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Validity of predictive equations 
for total energy expenditure 
against doubly labeled water
Olalla Prado‑Nóvoa 1*, Kristen R. Howard 1,2, Eleni Laskaridou 1, Guillermo Zorrilla‑Revilla 1,3,4, 
Glen R. Reid 1, Elaina L. Marinik 1, Brenda M. Davy 1, Marina Stamatiou 5, Catherine Hambly 5, 
John R. Speakman 5,6 & Kevin P. Davy 1*

Variations in physical activity energy expenditure can make accurate prediction of total energy 
expenditure (TEE) challenging. The purpose of the present study was to determine the accuracy 
of available equations to predict TEE in individuals varying in physical activity (PA) levels. TEE 
was measured by DLW in 56 adults varying in PA levels which were monitored by accelerometry. 
Ten different models were used to predict TEE and their accuracy and precision were evaluated, 
considering the effect of sex and PA. The models generally underestimated the TEE in this population. 
An equation published by Plucker was the most accurate in predicting the TEE in our entire sample. 
The Pontzer and Vinken models were the most accurate for those with lower PA levels. Despite the 
levels of accuracy of some equations, there were sizable errors (low precision) at an individual level. 
Future studies are needed to develop and validate these equations.

Keywords Total energy expenditure, Predictive equations, Physical activity, Doubly labeled water

Energy requirements of non-reproductive adults are defined as the amount of energy from food needed to bal-
ance energy expenditure so as to maintain body mass and composition as well as to meet the needs to maintain 
a level of physical activity associated with long-term  health1. When body mass is stable, energy requirements are 
equivalent to total energy expenditure (TEE)1. As such, accurate assessment of TEE is crucial to determine nutri-
tional needs, but also to understand many physiological, biological, and evolutionary  processes2–4. The doubly 
labeled water (DLW) technique is the gold standard for measuring free-living  TEE5. However, the isotopes and 
their quantification are costly. As such, other approaches are needed when DLW is unavailable or unaffordable.

Physical activity energy expenditure (PAEE) is the most variable component of  TEE3,6, making the estimation 
of daily requirements challenging. Several approaches have been used to quantify the cost of physical activity, 
including behavioral observation, questionnaires, heart rate, or motion  sensors7,8, but these resulted in limited 
accuracy. The physical activity level (PAL) can also be calculated as the quotient of TEE and resting metabolic rate 
(RMR). In turn, TEE can be estimated as multiples of RMR. The latter is a practical approach for controlling for 
age, sex, body mass and composition as well as expressing energy requirements in a range of individuals varying 
in habitual physical  activity1. The limitations of this approach have been discussed in previous  studies9,10 and 
include multiplicative prediction errors of estimated RMR and that PAL violates the assumption of a non-zero 
intercept and assumes PAEE depends on the same factors influencing RMR. In a similar additive conception of 
TEE, others have added the estimated PAEE obtained from accelerometry to  RMR11,12. However, this approach 
ignores sources of expenditure such as the thermic effect of food and thermoregulation costs, and was associated 
with considerable variability and limited  accuracy13. More importantly, this approach assumes that expenditure 
on activity is additive to the cost at rest, and does not consider the possibility that TEE could be  constrained4,14,15 
or that compensation might  occur16,17.
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Several prediction equations have been developed in an attempt to provide accurate estimates of  TEE9,10,18. 
Although limited in  number10, body mass, body composition, sex, age, height, and other factors have been used 
to predict  TEE3,19–21. Interestingly, the inclusion of PA from accelerometry in these predictive equations does 
not contribute significantly to the variability accounted for in  TEE10,14,21. However, this brings the possibility of 
testing how different equations that include and exclude PA perform when applied to a sample of individuals 
with different objectively measured PAL and PAEE.

The purpose of the present study was to determine the accuracy and precision of the available equations to 
estimate TEE (see Table S1) compared to DLW outcomes in a sample of females and males varying in physical 
activity levels.

Methods
Participants
Fifty-six healthy individuals (20–58 years; 27 females) with a wide range of habitual physical activity levels were 
recruited as part of a larger study. The participants were uniformly distributed across levels of self-reported 
physical activity, walking and/or running from 0 km per week to more than 120 km per  week22.

Exclusion criteria were applied to those who were smokers, pregnant or breastfeeding, following fad diets, 
taking medications that could influence TEE or its components, or with a medical history that prevented their 
participation in the study. The complete experimental study was approved by the Institutional Review Board 
at the Virginia Polytechnic Institute and State University (Virginia Tech) (IRB #21-567). All experiments were 
performed in accordance with relevant guidelines and regulations. The volunteers included in the study were 
properly informed and verbal and written consent were obtained. Detailed experimental procedures have been 
described  previously22.

Anthropometry, body composition, and resting metabolic rate (RMR)
Body mass (BM) (0.1 kg) and height (to the nearest cm) were obtained using a stand-on scale with stadiometer 
(Welch Allyn, Scale-Tronix 5002, Skaneateles Falls, NY, USA). Body mass index (BMI) was calculated as kg/m2. 
Body composition (Fat Mass, FM, and Fat-Free Mass, FFM) was measured by dual-energy X-ray absorptiometry 
(DXA scan, Lunar Digital Prodigy Advance, software enCORE version 15, GE Healthcare; Madison, WI, USA).

RMR was measured with indirect calorimetry (Parvo Medics, TrueOne 2400 Metabolic Measurement System, 
OUSW 4.3.4; Murray, Utah, USA) using a ventilated canopy in a rested state (after a minimum of 12 h with no 
exercise, and after fasting for 12 h) as described  previously22,23. The last 30 min of a 45-min measurement period 
were used for analysis. RMR (kcal/day) was measured twice in an interval separated by 14 days. The second 
measurement of RMR was used for analysis after documenting stability of body mass and excellent test–retest 
reliability (r = 0.93; p < 0.001).

Physical activity
Physical activity (PA) was assessed by self-report (walking/running km per week) and with a triaxial accelerom-
eter (ActiGraph GT3X, Actigraph Corporation, Pensacola, FL). Participants wore the accelerometer around their 
waist continuously for 14 days, removing it only for swimming, showering/bathing, or sleeping. Data collection 
was described in Prado-Nóvoa et al.22. Only individuals with at least 4 days each week for at least 10 h a day or 
more wear time were included for analysis. Fifty-three individuals met the established wear time criteria. Mean 
vector magnitude counts per minute per day (VM CPM) on valid monitoring days were used to quantify physical 
activity levels objectively. Self-reported physical activity levels (in km/week) were correlated with mean daily 
steps (r = 0.72, p < 0.001) and VM CPM (r = 0.62, p < 0.001) measured with accelerometry.

Total energy expenditure (TEE), physical activity energy expenditure (PAEE), and physical 
activity level (PAL)
TEE (kcal/day) was measured with Doubly Labeled Water (DLW) following standard  procedures24,25. After the 
collection of a baseline urine specimen, the participants were orally dosed with deuterium (2H2) and oxygen-18 
(18O) in the form of water (2H2

18O). Doses were calculated according to each participant’s body mass, with desired 
enrichment of 10% 18O and 5% 2H2, as follows (1):

where desired excess enrichment = 618.923 body mass,  kg−0.305; and dose enrichment (10%) 100,000  ppm26. Each 
participant was provided with a glass containing the precise dose required (weighed to 3 decimal points) and 
asked to consume all of the dose. To ensure that the entire dose of DLW was consumed, additional water was 
added to the dosing glass, which was also consumed. The time of dosing was recorded.

The second urine specimen was collected 3 h after the dose. Urine specimens at the second void of the day 
were then collected daily over 14 days and the timing of each sample collection recorded. Urine samples were 
encapsulated into capillaries and vacuum-distilled27. The resulting water was analyzed using a liquid water 
analyzer (Los Gatos  Research28). Samples were run alongside three laboratory standards and three interna-
tional standards (SLAP2; Standard Light Artic Precipitate, vSMOW2; Standard Mean Ocean Water, and GRESP; 
Greenland Summit  Precipitation26,29) to correct for daily variation and convert delta values to parts per million. 
Isotope elimination rates were converted to TEE using Equation 1 from Speakman et al.25. After obtaining the 
TEE, PAEE (kcal/day) (2) and PAL (3) were calculated as  follows6:

(1)dose (ml) =
Body mass

(

in g
)

∗ desired excess enrichment

dose enrichment
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Prediction of TEE
TEE was predicted in our participants with 10 different models. We applied four equations published by Plucker 
et al.20, two equations published by Pontzer et al.3, and three equations published by Vinken et al.19. In addi-
tion, TEE was also estimated in our participants using the PAEE estimated by accelerometry, an assumed TEF 
(10%), and the measured RMR: RMR + ACC PAEE. A detailed description of all the models applied is provided 
in Supplementary Table 1. The models  applied3,19,20 were selected because they are known predictive equations 
to estimate TEE based on individual characteristics not exclusively relying on an additive conception of TEE. 
Besides, some of them have been previously  evaluated10.

Statistical analysis
The statistical analysis was similar to those previously described by Prado-Nóvoa et al.22. T-test analyses were 
used to compare sample descriptive characteristics by sex. A one-way repeated-measures analysis of variance 
(ANOVA), with Bonferroni post-hoc tests, was used to compare measured and estimated TEE means (p < 0.05). 
Agreement between measured and predicted TEE was analyzed by Bland–Altman  plots30. The association 
between the magnitude of the TEE and the difference between predicted and measured TEE (heteroscedasticity) 
was examined by regression analysis, and the slope (β) pointed when the relationship was significant (p < 0.05) 
in the Bland–Altman plots, for the entire sample and each sex separately. Bias was calculated as the mean of the 
difference between measured and predicted TEE, with Standard Deviation (SD).

Other assessments of accuracy calculated were: lower (LLOA) and upper (ULOA) limits of agreement (For-
mula 1 in Supplementary Material), mean absolute percent error (MAPE) (Formula 2 in Supplementary Mate-
rial), mean difference as a percentage (%) (Formula 3 in Supplementary Material), root mean square error 
(RMSE) and its percentage (RMSE%) (Formulas 4 and 5, respectively, in Supplementary Material). In previous 
studies, no significant difference between means (p ≥ 0.05), a mean difference (%) ≤ 10%, and an RMSE% ≤ 10% 
were indicative of accuracy in predictive equations for  RMR22,31–34. Similar references are lacking for TEE predic-
tive equations accuracy, but the same criteria will be used in this study to describe accuracy. In addition, accuracy 
at an individual level was calculated as the percentage of individuals with a predicted TEE within ± 10% of the 
measured TEE.

One-way ANOVA analyses were used to test the effect of sex on the equation’s accuracy. The biases of the 
predicted TEE were examined against age, sex, BM, height, FM, FFM, percentage of FM, percentage of FFM, 
VM CPM, and PAL by multiple regression (General Linear Models—GLM), with backward deletion, avoiding 
multicollinearity. This analysis was made in the entire sample and separately by sex which allowed us to assess 
if our participants’ characteristics and PA were affecting the error magnitude of the estimations. Lastly, GLMs 
with backward deletion were also applied with measured TEE as the dependent variable in our total sample and 
separately by sex.

As it was expected, the PAL of our participants affected the performance of the predictive equations, so 
those individuals with PAL ≤ 1.89 (n = 28) were re-analyzed following the same procedures previously described. 
The cut point for PAL was set at 1.89 to eliminate very active  subjects35 from the calculations. To avoid redun-
dancy, these analyses were only repeated in the three most accurate equations in the entire sample (Plucker  320, 
 Pontzer23,  Vinken119). These subsets of analyses may improve the applicability of our results, allowing compari-
sons with other populations that are more sedentary.

Results
Accuracy of the predictive equations in the whole sample
The characteristics of our sample are shown in Table 1. Males had a significantly higher BM, height, FFM, and 
%FFM, but a lower %FM compared with females (p < 0.001). RMR and TEE were also significantly higher for 
males (p < 0.001). However, there were no significant differences in the remainder of the characteristics (age, 
BMI, FM, PAEE, PAL, Steps/d, and VM CPM) between males and females.

The comparisons between estimated and measured TEE, positive MAPE, and positive mean difference (%) 
indicated that all predictive models underestimated the TEE in the entire sample (Table 2) and for females 
(Table S2). However, the Plucker3 model was the only one overestimating the TEE of males, but with a nota-
ble individual variability (average of 68 kcal ± 613) (Fig. 1). Based on the accuracy criteria established in this 
study, the Plucker3 equation performed the best in the entire sample (Table 2) and better in males than females 
(Tables 3 and S2). Plucker4 also predicted TEE in males more accurately (Tables 3 and S2). However, all of the 
models applied had an RMSE% > 10%, indicating generally low performance of the equations at an individual 
level. Accordingly, Plucker3 showed the highest percentage of individuals with a predicted TEE within ± 10% 
of the measured value, close to 43% in the entire sample and 55% of the males (Tables 2 and S2). This generally 
indicates a lower precision of the equations.

All the equations showed large limits of agreement and RMSE (Table 2 and Fig. 1). Some equations showed 
heteroscedasticity (p < 0.01, black dotted line in Fig. 1), especially when each sex was considered separately 
(purple [females] and blue [males] dotted lines in Fig. 1). Sex influenced some indicators of accuracy; the per-
formance of the equations was generally poorer when applied to females: significantly higher bias, MAPE, mean 
difference %, and lower accuracy (%) (see details in Table S2).

(2)PAEE = (TEE× 0.9)− RMR

(3)PAL = TEE/RMR
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Table 1.  Summary characteristics of the sample. Data expressed as mean ± standard deviation. ♀: females; ♂: 
males; BM: body mass; BMI: Body Mass Index; FFM: fat-free mass; FM: fat mass; RMR: resting metabolic rate; 
TEE: total energy expenditure; PAEE: Physical activity energy expenditure; PAL: physical activity level (TEE/
RMR); VM CPM: vector magnitude counts per minute per day. *Significant differences by sex (T-Student test, 
p-value < 0.05). † Significant difference with the total sample (T-Student test, p-value < 0.05). # Three females 
were excluded for Steps/d and VM CPM due to accelerometry criteria for valid days.

Total sample (n = 56) Subjects with PAL ≤ 1.89 (n = 28)

♀ (n = 27) ♂ (n = 29) ♀ (n = 12) ♂ (n = 16)

Age (years) 35 ± 9 35 ± 10 33 ± 10 35 ± 11

BM (kg) 58.9 ± 7.0 73.8 ± 9.3* 60.2 ± 9.2 76.0 ± 10.4*

Height (cm) 165 ± 5 181 ± 7* 164 ± 4 183 ± 6*

BMI (kg/m2) 21.7 ± 1.9 22.5 ± 2.1 22.7 ± 2.5 22.6 ± 1.9

FFM (kg) 44.9 ± 4.8 60.9 ± 6.4* 43.8 ± 5.2 61.8 ± 7.0*

%FFM 76.4 ± 7.1 82.9 ± 4.9* 73.4 ± 7.9 81.7 ± 5.3*

FM (kg) 14.6 ± 5.3 13.2 ± 4.6 16.7 ± 6.9 14.6 ± 5.1

%FM 24.3 ± 6.4 17.6 ± 4.7* 27.1 ± 7.7 18.9 ± 5.1*

RMR (kcal/d) 1459 ± 144 1828 ± 1923* 1456 ± 156 1882 ± 208*

TEE (kcal/d) 2841 ± 478 3408 ± 525* 2550 ± 389 3114 ± 455*

PAEE (kcal/d) 1137 ± 329 1186 ± 516 839 ±  223† 920 ±  345†

PAL 1.97 ± 0.22 (Min. 1.53–Max. 2.48) 1.84 ± 0.34 (Min. 1.31–Max. 2.57) 1.75 ± 0.13† (Min. 1.53–Max. 1.89) 1.66 ± 0.20† (Min. 1.31–Max. 1.88)

Steps/d 12,781 ±  3920# (Min. 4142–Max. 
21,555) 12,284 ± 4108 (Min. 6064–Max. 21,712) 12,483 ± 4311.88# (Min. 5106–Max. 

16,662)
10,790 ± 3155 (Min. 6276–Max. 
15,926)

VM CPM 806.3 ± 212.6# (Min. 367.4–Max. 1157) 831.9 ± 235.2 (Min. 416.8–Max. 1198) 748.9 ± 216.3# (Min. 367.4–Max. 996.1) 703.3 ± 179.6 (Min. 416.8–Max. 
1029.7)

Table 2.  Validity and accuracy of equations to estimate TEE (kcal/day) in the whole sample and for 
those subjects with physical activity levels (PAL) ≤ 1.89. RMR + ACC PAEE = Measured resting metabolic 
rate + Physical activity energy expenditure measured by accelerometry, using the standard thermic effect of 
food (0.9). Data expressed as mean ± standard deviation (SD). Bias = mean of the difference between measured 
and predicted TEE, positive values indicate underestimation, negative values indicate overestimation; 
LLOA = lower limit of agreement; ULOA = upper limit of agreement; MAPE = mean absolute percent error; 
Mean difference % = percentage of the difference between measured and predicted TEE; RMSE = root mean 
square of error; %RMSE = Percentage of root mean square of error; Accuracy (%) = percentage of subjects with 
a predicted TEE within ± 10% of the measured value. *Significant difference between predicted and measured 
TEE (Bonferroni post hoc test, p-value < 0.05). Values in bold represent accomplished criteria to consider 
an equation accurate: no significant difference between measured and predicted TEE; and mean difference 
% ≤ 10%. #Three females were excluded due to accelerometry criteria for valid days.

Mean ± SD Bias (Mean ± SD) LLOA ULOA MAPE Mean difference % RMSE %RMSE Accuracy (%)

Whole sample (n = 56)

Measured TEE 3134 ± 575 – – – – – – – –

Predicted TEE

 Plucker1 2625 ± 479* 509.31 ± 524.94 − 519.57 1538.19 18.64 14.87 728.04 27.73 17.86

 Plucker2 2185 ± 229* 949.05 ± 649.40 − 323.77 2221.87 28.60 27.65 1146.68 52.48 16.07

 Plucker3 2940 ± 646 194.55 ± 581.19 − 944.59 1333.68 15.15 5.16 607.95 20.68 42.86

 Plucker4 2528 ± 788* 606.67 ± 683.69 − 733.36 1946.70 24.81 19.11 909.47 35.98 21.43

 Pontzer1 2586 ± 457* 548.30 ± 507.92 − 447.22 1543.83 18.92 16.15 744.32 28.78 19.64

 Pontzer2 2795 ± 477* 339.18 ± 442.73 − 528.58 1206.94 14.54 9.68 554.58 19.84 25.00

 RMR + ACC PAEE # 2548 ± 484* 628.60 ± 359.28 − 75.59 1332.80 19.87 19.33 589.49 23.14 17.86

 Vinken1 2851 ± 401* 283.63 ± 521.45 − 738.40 1305.67 15.06 7.09 589.49 20.68 37.50

 Vinken2 1987 ± 448* 1147.30 ± 368.48 425.07 1869.52 36.51 36.51 1204.01 60.59 0.00

 Vinken3 1522 ± 408* 1612.18 ± 397.76 832.57 2391.79 51.51 51.51 1659.67 109.05 0.00

PAL ≤ 1.89 (n = 28)

Measured TEE 2872 ± 507 – – – – – – – –

Predicted TEE

 Plucker3 3051 ± 969 − 178.75 ± 502.38 − 1163.41 805.91 13.19 − 6.45 524.71 17.20 53.57

 Pontzer2 2828 ± 526 44.32 ± 358.32 − 657.98 746.62 10.66 1.03 354.64 12.54 39.29

 Vinken1 2931 ± 424 − 58.37 ± 416.97 − 875.62 758.88 12.42 − 3.48 413.59 14.11 50.00
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Figure 1.  Bland–Altman plots for measured and predicted TEE applied to the whole sample (n = 56). 
Purple (♀ = females), blue (♂ = males), and black (both sexes) dotted lines represent the relationship between 
the magnitude of the TEE and the extent of error of the predictive equations by sex (homoscedasticity or 
heteroscedasticity). When β (slope of the line) is shown, heteroscedasticity is significant (p-value < .01). Green 
solid line shows the mean difference between measured and predicted TEE for each model. Orange dashed lines 
show the limits of agreement (Bias ± 1.96*Standard Deviation).
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GLM regressions showed that in addition to age or body composition, physical activity (VM CPM and/or 
PAL) impacted the bias of the models in the whole sample and by sex (Table S3). Therefore, the error of the 
estimations was generally higher for more active participants.

On the other hand, GLM with measured TEE as the dependent variable showed BM, FM, and VM CPM 
predicted 61% of the variability in our total sample (Table S4). For males, 73% of TEE variability was explained 
by FFM and VM CPM. However, only 52% of TEE variability was explained for females, with RMR as the only 
significant variable in the model (Table S4).

Accuracy of the predictive equations in subjects with PAL ≤ 1.89
When the subset of subjects with PAL ≤ 1.89 were compared to the whole sample, significant differences were only 
found for PAEE and the average PAL (significantly lower, p < 0.05) (Table 1). The statistical differences detected 
by sex in the whole sample remained in this subset of participants (Table 1).

The three equations applied (Plucker3, Pontzer2, and Vinken1) performed significantly better in these subjects 
than when applied to the entire sample (Table 2). Although Pontzer2 was the only equation slightly underesti-
mating TEE (average of − 44 kcal ± 358), predicted TEE averages were not significantly different from measured 
TEE in any equation. The mean difference (%) was < 10% for the three equations. The only accuracy metric not 
accomplished was %RMSE ≤ 10%, although the results were better than for the entire sample. Pontzer2, followed 
by Vinken1, were the most accurate equations (lower bias, mean difference%, and %RMSE, Table 2).

Lower performance at the individual level was still detected in these subjects (large limits of agreement) 
(Table 2), but Pontzer2 did not show heteroscedasticity when applied to these subjects, and heteroscedasticity 
was reduced for Vinken1 (Fig. 2). The percentage of individuals with a predicted TEE within ± 10% of the meas-
ured value (precision) was close to 50% for both sexes, and notably higher (67%) for females with the Plucker3 
equation (Accuracy (%), Tables 2 and S2). Although higher in this subset, the precision of the equations can 
still be considered low.

Sex influenced some indicators of accuracy (Table S2), so Plucker3 and Vinken1 were more accurate for 
females and Pontzer3 for males (Tables S2 and 3). In this subset of analyses, Vinken1 was the only equation being 
accurate for both sexes (Tables S2 and 3).

GLM regressions for the bias of the models also showed that, besides characteristics like age, BM, or body 
composition, physical activity (VM CPM and/or PAL) positively influenced the error of the estimations 
(Table S3). On the other hand, measured TEE was more predictable in this subset of individuals (GLM), with 
 AdjR2 ranging from 73.59 to 76.98%, using BM, RMR, and VM CPM as independent variables (see details in 
Table S4).

Discussion
The major finding of this study was that all of the models applied on average underestimated the TEE in our 
entire sample, and none met all the criteria to be considered accurate. This underestimation was usually greater 
with increasing TEE, which in our sample also indicated higher physical activity levels (as PAL or as VM CPM). 
The equation published by Plucker et al.20 based on age, body mass, height, and RMR was the most accurate 
in predicting the TEE in our entire sample (average bias of 195 kcal). However, the accuracy and precision of 
the equations applied were significantly improved when less active individuals (PAL ≤ 1.89) were considered 
separately. In this case,  Pontzer23 (underestimating an average of 44 kcal) and  Vinken119 (overestimating an 
average of 58 kcal) were the most accurate. The latter observation was independent of the sex of the participants.

The RMSE% > 10% reflected the sizable errors at the individual level for all the equations. The heterosce-
dasticity detected (Figs. 1 and 2) and the influence of our participant’s PA on the equation’s accuracy (Table S3) 
contributed to the differences between our population and those used to develop the predictive models (Table S1). 
Our participants were younger with lower BMI and notably higher TEE than those in Plucker et al.20, Pontzer 
et al.3, and Vinken et al.19 (Tables 1 and S1). The latter was a consequence of the higher levels of PA in our sample.

It is noteworthy to highlight the poor performance of the equations that included accelerometry-derived 
PAEE (Vinken2 and Vinken3, Table 2 and Fig. 1). The limitations of considering accelerometry PAEE to predict 

Table 3.  Summary of equations meeting 2 criteria to be considered accurate when applied to the whole 
sample and dichotomized by sex (♀ = Females; ♂ = Males) and also for those subjects with physical activity 
levels (PAL) ≤ 1.89. In this subset of subjects with PALs ≤ 1.89, only Plucker3, Pontzer2, and Vinken1 models 
were tested (dark gray headings). Criteria accomplished: no significant difference between measured and 
predicted TEE, mean difference (%) ≤ 10%.

PLUCKER1 PLUCKER2 PLUCKER3 PLUCKER4 PONTZER1 PONTZER2
RMR + ACC 
PAEE VINKEN1 VINKEN2 VINKEN3

Total sample

♀ and ♂ 
(n = 56) ✓

♀ (n = 27)

♂ (n = 29) ✓ ✓

Subjects with 
PAL ≤ 1.89

♀&♂ (n = 28) ✓ ✓ ✓

♀ (n = 12) ✓ ✓

♂ (n = 16) ✓ ✓
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TEE include the use of models from different manufacturers, different wear locations, and/or sampling frequency 
(see references in Fernández-Verdejo and  Galgani10). Therefore, the lack of standardization may reduce the appli-
cability of these predictive equations. In this regard, our findings (RMR + ACC PAEE in Table 2) are consistent 
with a significant underestimation of TEE derived from accelerometry PAEE in free-living  conditions11,36. As 
previously  mentioned10, improving TEE estimations by including objectively measured PA remains a challenge, 
and accelerometry-derived PAEE accuracy is highly  variable13. Standardization in the units of measurement, 
sharing the technical specifications and computational methods of the manufacturers, and better calibrations 
of PAEE against gold-standard techniques may improve the performance of these equations in future studies.

Interestingly, the three metrics of accuracy were differentially impacted by sex in the equations evaluated 
(Table S2). Contrary to the RMR prediction in our  sample22, the equations evaluated in the present study were 
more accurate in males than females (Table S2), especially when the whole sample is considered (Table S4). 
Finally, subject characteristics and PA accounted for a greater portion of the variability in bias for males than 
females (Table S3). Future studies need to address sex in the development of equations to predict TEE, as has 
been suggested for RMR  prediction22,37.

As also pointed out by Fernández-Verdejo and  Gaglani10 and Macena et al.38, there is a gap in the literature 
validating TEE equations’ accuracy across different populations. We are aware that some of the equations with 
higher accuracy and precision in our study may not easily apply for others due to the inclusion of the RMR or 
body composition parameters. However, in our sample, these are also the factors remaining in the models to 
predict TEE (Table S4). This agrees with previous  studies20,39–41 (but see Tudor-Locke et al.42), but challenges the 
possibility of accurately predicting TEE based on simple factors such as age, sex, height, and body mass, especially 
if individuals with different physical activity levels are considered (Table 2).

Figure 2.  Bland–Altman plots for measured and predicted TEE for those subjects with physical activity 
levels ≤ 1.89 (n = 28). The three equations shown are the ones with a better performance in the entire sample. 
Purple (♀ = females), blue (♂ = males), and black (both sexes) dotted lines represent the relationship between 
the magnitude of the TEE and the extent of error of the predictive equations by sex (homoscedasticity or 
heteroscedasticity). When β (slope of the line) is shown, heteroscedasticity is significant (p-value < .01). Green 
solid line shows the mean difference between measured and predicted TEE for each model. Orange dashed lines 
show the limits of agreement (Bias ± 1.96*Standard Deviation).
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Although finding a unique predictive model for energy requirements across populations may be  difficult20 
and predictive equations perform poorly at an individual level (low precision), these equations are still essential 
for many clinical  interventions20,43, i.e. to determine nutritional needs, target energy balance, or health improve-
ments and lifestyle changes. Moreover, the average bias of the equations performing best in our sample was less 
than 195 kcal (Table 2). Together with other metrics of accuracy in Table 2, this indicates that these equations 
may be superior to other techniques to approximate TEE, like self-reported energy  intake44, motion  sensors45, 
and heart rate  monitoring46, without the necessity of individual calibrations.

Practical applications and strengths
Our analyses indicated that when a large variability in physical activity levels (from sedentary to very active) 
was considered, Plucker3 equation was most accurate in predicting TEE at a population level, but less so at an 
individual level (low precision) and for females alone. Additionally, RMR is included in Plucker3 model, which 
may not be available or, if estimated, may add error to TEE estimation.

The Pontzer2 equation was the most accurate model, particularly for males, when less active individuals 
(PAL ≤ 1.89) were considered separately. However, the Vinken1 equation was the most accurate, for both males 
and females, among the equations that did not rely on body composition. Nonetheless, caution must be taken 
as our analyses suggested that the error of the predictions was influenced by sample parameters like body com-
position and physical activity.

There are several strengths of our study. First, we included gold-standard techniques for the measurement 
of body composition and both RMR and TEE. In addition, we quantified habitual physical activity of our par-
ticipants over a 14-day period using  accelerometry42,47,48. Second, the inclusion of similar numbers of males and 
females and a uniform distribution of physical activity levels allowed us to consider if these variables impact 
predictions. Third, body mass and composition stability were documented over the measurement period, thus 
avoiding a potential confound of energy imbalance. Lastly, we utilized objective metrics for evaluating the accu-
racy of published prediction equations and, in so doing, may serve as a reference to others seeking to develop 
and validate new equations.

Limitations of the study
There are some limitations that should be considered. First, our sample size was relatively small. As such, different 
results may be obtained in a larger sample. Second, the participants in our study were primarily Caucasian, young, 
with normal weight, and generally more active than the US  population49. As such, the accuracy of the predic-
tive equations may be different when applied to other groups. Finally, the assumed respiratory quotients (RQ) 
used to calculate TEE in the DLW  calculations25 may have impacted the accuracy of the predictive equations.

Conclusions
The present study demonstrated that available published equations tended to underestimate TEE in our sample. 
Although some models were accurate in predicting TEE across a wide spectrum of habitual physical activity 
and in the less active participants (i.e., PAL ≤ 1.89), precise prediction of TEE at an individual level remains a 
challenge. More studies are needed to develop and validate predictive equations that do not rely on a classic 
additive conception of the TEE. The validation of these equations in diverse populations is necessary to improve 
application.

Data availability
The datasets generated during the current study are available from the corresponding author on reasonable 
request.
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