
EXCLI Journal 2024;23:763-771 – ISSN 1611-2156 

Received: March 08, 2024, accepted: April 17, 2024, published: May 14, 2024 

 

 

 

763 

Original article: 

INTEGRATING FNIRS AND MACHINE LEARNING:  

SHEDDING LIGHT ON PARKINSON'S DISEASE DETECTION 
 

Edgar Guevara1 , Gabriel Solana-Lavalle2 , Roberto Rosas-Romero2*  

 
1 CONAHCYT – Universidad Autónoma de San Luis Potosí 
2 Electrical & Computer Engineering Department, Universidad de las Américas-Puebla 

 

* Corresponding author: Roberto Rosas-Romero, Electrical & Computer Engineering  

Department, Universidad de las Américas-Puebla. E-mail: roberto.rosas@udlap.mx  

 

 
https://dx.doi.org/10.17179/excli2024-7151 

 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License  
(http://creativecommons.org/licenses/by/4.0/). 
 

ABSTRACT 

The purpose of this research is to introduce an approach to assist the diagnosis of Parkinson’s disease (PD) by 

classifying functional near-infrared spectroscopy (fNIRS) studies as PD positive or negative. fNIRS is a non-

invasive optical signal modality that conveys the brain’s hemodynamic response, specifically changes in blood 

oxygenation in the cerebral cortex; and its potential as a tool to assist PD detection deserves to be explored since 

it is non-invasive and cost-effective as opposed to other neuroimaging modalities. Besides the integration of fNIRS 

and machine learning, a contribution of this work is that various approaches were implemented and tested to find 

the implementation that achieves the highest performance. All the implementations used a logistic regression 

model for classification. A set of 792 temporal and spectral features were extracted from each participant’s fNIRS 

study. In the two best performing implementations, an ensemble of feature-ranking techniques was used to select 

a reduced feature subset, which was subsequently reduced with a genetic algorithm. Achieving optimal detection 

performance, our approach reached 100 % accuracy, precision, and recall, with an F1 score and area under the 

curve (AUC) of 1, using 14 features. This significantly advances PD diagnosis, highlighting the potential of inte-

grating fNIRS and machine learning for non-invasive PD detection. 

 

Keywords: Parkinson’s disease, functional near-infrared spectroscopy, machine learning, feature subset selection, 

genetic algorithms 

 

 

INTRODUCTION 

Parkinson's disease (PD), a progressive 

neurodegenerative disorder, is typified by 

motor symptoms such as rigidity, tremors, 

and bradykinesia (Váradi, 2020). The integra-

tion of neuroimaging techniques such as Pos-

itron Emission Tomography (PET) and func-

tional Magnetic Resonance Imaging (fMRI) 

with machine learning has significantly ad-

vanced research in PD, offering profound in-

sights into the disease's neural mechanisms. 

Functional imaging studies have provided 

powerful tools to study the functional anat-

omy and pathophysiology of PD, enabling the 

analysis of task-specific changes in regional 

cerebral blood flow and blood oxygenation 

level dependent (BOLD) effects (Ceballos-

Baumann, 2003). Resting State fMRI (RS-

fMRI) has been utilized to identify frequency-

specific changes in resting brain activity, of-

fering a novel perspective in PD diagnosis 

through machine learning approaches (Tian et 

al., 2020). Additionally, advancements in data 

analysis methods using Empirical Mode De-

composition (EMD) have been explored to in-

vestigate temporal changes in early PD, fur-

ther emphasizing the role of neuroimaging in 

understanding the disease's progression 

(Cordes et al., 2018). These studies under-
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score the potential of combining advanced 

neuroimaging with machine learning to en-

hance the diagnosis, understanding, and treat-

ment of PD, paving the way for more effec-

tive interventions and improved patient out-

comes. In summary, neuroimaging coupled 

with machine learning techniques is a prom-

ising approach for detecting PD potentially 

leading to earlier diagnosis and more person-

alized treatment strategies. 

Functional Near-Infrared Spectroscopy 

(fNIRS) is a non-invasive optical imaging 

technique. It measures the hemodynamic re-

sponses associated with neural activity, spe-

cifically monitoring the changes in blood ox-

ygenation and blood volume in the cerebral 

cortex. fNIRS utilizes near-infrared light to 

penetrate the skull and measure the differen-

tial absorption of light by oxy-hemoglobin 

and deoxy-hemoglobin, thus providing in-

sights into brain function. This method is val-

uable due to its safety, non-invasiveness, rel-

ative low-cost, portability, and ability to pro-

vide measurements of the brain's hemody-

namic changes linked to neuronal activity 

(Ayaz et al., 2022). Yet, the potential of 

fNIRS as a diagnostic tool for PD remains 

largely unexplored. While ML techniques 

have been widely applied to other neuroimag-

ing modalities like MRI, PET and electroen-

cephalography (EEG) in PD research (Desai, 

2023; Thummikarat and Chongstitvatana, 

2021), the integration of fNIRS data in these 

studies is less common.  

The application of fNIRS combined with 

machine learning techniques in the study of 

PD illustrates a promising frontier for diag-

nosing and understanding the neurofunctional 

correlates of this neurodegenerative disorder. 

Research has shown the effectiveness of hy-

brid EEG-fNIRS models and machine learn-

ing algorithms in classifying diseases and as-

sessing brain function, particularly in move-

ment-related tasks significant to PD. There 

are studies that demonstrate the potential of 

fNIRS to provide insights into the prefrontal 

cortex's role in motor function, suggesting its 

utility in exploring PD's impact (Cicalese et 

al., 2020; Nieuwhof et al., 2016). Further-

more, advancements in machine learning 

have enhanced the analysis of fNIRS data, of-

fering frameworks to distinguish PD patients 

from healthy controls (Hamid et al., 2022). 

Additionally, the exploration of functional de-

generation through fNIRS-based brain state 

transitions and connectivity analysis under-

scores the technique's capability to capture 

neurofunctional alterations associated with 

PD (Lu et al., 2022). Collectively, these stud-

ies underscore the valuable contributions of 

fNIRS and machine learning in advancing PD 

diagnosis and understanding, marking a step 

forward in the non-invasive exploration of 

brain activity and functional changes inherent 

to the disease. 

fNIRS could provide unique insights into 

the cerebral hemodynamics associated with 

PD, offering a non-invasive, cost-effective al-

ternative to traditional neuroimaging meth-

ods. The objective of this study is to integrate 

functional Near-Infrared Spectroscopy 

(fNIRS) with ML for PD detection. Our focus 

is on identifying the most effective feature se-

lection methods and ML algorithms suitable 

for this purpose. 

The “Materials and Methods” section dis-

cusses fNIRS and ML are applied to the task 

of PD detection. The “Results and Discus-

sion” section provides a discussion of the ex-

perimental results obtained by following dif-

ferent strategies of feature subset selection.  

 

MATERIALS AND METHODS 

An overview of the proposed approach for 

PD analysis on fNIRS studies is shown in Fig-

ure 1. This approach consists of four stages: 

(1) feature extraction from each fNIRS study, 

(2) standardization of extracted features, (3) 

selection of the most relevant features and 

subsequent selection of those relevant fea-

tures with the best classification performance 

with Wrapper Feature Subset Selection 

(WFSS) and a genetic algorithm, (4) classifi-

cation to identify an individual as having PD 

or not. This methodology was implemented in 

Python version 3.10.9.
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Figure 1: Methodology for PD detection by analyzing fNIRS signals from participants. The methodology 
consists of four states: feature extraction, feature pre-processing, feature selection and feature classifi-
cation. 

 

 

Data set 

The data set acquisition was conducted on 

recruited participants with signed informed 

consents according to the Declaration of Hel-

sinki (with registration number 77-21) at the 

Neurology Department of the Central Hospi-

tal “Dr. Ignacio Morones Prieto” in Mexico 

from October 2021 to October 2022. The par-

ticipants were seated with closed eyes as mo-

tionless as possible during six minutes under 

low lighting so that they were relaxed and 

without fallen asleep. Twenty PD patients 

were enrolled and diagnosed by a neurologist 

according to the criteria of the United King-

dom PD Society Brain Bank (Hughes et al., 

1992), where the degree of disease severity 

was determined using the Hoehn and Yahr 

(HY) scale (Hoehn and Yahr, 1967) and the 

Movement Disorder Society-Sponsored Revi-

sion of the Unified Parkinson Disease Rating 

Scale (MDS-UPDRS, part III) (Goetz et al., 

2007), and these ratings were validated by an 

independent rater (IRL). All evaluations were 

conducted while the PD patients were not tak-

ing anti-parkinsonian medication, approxi-

mately 12 hours after the last dose. The con-

trol group was composed of twenty individu-

als matched in terms of age and sex, whose 

cognitive functions were assessed with the 

Montreal Cognitive Assessment (MoCA) 

(Nasreddine et al., 2005), where severe cog-

nitive impairment was established at a score 

bellow 10 on the MoCA examination.  

Signals carrying brain activity were rec-

orded with the portable fNIRS system Brite 

MKII (Artinis Medical Systems BV, the 

Netherlands), depicted in Figure 2a. This sys-

tem consists of (1) ten dual-wavelength LEDs 

centered at 757 and 843 nm at a sampling fre-

quency of 25 Hz (red circles in Figure 2b), (2) 

eight detectors (blue squares in Figure 2b), (3) 

twenty long channels (10 per hemisphere) to 

measure hemoglobin changes across bilateral 

motor brain regions (Figure 2c), and (4) two 

short channels to minimize the effects of su-

perficial hemodynamics (Brigadoi and 

Cooper, 2015; Tachtsidis and Scholkmann, 

2016). For each participant at resting state, 22 

fNIRS signals were recorded during six 

minutes at a sampling frequency of 25 Hz, 

and each signal was converted into three ab-

sorption contrasts HbR (deoxyhemoglobin), 

HbO (oxyhemoglobin), and HbT (total hemo-

globin). Care was taken to remove channels 

with poor signal and correct motion artifacts 

via spline and wavelet decomposition (Novi 

et al., 2020). 

 

Feature extraction and pre-processing 

Channels with poor signals were elimi-

nated and motion artifacts were corrected. A 

total of 792 features were extracted from each 

participant, and these features were catego-

rized into two groups: 396 temporal features 

and 396 spectral features.  

The total number of temporal features per 

participant was 22 channels × 3 bands per 
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channel × 6 characteristics per band = 396 sta-

tistical features per participant. Six temporal 

features were calculated from each band 

(HbO, HbT, HbR): (1) maximum absolute 

value 𝑚𝑎𝑥 
𝑛

|𝑥(𝑛)| , (2) average value 𝑥(𝑛)̅̅ ̅̅ ̅̅ , 

(3) variance 𝑥2(𝑛)̅̅ ̅̅ ̅̅ ̅̅ , (4) skewness 𝑥3(𝑛)̅̅ ̅̅ ̅̅ ̅̅ , (5) 

average time between two consecutive zero 

crossings, (6) average time between a zero 

crossing and a peak value. An analysis of the 

frequency spectrum of each band 𝑋(𝜔) was 

conducted to extract six spectral features: (1) 

average value, (2) variance, (3) skewness, (4) 

kurtosis, (5) energy, (6) dominant frequency. 

 

Figure 2: a) Pictures showing the location of an 
optode array on a single participant's skull. b) 
Registered probe geometry: the eight detectors 
are designated by blue squares, while the ten 
sources are indicated by red circles. Long sepa-
ration channels (30 mm) are indicated by black 
numerals in gray ellipses, and short separation 
channels (SSC = 10 mm) are indicated by black 
lines, c) a logarithmic temperature plot represent-
ing the probe's sensitivity to detect brain hemody-
namics goes from 1.00 (0 dB, red) to 0.01 (-40 dB, 
blue) times the maximum sensitivity. 

Feature selection 

The number of extracted features per par-

ticipant was high. Instead of using one feature 

selection method, ensemble feature selection 

was used to reduce the number of features and 

the complexity of the classification model 

(Jong et al., 2004; Jiménez et al., 2022). An 

ensemble of methods combines the strengths 

of various methods to obtain an optimal fea-

ture subset and enhance classification perfor-

mance. Two categories of feature selection 

methods were used: feature ranking (MAD 

filter, MIG filter, Fisher’s score, elastic net re-

gression, L1-norm SVM) followed by feature 

subset selection: Wrapper feature subset se-

lection (Kohavi and John, 1997), Genetic al-

gorithms (Katoch et al., 2021).  

In one set of experiments, those features 

that were ranked by at least two filters (MAD, 

MIG, Fisher’s score) in the top 1 % were se-

lected to train a logistic classifier and measure 

its accuracy. This process was repeated for 

those features that were ranked in the top 2 % 

and up to the 10 %, which resulted in ten fea-

ture subsets. The feature subset with the high-

est accuracy was selected. The L1-norm SVM 

and elastic net regression methods were also 

run to generate two corresponding feature 

subsets. Finally, the three subsets obtained by 

running three selecting strategies (filters, L1-

norm SVM, elastic net regression) were com-

bined. 

In a second set of experiments, feature 

subset selection was conducted by using 

Wrappers feature subset selection (WFSS) or 

Genetic Algorithms (GA). 

Mean absolute difference (MAD) filter 

This filtering method selects features ir-

respective of the used classifier. Each feature 

is evaluated individually. If a feature has 

zero mean absolute difference from the mean 

value, then it is removed. It is assumed that 

features with higher mean absolute differ-

ence are likely to contain more information. 

Mutual information gain (MIG) filter 

This method evaluates the information 

gain for each feature, and those features that 

maximize the information gain are selected. 
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The selected features in turn minimize the in-

formation entropy so that the separation of the 

corresponding classes is the most effective for 

discrimination. 

Fisher’s score feature selection 

The Fisher score feature selection ranks 

features based on their discriminative power 

in a dataset with various classes. The Fisher's 

score is the ratio of the between-class vari-

ance and the within-class variance. A feature 

with high Fisher's score is more discrimina-

tive for classification. 

Elastic net regression 

The elastic net regression performs fea-

ture selection by shrinking the coefficients of 

irrelevant features to zero, which results in a 

model with a reduced feature subset. The elas-

tic net regression combines the strengths of 

(1) the Lasso regression that adds an L1 pen-

alty term to encourage sparsity in the feature 

set and (2) the Ridge regression that adds an 

L2 penalty term to shrink less relevant features 

towards zero. 

L1-norm SVM for feature selection 

The SVM uses a kernel function (linear, 

polynomial, or radial basis function) to learn 

decision hyper-planes and by tuning the hy-

perparameters embedded feature selection can 

be performed. The model was trained with a 

technique that constrains or regularizes the 

coefficients with the effect of forcing some of 

the parameter estimates to be zero so that the 

corresponding features are discarded. 

 

Wrappers feature subset selection (WFSS) 

In this method various feature subsets 

are obtained, then a classifier is trained with 

each feature subset, and the classifier with 

the best performance corresponds to the se-

lected feature subset. WFSS is essentially a 

search problem. Instead of greedily gener-

ating all the possible feature subsets, which 

is computationally very expensive, heuris-

tics are used to generate a reduced number 

of feature subsets (Kohavi and John, 1997). 

Forward selection is an iterative heuristic, 

which keeps adding the feature which best 

improves a classifier. Backward elimina-

tion removes the least significant feature at 

each iteration in terms of classification per-

formance. WFSS heuristics iteratively 

keeps aside the best or the worst performing 

feature at each iteration. It then ranks the 

features based on the order of their elimina-

tion. 

Feature selection based on genetic  

algorithms 

Genetic algorithms select a feature subset 

based on evolution (Katoch et al., 2021). Each 

feature subset is represented with a binary 

code in which an absent feature is coded as 

zero while a present one is coded as one. The 

first step is to randomly generate a collection 

of binary codes that corresponds to a popula-

tion of feature subsets. Each member of the 

population is evaluated using a classifier. Ac-

cording to their performance it is determined 

which subsets will give rise to the next gener-

ation, where each member is the result of 

crossing over two codes from two winners of 

the previous generation (parents). Besides 

cross over, mutation randomly introduces or 

removes some features from each child. This 

process leads to an improved classification 

performance overall as the weaker feature 

subsets are progressively eliminated. 

 

Classification 

Features are extracted from fNIRS sig-

nals, the most relevant features are selected 

and they are classified with a logistic regres-

sion model. Logistic Regression (Schein and 

Ungar, 2007) is a classification technique that 

uses a logistic function to model the relation-

ship between the features extracted from a 

signal and the dependent variable, which cor-

responds to two possible classes, either PD is 

present or absent. The logistic regression 

maps feature vectors to probabilities using a 

sigmoid function with values between 0 to 1. 

The sigmoid function is differentiable which 

allows the minimization of a cost function 

during learning of the logistic regression 

model. 
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Performance assessment 

After feature subset selection, k-fold cross 

validation was used to evaluate classification 

performance. A set of feature vectors was par-

titioned into k folds, k −1 folds were used to 

train the logistic classifier, and the remaining 

fold was used to measure classification per-

formance. The process was repeated k times 

so that the classification performance was 

evaluated with each fold. Finally, the global 

performance metrics were obtained by aver-

aging the metrics at each fold. For this work, 

k = 5 and 10. During evaluation of a PD de-

tection method, if a PD patient is correctly 

identified then this case is a TRUE POSI-

TIVE (TP); otherwise, it is a FALSE NEGA-

TIVE (FN). Healthy participants, correctly 

identified, correspond to TRUE NEGA-

TIVES (TN); otherwise, they are FALSE 

POSITIVES (FP). To measure PD detection 

performance, accuracy, precision, recall, F1 

score and the area under the curve (AUC) are 

used as metrics. Accuracy is the percentage of 

classification results that are correct, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
. Recall is the 

probability that PD detection is positive given 

that the participants are PD patients, 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
. Precision is the percentage of PD cases 

detected as positives, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
. 

The F1 score is the harmonic mean of preci-

sion and recall, 𝐹1 =
2

1

𝑟𝑒𝑐𝑎𝑙𝑙
+

1

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

=

2 𝑇𝑃

2 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
. 

 

 

RESULTS AND DISCUSSION 

Figure 3 describes the settings of two ex-

periments to assess the performance of the 

proposed PD detection approach based on 

fNIRS analysis. These experiments are differ-

ent in terms of the implementation of feature 

selection. In a first set of experiments, the 

number of extracted features (792 features) 

was reduced using (1) an ensemble of feature 

ranking strategies, followed by (2) feature 

subset selection strategy based on one of two 

strategies, WFSS or GA (Figure 3A). A 

second set of experiments consisted of reduc-

ing the 792 extracted features by only using a 

feature subset selection strategy, either WFSS 

or GA (Figure 3B). 

 

Figure 3: Two settings for feature selection. A) 
The first setting consisted of an ensemble of fea-
ture ranking techniques, followed by feature sub-
set selection using WFSS or GA. B) Feature sub-
set selection (WFSS or GA), without feature rank-
ing, was used in the second setting. 

 

At each experimental setting, the logistic 

regression model was used for classification. 

The top half of Table 1 shows PD detection 

performance assessment with 10-fold cross-

validation after conducting the first series of 

experiments. In this setting, feature selection 

was accomplished by first applying an ensem-

ble of feature ranking techniques (elastic net, 

L1-norm SVM, MAD, MIG, Fisher score), 

followed by further narrowing down the top-

rated features by running a feature subset se-

lection technique along with the logistic re-

gression. The selected feature subset by these 

two stages is used to evaluate PD detection 

performance with 10-fold Cross-Validation. 

The second stage that reduces the set of the 

top-rated features was implemented in two 

ways, either with WFSS or with GA. It is ob-

served that the performance of PD detection 

based on GA (third row) is higher than the 

performance of PD detection based on WFSS 

(second row). The bottom half of Table 1 

shows the results of assessing the PD detec-

tion performance when the feature subset se-

lection (WFSS or GA) was conducted on the 
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Table 1: Assessment evaluation of the proposed PD detection approach using 10-fold cross-validation. 
The top half of the Table shows the detection performance for the first set of experiments where an 
ensemble of feature-ranking techniques was followed by feature subset selection implemented with 
WFSS (second row) or with GA (third row). The bottom half of the Table shows the detection perfor-
mance for the second set of experiments where feature subset selection was only used with a WFSS 
implementation (fifth row) or GA (sixth row). The last column shows the size of the selected feature 
subset for each implementation. 

1 
Experiment 1: 
Ranking & subset selection 

Accuracy Precision Recall F1 AUC 
Size of selected 
feature subset 

2 Feature ranking + WFSS 0.900 0.933 0.900 0.893 1 20 

3 Feature ranking + GA 1 1 1 1 1 16 

4 
Experiment 2:  
Subset selection 

Accuracy Precision Recall F1 AUC 
Size of selected 
feature subset 

5 WFSS 0.575 0.666 0.600 0.596 0.675 30 

6 GA 0.850 0.866 0.900 0.853 0.800 46 

 

 

entire set of extracted features without the use 

of the ensemble of ranking techniques for pre-

selection of a feature subset. 

The implementation of PD detection ac-

cording to the first setting (top half of Table 

1) is characterized by another advantage in 

terms of model complexity since the number 

of selected features is smaller than that corre-

sponding to the second setting (bottom half). 

In addition, it is observed that the perfor-

mance of PD detection based on GA (sixth 

row) is higher than that of PD detection based 

on WFSS (fifth row). The results in Table 1 

also show that the implementation of feature 

subset selection with a genetic algorithm cor-

responds to higher PD detection performance. 

An initial generation with 1000 subsets (solu-

tions) was used to run 100 iterations of the ge-

netic algorithm, i. e., 100 generations of solu-

tions were produced. At each generation, new 

solutions were born as a result of using a 

cross-over probability of 0.05 and a mutation 

probability of 0.03. Accuracy was the fitness 

function used as criterion to select the best so-

lutions in a new generation. 

Table 2 shows the performance assess-

ment of the proposed PD detection approach 

with 5-fold cross-validation. The top half con-

tains the results that were obtained with the 

first experimental setting, where feature se-

lection was implemented with (1) an ensem-

ble of feature ranking techniques, followed by 

(2) feature subset selection. Feature subset se-

lection was implemented with WFSS (second 

row) or GA (third row). The bottom half 

shows the result obtained with the second ex-

perimental setting, where feature selection 

was implemented with feature subset selec-

tion without any previous feature ranking 

technique.

 
Table 2: Assessment evaluation of the proposed PD detection approach using 5-fold cross-validation. 
The top half of the Table shows the detection performance for the first set of experiments where an 
ensemble of feature-ranking techniques was followed by feature subset selection implemented with 
WFSS (second row) or with GA (third row). The bottom half of the Table shows the detection perfor-
mance for the second set of experiments where feature subset selection was only used with a WFSS 
implementation (fifth row) or GA (sixth row). The last column shows the size of the selected feature 
subset for each implementation. 

1 
Experiment 1:  
Ranking & subset selection 

Accuracy Precision Recall F1 AUC 
Size of selected 
feature subset 

2 Feature ranking + WFSS 0.975 0.960 1 0.977 0.975 18 

3 Feature ranking + GA 1 1 1 1 1 14 

4 
Experiment 2:  
Subset selection 

Accuracy Precision Recall F1 AUC 
Size of selected 
feature subset 

5 WFSS 0.850 0.833 0.850 0.852 0.787 11 

6 GA 0.925 0.960 0.900 0.911 0.862 58 
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According to the results reported in Table 

2, the first experimental setting (second and 

third rows) presented higher PD detection 

performance than the second experimental 

setting (fifth and sixth rows). The implemen-

tation of feature subset selection with a ge-

netic algorithm (third and sixth rows) is char-

acterized by the best PD detection perfor-

mance. PD detection is accurate when it is im-

plemented with an ensemble of feature rank-

ing techniques followed by feature subset se-

lection based on a genetic algorithm. The ge-

netic algorithm was run 100 times, i. e., 100 

generations were obtained, where each gener-

ation consisted of 1000 solutions (feature sub-

sets) produced with a cross-over probability 

of 0.05, a mutation probability of 0.03, and 

PD detection accuracy was used as criterion 

to select the fittest solutions from each gener-

ation. The last column of Table 2 reports the 

number of selected features for each PD de-

tection implementation. 

 

CONCLUSION 

In conclusion, we integrate functional 

Near-Infrared Spectroscopy (fNIRS) with 

machine learning for detection of Parkinson's 

Disease by testing various implementations. 

Each setting starts with a feature set of high 

dimensionality (792 features), where two 

groups of features were used, statistical and 

spectral. At each setting, a combination of 

feature selection strategies is used to estimate 

the most relevant feature subset. Accurate PD 

detection is achieved when an ensemble of 

feature ranking strategies is used to select a 

feature subset, which is further reduced with 

a genetic algorithm, resulting in an accuracy 

of 1, precision of 1, recall of 1, F1 score of 1 

and AUC of 1. Accurate detection perfor-

mance was obtained by feeding a logistic 

classifier with 14 features (5-fold cross-vali-

dation) and 16 features (10-fold cross-valida-

tion). 

Our approach, with remarkable detection 

accuracy, significantly advances PD diagno-

sis, showcasing the potential of combining 

fNIRS and machine learning for efficient, 

non-invasive PD detection. 

Data availability statement  

The data set that contains functional near-

infrared spectroscopy (fNIRS) data from 

twenty PD patients and twenty healthy indi-
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