 0 2.51 29.75 21.52 − 27.75 57.25

4 51 0 2.48 29.62 28.3 − 27.75 50.16

5 56 0 2.44 29.64 21.88 − 20 54.75

6 63 0 1.22 29.99 30.99 − 31.99 59.99

7 70 0 2.43 29.99 31.65 − 19.72 59.99

8 75 0 2.37 29.99 30.55 − 32.97 59.99

9 76 4.29 4.99 29.91 34.99 58.91 − 11.92

10 80 7.51 10.55 29.82 37.75 59.34 − 19.93

11 78 10.31 19.25 29.82 36.51 59.34 − 19.99

12 74 19.25 22.55 29.74 46.73 44.21 − 23.29

13 72 22.65 27.72 29.74 34.2 47.23 − 17.56

14 72 21.99 22.61 28.63 35.25 47.23 − 21.78

15 76 13.25 10.12 28.59 37.61 59.91 − 19.97

16 80 4.99 7.43 28.67 36.25 59.32 − 18.02

17 85 1.43 2.55 29.89 32.55 60 − 7.99

18 88 0 2.43 29.75 32.46 60 90.02

19 90 0 2.35 29.99 32.41 60 90.02

20 87 0 2.53 29.99 32.52 60 90.02

21 78 0 2.31 29.99 32.48 60 81.75

22 71 0 2.36 29.99 32.53 60 77.62

23 52 0 2.12 29.99 32.47 33.28 70.19

24 50 0 1.55 29.99 32.63 0 59.99
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Table 12.  Optimal generation schedule for minimization of operating cost for Case-III (coordinated 
charging).

Hour Pd(kW) Ppv(kW) Pwt(kW) Pmt(kW) PFC(kW) PBatt(kW) Pgrid(kW)

1 52 0 2.41 29.98 22.4 − 29.99 60

2 50 0 2.41 29.98 21.78 − 29.99 59.02

3 50 0 2.41 29.79 22.75 − 27.86 57.29

4 51 0 2.41 29.65 28.75 − 22.79 50.11

5 56 0 2.41 29.67 9.88 − 9.16 57.18

6 63 0 1.24 29.98 31.11 − 29.97 60

7 70 0 2.43 29.98 32.08 − 21.09 60

8 75 0 2.38 29.98 30.78 − 17.93 60

9 76 4.29 5.11 29.89 37.41 58.94 − 18.92

10 80 7.51 10.57 29.81 38.72 57.98 − 18.92

11 78 10.31 19.33 29.79 41.12 51.92 − 20

12 74 19.25 22.47 26.72 56.72 56.94 − 25.29

13 72 22.65 27.72 24.74 32.11 40.03 − 22.98

14 72 21.99 22.63 18.23 39.27 57.93 − 17.99

15 76 13.25 10.14 23.39 36.78 59.96 − 24.39

16 80 4.99 7.39 28.67 35.75 59.48 − 17.79

17 85 1.43 2.53 29.89 32.49 59.99 − 4.99

18 88 0 2.41 29.75 31.24 59.99 − 3.28

19 90 0 2.34 29.94 30.89 2.13 60

20 87 0 2.57 29.94 30.02 59.99 − 4.82

21 78 0 2.32 29.94 30.91 59.99 80.93

22 71 0 2.34 29.94 30.34 59.99 77.18

23 52 0 2.13 29.94 30.31 25.78 70.21

24 50 0 1.53 29.98 30.12 0 60

Table 13.  Optimal generation schedule for minimization of operating cost for Case-III (smart charging).

Hour Pd(kW) Ppv(kW) Pwt(kW) Pmt(kW) PFC(kW) PBatt(kW) Pgrid(kW)

1 52 0 2.44 30 22.78 − 30 60

2 50 0 2.44 30 20 − 30 60

3 50 0 2.44 28.39 5.12 − 7.98 58.13

4 51 0 2.44 30 32.12 − 5.48 60

5 56 0 1.29 30 32.12 − 1.28 60

6 63 0 2.43 30 31.78 − 29.99 60

7 70 0 2.09 30 31.29 − 21.18 60

8 75 0 2.43 30 33.13 − 17.89 60

9 76 5.15 2.39 29.12 32.78 59.02 − 19.18

10 80 7.63 6.99 28.29 37.01 56.29 − 17.28

11 78 10.09 18.98 23.91 45.12 51.18 − 21.89

12 74 12.89 21.99 18.12 49.14 47.12 − 24.71

13 72 24.92 28.19 27.97 51.29 49.12 − 27.89

14 72 20.18 22.87 30 44.89 49.89 − 30

15 76 9.12 10.09 28.92 38.19 57.92 − 19.94

16 80 5.23 7.59 30 32.01 59.78 − 9.83

17 85 1.46 2.71 30 31.29 60 − 3.75

18 88 0 2.48 30 30.98 60 − 2.16

19 90 0 2.33 30 31.89 − 1.89 60

20 87 0 2.48 30 32.98 60 − 2.56

21 78 0 2.43 30 31.87 60 − 9.99

22 71 0 2.43 30 31.87 60 − 20

23 52 0 2.09 30 30.99 − 27.13 60

24 50 0 1.49 30 27.99 − 30 60
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Table 14.  Analysis of simulation results for minimizing operating costs across three charging modes.

Algorithm Uncoordinated charging (€ct) Coordinated charging (€ct) Smart charging (€ct)

SaCryStAl 319.9301 160.9827 128.2815

CryStAl 320.8627 161.9064 129.0953

GSA-PS78 675.4259 390.4521 337.2845

BES78 321.7595 162.7251 129.8758

RUN78 322.0152 164.2675 131.5451

MGO78 322.2636 162.7319 132.6798

CBOA78 407.3604 242.3315 197.7891

BWO78 327.7516 175.3402 148.7032

DO78 328.1547 178.6087 142.4507

Figure 10.  Convergence characteristic for the minimization of operating cost (uncoordinated charging mode).

Figure 11.  Convergence characteristic for the minimization of operating cost (coordinated charging mode).
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In this case, the recommended energy management technique outperformed the other optimizers taken into 
consideration to produce the best operating costs for MG with PHEVs.

Conclusion and future research directions
This research implemented a new energy management technique for MGs with installed RESs and PHEVs that 
incorporates the SaCryStAl algorithm. The suggested method is accountable for distributing energy among many 
units. In the grid-connected MG, fuel cells, storage batteries, plug-in hybrid electric vehicles (PHEVs), nonrenew-
able sources (MT), and renewable generators (PV and WT) are all taken into consideration. The objectives taken 
into account in this effort include lowering the MG operating cost and reducing pollutant emission. In order to 
compare the performance of the proposed algorithm to currently used evolutionary optimization approaches, 
the study took into account three different scenarios. The research investigated three different scenarios to 
assess the effectiveness of the proposed algorithm compared to conventional CryStAl and other optimization 
techniques. The authors conducted simulations for each scenario and compared the results. In the first scenario, 
the SaCryStAl algorithm, designed for single-objective optimization, successfully achieved optimal solutions 
for cost and emissions, recording 124.15 €ct and 419.14 kg, respectively, within acceptable time frames of 97.19 
and 76.41 s respectively. Optimization result surpassed those of other existing optimization algorithms. In the 
second scenario, the SaCryStAl algorithm once again provided superior results, delivering optimal cost and 
emission values of 53.92 €ct and 135.186 kg, respectively, within acceptable computational times of 551.684 and 
597.062 s respectively. In the third scenario, the SaCryStAl algorithm maintained its success by achieving optimal 
operation costs of 319.9301 €ct, 160.9827 €ct, and 128.2815 €ct for the uncoordinated, coordinated, and smart 
charging modes of PHEVs, respectively. Moreover, the SaCryStAl algorithm demonstrated strong performance 
in optimizing both cost and emissions within a multi-objective framework. In the first scenario, it achieved 
optimal operational cost and emissions of 177.29 €ct and 469.92 kg respectively. In the second scenario, the 
algorithm produced even better results with optimal operational cost and emissions of 112.02 €ct and 196.15 kg 
respectively. The study’s findings suggest that widespread use of PHEVs and RES will have a significant impact 
on grid functioning in terms of emission goals. The SaCryStAl algorithm demonstrates remarkable stability, 
convergence, and performance, as evidenced by the numerical results. Notably, it yields a diverse collection of 
Pareto-optimal solutions that are evenly distributed. This abundance of options empowers system operators to 
select the most suitable power dispatch strategy to meet their economic and environmental objectives effectively. 
Furthermore, our proposed method outperforms other optimization algorithms in terms of both economic and 
environmental outcomes. Remarkably, despite its superior performance, the computational time of our approach 
remains practically identical to that of the conventional CryStAl. Moreover, our current research extends beyond 
mere optimization by incorporating market pricing, load, photovoltaic (PV), and wind turbine (WT) uncer-
tainties. This holistic approach ensures the optimal scheduling of microgrid operations, considering real-world 
uncertainties and enhancing the robustness of our findings.

In the future, a stochastic model that takes into account hydrothermal units as well as renewable energy 
sources could be offered. The proposed model’s influence on pollutant emissions can be thoroughly examined, 
and market prices and tariff structures can also be taken into account. In considering future research directions, 
several promising avenues emerge from this study’s findings. Firstly, further investigation into the integration 
of emerging technologies, such as advanced energy storage systems and demand response mechanisms, could 
enhance the efficiency and resilience of microgrid operations. Additionally, exploring the applicability of the 
proposed SaCryStAl algorithm in larger-scale energy systems and diverse geographical contexts would be ben-
eficial. Furthermore, incorporating real-time data analytics and machine learning techniques could augment the 

Figure 12.  Convergence characteristic for the minimization of operating cost (smart charging mode).
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algorithm’s decision-making capabilities, enabling more adaptive and proactive energy management strategies. 
Lastly, exploring the socio-economic implications of microgrid integration and assessing the potential barriers 
to adoption could provide valuable insights for policymakers and industry stakeholders. By addressing these 
research avenues, future studies can contribute to advancing the state-of-the-art in microgrid optimization and 
facilitating the transition towards sustainable and resilient energy systems.

Data availability
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