Skip to main content
. 2024 Jul 8;14:15652. doi: 10.1038/s41598-024-66644-3

Table 2.

Exploration of the proposed SaCryStAl algorithm to benchmark test functions.

S.No Name of the function Objective function Characteristics Dime-nsions Range Method fop Mean Std.Dev
1 Sphere f1(x) = i=1nxi2 Unimodal separable 30 [− 100,100] CM 0.00982 0.0693 0.2736
PM 0 0 0
2 Schwefel 1.2 f2(x) = i=1nj=1ixj2 Unimodal non-separable 30 [− 100,100] CM 0.00875 0.0946 0.0438
PM 0 0 0
3 Rosenbrock f3(x) = i=1n-1100xi+1-xi22+xi-12 Unimodal non-separable 30 [− 30,30] CM 0.00948 1.096897 0.09576
PM 0 0.0887707 0.077390
4 Quartic f4(x) = i=1nixi4+random0,1 Unimodal separable 30 [− 1.28,1.28] CM 0.00264 0.04858 0.02623
PM 0 0.030017 0.004868
5 Rastrigin f5(x) = i=1nxi2-10cos2πxi+10 Multimodal separable 30 [− 5.12,5.12] CM 0.00035 0.000257 0.000537
PM 0 0 0

CM classical method & PM proposed method.