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Abstract

Superparamagnetic tunnel junctions (SMTJs) are promising sources for the randomness required 

by some compact and energy-efficient computing schemes. Coupling SMTJs gives rise to 

collective behavior that could be useful for cognitive computing. We use a simple linear electrical 

circuit to mutually couple two SMTJs through their stochastic electrical transitions. When one 

SMTJ makes a thermally induced transition, the voltage across both SMTJs changes, modifying 

the transition rates of both. This coupling leads to significant correlation between the states of the 

two devices. Using fits to a generalized Néel-Brown model for the individual thermally bistable 

magnetic devices, we can accurately reproduce the behavior of the coupled devices with a Markov 

model.

I. INTRODUCTION

Magnetic tunnel junctions have become increasingly applied in nonvolatile memory 

applications, and are promising building-blocks for novel circuit implementations for 

cognitive computing [1]. These nanoscale devices [2] are composed of two ferromagnetic 

layers separated by a thin insulating layer. The relative orientation of the magnetization of 

the two magnetic layers forms two stable configurations with either parallel or antiparallel 

magnetizations. Magnetoresistive effects [3] lead to two distinct electrical resistances for the 

two stable configurations, which can be used to encode memory values of 0 or 1. Applying 

voltages across these nanojunctions results in spin-polarized tunneling currents that apply 
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spin-transfer torques [4–6] on the magnetizations. For sufficiently large voltages, the energy 

barrier between the two configurations is overcome, leading to magnetization switching 

events and allowing memories to be written.

In order to obtain the years of retention required by nonvolatile applications, the energy 

barrier between the two memory states needs to be large, greater than 40 kT, where k
is Boltzmann’s constant and T = 300 K is room temperature. Reducing the energy barrier 

decreases the retention time exponentially. For energy barriers smaller than ≈ 12 kT, the 

thermal fluctuations at room temperature induce random switching of the magnetization 

between the two stable configurations on the 10 µs to 1 ms time scale. A magnetic junction 

with its magnetic configuration fluctuating due to a small energy barrier is referred to as a 

superparamagnetic tunnel junction (SMTJ).

While the switching behavior of SMTJs is inherently random, the average relative dwell 

time spent in each stable configuration before a stochastic switching event occurs can be 

tuned deterministically [7]. This tunability can be achieved by applying a magnetic field 

to alter the energy barriers, or by applying a voltage across the junction to induce a spin-

transfer torque that favors one of the two configurations. Tunability can also be achieved by 

passing a current through an adjacent heavy metal [8] to create a spin-orbit torque [9].

SMTJ devices share many of the practical advantages of their nonvolatile MRAM 

counterparts. In particular, they are compatible with complementary metal oxide 

semiconductor (CMOS) technology and can be fabricated in large numbers at competitive 

densities [10]. These properties make SMTJs promising candidates for building compact, 

low-energy random number generators [11, 12], and make them attractive for efficient, 

unconventional computing schemes like probabilistic [13, 14] or brain-inspired [15–18] 

computing.

Parallel to these efforts, spintronic nano-oscillators based on non-stochastic magnetic tunnel 

junctions are also being investigated as candidates for neuromorphic computing [19–21]. 

Since SMTJs can be seen as stochastic bistable “oscillators,” many computing schemes 

developed for these nano-oscillators may in fact be adaptable to SMTJs. Neuromorphic 

applications like reservoir computing, for instance, have been developed based on stochastic 

neurons [22]. One potential advantage that SMTJs may have over spintronic nano-oscillators 

is lower energy consumption [16]. Another is that the time scale of the oscillations can be 

easily tuned over several orders of magnitude to match the time scale needed in real-time 

applications.

An essential property of traditional spintronic nano-oscillators is their ability to modify 

their frequency and phase naturally and synchronize by receiving the emitted stimuli of 

other nano-oscillators or external periodic drives. Mimicking computational schemes based 

on this property with superparamagnetic tunnel junctions requires demonstrating that the 

latter have similar abilities. Locatelli et al. [23] have shown experimentally that a single 

superparamagnetic tunnel junction can exhibit stochastic synchronization to a periodic 

external signal. This effect can be enhanced by an optimal electrical noise level [24, 25] 
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corresponding to a stochastic resonance [26, 27]. The next step is to demonstrate and 

characterize the coupling between two superparamagnetic tunnel junctions.

In this work, we use a straightforward electrical circuit to establish an electrical 

interaction between two SMTJs without complex circuitry, nonlinear elements, or additional 

computation. We show that this mutual coupling correlates their switching events.

Section II presents the electrical scheme we use to couple the two SMTJs and describes 

the coupling mechanism. Section III gives the characterization of the uncoupled SMTJs. 

This preliminary step is necessary for extracting the individual device parameters. Section 

IV reports measurements of the behavior of coupled SMTJs. We compute the correlation 

functions between the two SMTJs and demonstrate that their states are correlated. We show 

that we can predict their behavior with simple models described in the appendices. We 

discuss the role device and circuit properties play in the coupling in Sec. V, and show how 

the models developed can be used to predict the behavior of larger networks of SMTJs. 

Appendix A introduces the Néel-Brown model [28] we use to analyze the mean dwell-times 

and parameterize the behavior of uncoupled devices. Appendix B describes the Markov 

model that uses the parameters taken from the Néel-Brown model fits and computes the 

correlated behavior of the coupled devices.

II. COUPLING BETWEEN SUPERPARAMAGNETIC TUNNEL JUNCTIONS

The majority of coupling schemes reported for two or more SMTJs require protocols that 

invoke additional peripheral circuits [29–31] or finely-calibrated external drive stimuli [32]. 

These complexities make such schemes problematic for large, generalized networks. We 

employ a simpler approach to coupling SMTJs based on combinations of linear circuit 

elements. Our intention is that this will offer a more robust, less complicated, and more 

compact foundation for future explorations of large scale SMTJ networks. While expanding 

the two-SMTJ coupling scheme discussed here to large networks of SMTJs will most likely 

require more complicated circuitry, we believe that understanding of the minimal coupling 

needed will help with designing the simplest circuitry possible.

Figure 1 shows the electrical circuit we use to induce interactions between two SMTJs. We 

connect the two SMTJs in parallel and bias them through a series resistor R0 with a constant 

voltage source V 0. This circuit results in four distinct voltages applied across the SMTJs, 

corresponding to the four different magnetization configurations in the system: (P, P), (AP, 

P), (P, AP), and (AP, AP), where P denotes the parallel, low resistance state of the SMTJ and 

AP denotes the antiparallel, high resistance state. These states are illustrated respectively in 

panels (a), (b), (c), and (d) of Fig. 1. The four voltages are different because in each case 

the effective resistance of the two parallel SMTJs is different, resulting in a greater or lesser 

portion of V 0 being dropped across the series resistor R0. Though the configurations (P, AP) 

and (AP, P) would have the same voltage if the two SMTJs were identical, in practice the 

P and AP resistances of our two SMTJs differ somewhat, allowing the voltage drops to be 

distinguished between the two mixed states. Because the voltage is a property of the joint 

state of the devices, a switch in either device’s configuration induces a change in voltage 
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across the other device. This joint voltage dependence effectively couples the behavior of 

each SMTJ to the other.

The SMTJs can be placed in the circuit with their free layer attached to either the positive or 

negative terminal of the dc voltage source. In the positive case, electrons flow from the fixed 

layer to the free layer and a higher voltage tends to stabilize the parallel magnetization 

configuration. Conversely, with the polarity reversed, the antiparallel configuration is 

stabilized by higher voltages. We choose the positive case so that when an SMTJ switches 

from parallel to antiparallel, the increase in voltage magnitude destabilizes the antiparallel 

state and vice versa. This choice induces a positive correlation between the states of the 

SMTJs as we show in Sec. IV.

To understand the coupling, consider SMTJ1 in the parallel configuration and consider how 

the relative stability of that state depends on the configuration of SMTJ2. If SMTJ2 is in 

the parallel configuration, the voltage across both SMTJs is lower than it would be were 

SMTJ2 in the antiparallel configuration. Because of the lower voltage, SMTJ1 is relatively 

more stable in the parallel configuration, increasing the lifetime of the (P, P) configuration 

relative to that of the (P, AP). Similarly, if SMTJ1 is in the antiparallel configuration, the 

changes in the voltage for the different configurations of SMTJ2 increase the lifetime of the 

(AP, AP) configuration relative to that of the (AP, P) because higher voltages favor the AP 

state. Repeating the analysis from the point of view of SMTJ2 gives the same result – for 

the choice of polarity made here, the changes in the voltage as the resistances change with 

configuration increase the lifetimes of the (P, P) and (AP, AP) configurations relative to the 

dissimilar configurations. The changes in these lifetimes is the origin of the coupling.

To read out the states of the two coupled SMTJs in the electrical circuit, we monitor the 

common voltage across the two SMTJ branches shown in Fig. 1 on an oscilloscope. From 

the measured voltage, we can determine the configuration of both SMTJs, the time they 

spend in those configurations, and which SMTJ makes a transition to another configuration.

The statistics of the transitions between the configurations can be described by a Markov 

model, described in Appendix B, using the rates computed in Appendix A. We treat each 

pair of configurations of the SMTJs as a state and compute the two transition rates out of 

each state. We find that this model provides a good explanation of the measurements subject 

to the accuracy of the Néel-Brown model fit for the rates.

III. SUPERPARAMAGNETIC TUNNEL JUNCTIONS

We study magnetic tunnel junctions with the following composition: Si substrate / SiO2 / 

Ta(3) / Cu(10) / Ta(3) / Cu(3) / IrMn(10) / CoFe(3) / Ru(0.8) / CoFeB(3) / CoFe(0.2) / 

MgO(1.08) / CoFe(0.2) / CoFeB(1.8) / Ta(4) / Ru(10) / Ta(4). Numbers in parentheses 

represent thicknesses in nanometers. Here IrMn(10) / CoFe(3) / Ru(0.8) / CoFeB(3) is 

a uniformly in-plane magnetized synthetic ferrimagnet that plays the role of polarizer. 

CoFe(0.2) / CoFeB(1.8) is the free-layer. The devices are elliptical with nominal dimensions 

of 60 nm × 72 nm. Their tunneling magnetoresistance (TMR) value is close to 55 % at room 

temperature and they have a resistance-area product of 4.75 Ω µm2 [33].
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The measurement setup for uncoupled SMTJs consists of an individual SMTJ in series 

with a resistor with constant dc voltage applied to the circuit. This allows the voltage to 

vary across the SMTJ as its resistance changes. The series resistor is chosen to maximize 

the voltage swing between states, as best as possible given the two different devices. Note 

that this is not necessarily the optimal choice to maximize correlation once we couple the 

devices; we investigate this question in Sec. V. A constant in-plane magnetic field H is 

applied to the device along its easy axis. For both SMTJs measured here, with an applied 

dc voltage V 0 ≈ 0, applied magnetic fields near μ0H ≈ 8 mT make both devices thermally 

unstable in both the antiparallel (AP) and parallel (P) configurations. This behavior is 

apparent through the non-hysteretic resistance curves of the devices shown in Fig. 2(a), 

in which the magnetic field was ramped slowly enough to measure the time-averaged 

resistance at each field value.

In order to evaluate the mean dwell times, 104 to 105 transitions were recorded and analyzed 

for each field value and each voltage. Fig. 2(b) shows a typical time trace around a state 

transition from parallel to antiparallel. The effective RC time constant of the oscilloscope 

manifests as the exponential decay in Fig. 2(b). Dwell times shorter than this RCdecay can 

affect the apparent mean dwell times of the devices [34]. Fig. 2(c) shows a typical time trace 

at a larger time scale. Dwell times greater than ≈ 1 µs, such as those visible in Fig. 2(c), are 

unaffected by the RC dynamics.

We analyze the time traces to determine the properties of the SMTJs. Simply binning 

the data in the time traces gives the probabilities to be in each state, as in Fig. 2(d). 

These probabilities do not depend on determining the length of time spent in each 

state. Determining the mean dwell time for each state requires that we determine every 

intertransition interval i, and extract the corresponding dwell times Δti
± for the anitparallel 

(+) or parallel (−) states. The cumulative probability density function of these extracted 

dwell times can be fit by an exponential distribution. The single fitting parameter of the 

exponential distribution is the mean dwell time τ± = Δti
± i , where ⋯ i indicates averaging 

over all intervals.

By varying the applied in-plane magnetic field H and the applied dc voltage V 0, we observe 

variation in the dwell times. For each pair V 0, H , the parallel τ− and antiparallel τ+ dwell 

times are extracted from the corresponding voltage-time trace. The evolution of the dwell 

times as a function of the applied in-plane magnetic field is reported in Appendix A. The 

magnitude of H determines whether the parallel τ− or antiparallel τ+ mean dwell time 

dominates. In Appendix A, we fit the experimental values of the mean dwell times to the 

Néel-Brown model [28]. We find that the usual Néel-Brown model is unable to capture the 

behavior of our devices when both field and voltage dependence are considered. We extend 

the model slightly by allowing the characteristic magnetic fields in the model to have a 

state dependence, prescribing different values depending on whether the device is in the P 

or AP state. This extension gives our fit good agreement with the data, but we caution that 

the fit—while physically motivated—may be highly degenerate and does not necessarily 

prescribe physically meaningful values to the model parameters. We discuss this further at 

the end of Appendix A.
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Finally, note that the TMR observed in Fig. 2(a) appears to be inconsistent with the results 

in Fig. 2(c). One reason for this is the voltage dependence of the magnetoresistance; the 

higher voltage applied to the devices in Fig. 2(c) results in a lower TMR. It is also possible 

that properties of the devices or their wire bonds changed slightly between characterization 

[Fig. 2(a)] and experiment [Fig. 2(c)]. In any case, we find that the two voltage states such 

as those in Fig. 2(c) are stationary (for each chosen source voltage) across the voltage-time 

trace experiments and show no evidence of a third state. In fitting the Néel-Brown model, we 

fit directly to these voltage states, bypassing any functional dependence on TMR.

IV. INTERACTION OF TWO SUPERPARAMAGNETIC TUNNEL JUNCTIONS 

THROUGH ELECTRICAL DC COUPLING

In the previous section, we described the switching statistics of single SMTJs in series with 

a static resistor. In the present section, we place another SMTJ in parallel with the first, as 

in Fig. 1. Our goal is to extract the switching data from this experimental setup and use it to 

determine whether there is statistically meaningful coupling between the devices.

Figure 3(a) shows a typical time-voltage trace of the circuit from Fig. 1 under relevant 

experimental parameters. We again use a histogram method to extract the multiple states; 

there are now four such states corresponding to the four panels of Fig. 1. Figure 3(b) 

shows the histogram of a voltage-time trace, revealing four distinct peaks. The integrated 

area under each peak gives the relative probability of the system being found in the 

corresponding state.

By computing the probabilities over a range of magnetic fields, we identify the 

superparamagnetic regime between two deterministic limits, one limit with field large 

enough that both SMTJs are pinned in the antiparallel state, and the other with a low 

enough field that they are both pinned in the parallel state. The probabilities are plotted 

for this regime in Fig. 4. At low magnetic field, the parallel states of both devices are 

stable; at high magnetic field, on the other hand, the antiparallel states are stabilized. The 

superparamagnetic regime exists between these two limits, where the mixed states (P,AP) 

and (AP,P) acquire nonzero lifetimes. The qualitative behavior of Fig. 4 could be explained 

by the uncoupled-device physics we discussed in Sec. III. Quantitatively, the probabilities 

show significant correlation between the switching events in the two devices.

To understand the coupling between the SMTJs we evaluate the correlation functions 

between the encoded times series data of SMTJs defined by taking the value−1 when the 

SMTJ is in the parallel state and 1 when it is in the antiparallel state. We then compute the 

normalized Pearson correlation function, which for two arbitrary functions of time, x(t) and 

y(t), is given by

Cx, y(t) = x t′ − x y t′ + t − y
x t′ − x 2 y t′ − y 2 ,

(1)
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where ⋯  indicates average over t′. When computing an autocorrelation function, x(t)
and y(t) are the same encoded times series shifted in time and when computing a cross-

correlation function they are from different SMTJs. Fig. 5 shows, with the solid curves, 

the autocorrelation and cross-correlation functions computed using time-series state data 

extracted from the experiment for a particular magnetic field and voltage. The presence 

of a nonzero cross-correlation function indicates correlation between the random variables 

corresponding to each SMTJ’s state. The Markov model described in Appendix B shows 

that these correlation functions are sums of three exponential functions of time. The model’s 

prediction of correlation based on the uncoupled fits is given by the dashed curves in Fig. 5.

To test for coupling, we are particularly interested in the t = 0 value of the cross-correlation 

function, which depends only on probabilities like those in Fig. 4. Those probabilities can 

be easily extracted from a histogram analysis and do not require extensive identification 

of individual transitions. Therefore, our method to compute the τ = 0 cross-correlation is 

particularly easy and suitable to quantify coupling between SMTJs by experimentalists. The 

t = 0 form of Eq. (1) reduces to Eq. (B18), the numerator of which is equal to four times the 

determinant of

P =
PP,P PP,AP

PAP,P PAP,AP
.

(2)

When the two SMTJs are statistically independent, each of these four joint probabilities 

factor so that det P = 0. A nonvanishing determinant indicates mutual dependence of the 

SMTJ states in a way that can be deduced from the data in Fig. 4(b) and shown in Fig. 

4(a). For example, at μ0H = 6.84 mT, the (AP,P) state is significantly less probable than the 

other three state so that the skew diagonal term in detP is less than the diagonal term and 

a positive correlation results. In general, for this voltage polarity, the coupling reduces the 

mean dwell time for each of the mixed configurations relative to what it would be if there 

were no coupling. If we were to do a similar measurement with the voltage source reversed, 

the coupling would increase the mean dwell time for each of the mixed configurations, 

leading to a negative value for the correlation function.

Figure 6 shows the t = 0 cross-correlation as a function of field for various voltages. 

Comparing the V = − 0.45 V data in Fig. 6 with the data in Fig. 4, we infer that maximal 

coupling happens in the middle of the superparamagnetic regime, namely near where the 

mixed states (AP, P) and (P, AP) have their highest probabilities. The coupled system is most 

sensitive when both SMTJs have balanced occupancies because the mixed configurations 

become the most probable. Figure 2(a) also shows that the two SMTJs used in this 

experiment have these balance points shifted with respect to each other. This shift reduces 

the coupling between the devices.

Simulations show that the more similar the properties of the two SMTJs are, the stronger the 

coupling between them. Specifically, if the derivatives of the results in Fig. 2 are viewed as 

susceptibilities, the coupling to each devices is maximum at the peak in the susceptibility, so 
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that the mutual coupling is largest when the peaks in the susceptibility align with each other. 

Further, similar susceptibility-like curves can be measured as a function of current for fixed 

fields. The coupling will be strongest when these curves align as well. Thus, it is important 

to keep device properties that affect these susceptibilities as similar as possible to maximize 

this coupling, but constraints on other properties, like the exchange stiffness in the limit of 

single domain switching, are less important.

The balance point between the two configurations shifts in magnetic field as the voltage 

magnitude increases. This trend is illustrated in Fig. 6. As the voltage magnitude increases, 

the stability of the AP state increases, reducing the magnetic field needed to balance the 

configurations. In addition to the peak shifting to lower magnetic fields, it also increases in 

magnitude because the greater source voltage V 0 results in greater swings in voltage drop 

across the SMTJs as their configurations fluctuate. Note that sustained increase depends on 

the equal-probability magnetic fields for the two SMTJs changing in the same way as V 0

increases.

In Appendix A, we fit the behavior of each SMTJ to a Néel-Brown model to capture the 

mean dwell times of the individual devices as a function of magnetic field and voltage. For 

a given voltage and magnetic field, this model provides the mean transition rates that enter 

into the Markov model for the coupled states described in Appendix B. Using this model, 

we compute the correlation function corresponding to the measurements shown in Fig. 6 as 

symbols and plot the computed values as curves. For low voltages, the agreement is quite 

good, but it degrades for higher voltages, where the voltages across the SMTJs exceed those 

used for the fits that feed into the Markov model.

V. DISCUSSION

Among the device properties that determine how strongly the behaviors of two SMTJs 

correlate with each other are the TMR and how similar the two devices are. These determine 

how much a change in the state of one of the SMTJs affects both of them by determining 

the resulting voltage swings. The more similar the devices, the more their susceptibility 

overlaps, making it easier for correlations to develop. Each SMTJ is most sensitive to 

the other SMTJ’s state at magnetic field and mean voltage combinations for which the 

probability of being in either state is close to 50 %. This is illustrated by comparing the 

curves in Fig 4 with the results for V 0 = − 0.45 V in Fig. 6. While the two SMTJs used here 

differ somewhat in their properties, as seen in the shift in the 50/50 points in Fig. 2, they are 

similar enough so as not to significantly reduce the maximum observed correlation.

Figure 7 show that the TMR substantially affects the coupling. We simulate two identical 

SMTJs, both the same as SMTJ-1 with the exception that they have a series of TMR values. 

The model was evaluated at V 0 = −0.3 V, with RP and RAP changing as a function of TMR 

so that the mean equivalent resistance of the four Markov states is held constant at each 

TMR [35]. Between TMR values of 50 % to 200 %, the maximum correlation increases by 

about a factor of three. As the TMR varies, the voltage swings due to state changes increase, 

increasing the coupling. Along similar lines, increasing the spin-torque efficiency increases 

the coupling by increasing the sensitivity to voltage swings.
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Two circuit properties that determine how strong the coupling is are the applied voltage and 

the series resistance. Varying these properties together switches between voltage biasing and 

current biasing the SMTJs. These trends are illustrated in Fig. 8, where R0 is systematically 

varied with V 0 adjusted to keep the mean voltage across the SMTJs fixed. As R0 goes to 

zero, which is the voltage bias limit, the correlation goes to zero because the voltage across 

the SMTJs does not change as the configurations change. As R0 increases, the maximum 

correlation approaches around 0.3. This R0 ∞ limit is the regime where the circuit is 

driven by a current source, and gives maximal coupling between the devices, at the expense 

of decreasing the bandwidth of the circuit as the RC time constant diverges with R0. These 

results indicate that there is a trade-off between the the size of the signal and the speed of the 

circuit going between the current-biased limit and the voltage biased limit.

The SMTJs we work with here require external magnetic fields on the order of 6 mT to 9 

mT to be in the superparamagnetic regime for the voltages used. The necessity of such fields 

would limit the use of this type of SMTJ in practical applications. However, it is possible 

to tune these offset fields by engineering the materials stack of the SMTJs [36]. Recent 

developments in spin-orbit-torque-switched MRAM [37] show that it is also possible to 

engineer a magnetic element above the MTJ. Designing the SMTJs with magnetic elements 

such that no additional applied magnetic field would be required to center the SMTJ’s 

50/50 point around the operating voltage would give the largest effect for the lowest energy 

expenditure.

Another direction to explore for exploiting the SMTJ coupling examined in this paper 

involves scaling up to chains or grids of devices. The behavior of such networks can be 

explored quasi-analytically using the Markov model described in Appendix B or simulations 

using the Néel-Brown fits described in Appendix A. In Fig. 9, we compare the behavior 

predicted from these two approaches for a chain of five identical SMTJs electrically coupled 

in parallel analogously to the coupling of two in Fig. 1. The magnetic field is swept for 

several different values of V 0, which has been scaled up to keep the voltage across the five 

parallel SMTJs similar to what it was for two [38]. This fixes the simulation so that the 

coupling between each pair of SMTJs decreases as 1/N, where N is the number of SMTJs.

The two approaches for modeling the systems agree well; this is unsurprising because the 

Markov model should capture the the behavior of the simulations once they have reached 

steady state. For both approaches, the coupled SMTJs transition from all being in the parallel 

state to all being in the antiparallel states as the magnetic field is swept. As the applied 

voltage increases, the transitions shift to lower fields and occur over a narrower field range. 

The narrowing of the transition indicates increased coupling between the SMTJs. As the 

coupling increases, the SMTJs spend an ever increasing fraction of their time aligned with 

each other.

Even though these simulations show that we can start building arrays of coupled SMTJs, we 

believe it is still the case that effectively using them will require more complicated coupling 

circuitry. So far, circuitry using SMTJs has involved schemes that fall into two broad groups. 

In the first, voltages are applied continuously across the SMTJs [14, 39]. In the second, 

the SMTJ state is read and modified with voltage pulses, perhaps using a pre-charge sense 
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amplifier [12, 15, 16]. The former makes it easier for the states of different SMTJs to 

influence each other, but the latter can be more energy efficient [16]. For approaches with 

continuous voltages to reach the level of effciency seen in pulsed approaches, the SMTJs 

must have a correlation time on the order of a nanosecond or less, and such devices are 

now under experimental development [40, 41]. The interacting p-bits demonstrated in Ref. 

[14] output a digital bitstream and use analog input so that complicated circuitry is needed 

to couple the devices together. Ultimately, an energy-efficient approach will combine the 

advantages of both of the existing ones.

In this paper, we show that SMTJs can mutually couple through the electrical voltage 

stimuli caused by their stochastic electrical transitions. This mutual interaction is established 

through a simple electrical connection, does not require complex circuitry, and is sufficient 

to modify the individual switching transitions of the two SMTJs. We believe that 

the coupling demonstrated with this compact approach is a useful starting point for 

building large assemblies of coupled SMTJs for novel cognitive computing schemes. The 

demonstrated ability of a simple Markov model to predict the coupled behavior of the 

SMTJs will allow predictive modelling of SMTJs integrated with CMOS in a variety of 

approaches.
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Appendix A: Néel-Brown modelling of SMTJs

To provide numerical input for modeling the coupled dynamics of the two SMTJs, 

we measure each SMTJ independently and uncoupled as in Fig. 2. From these 

measurements we extract the mean transition rates as a function of field for voltages 

V 0 ∈ − 0.1, − 0.15, − 0.2, − 0.25  V. Fig. 10 shows the measured results for each SMTJ. 

These two SMTJs were selected from the wafer because their crossovers between parallel 

and antiparallel alignments occurred at similar fields and bias voltages; overlap of these 

crossing points maximizes the coupling.

To fit the measured transition rates, we use a Néel-Brown model that has been modified to 

include the effects of spin transfer torques [7, 28, 42–44]. The transition rates out of each 

state are given by

Γ± = Γ0exp −β 1 ± V
V c

(A1)

× 1 ± H − H0
±

Hk
± + AV + BV 2 2
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where the plus sign is taken for antiparallel to parallel transitions and the minus sign for 

the opposite. The voltages V  are extracted from the experimental time traces. Linear fits of 

SMTJ voltages V  as a function of source voltage V 0 allow us to extrapolate (and interpolate) 

beyond the range of collected data. All variables are fitting parameters and are given in Table 

I except for the applied field H and the voltages V  which are the independent variables. 

Here β = ΔE/(kT) is nominally understood to be the ratio of the energy barrier ΔE of the 

SMTJ to the thermal energy (T  is the temperature, assumed to be fixed at 300 K, and 

k is Boltzmann’s constant). The prefactor, Γ0, is sometimes taken to be 109 Hz [43] and 

sometimes computed from the parameters of the Landau-Lifshitz-Gilbert equation [44, 45], 

but here is treated as a fitting parameter, for reasons explained below. The critical switching 

voltage, V c, incorporates the effect of the damping-like torque on the effective energy barrier 

and the parameters A and B include effects of the field-like torque and nonlinear effects. The 

offset magnetic field is H0
± and the anisotropy field is Hk

±.

We view this fitting scheme not as an attempt to extract physically correct values for various 

parameters, but as a physically plausible approach to obtaining parameter values for further 

modelling. The high dimensionality of the fit and nonorthogonality of the fit parameters lead 

to many degenerate solutions that give equally performant model predictions; the numerical 

values we report in Table I depend strongly on the initial values for the fitting routine, 

making uncertainties extracted from the nonlinear fit procedure meaningless. We find that 

using the same set of parameters for both orientations of the same SMTJ leads to poor fit 

performance, and that allowing different fields H0
± and Hk

± for each state was the minimal 

extension needed to get good agreement with the data in Fig. 10. We conjecture that the 

different reversal parameters between the two states may follow from different magnetic 

configurations; the samples are low aspect ratio ellipses, and thus magnetic reversal may 

not follow single-domain switching dynamics, and the non-uniform fringing field from the 

pinned layer likely affects the two reversal processes differently.

We also find that Γ0 is needed as a fit parameter to reproduce the negative curvature of 

the experimental data, and regardless of initial value, Γ0 converges to the fastest switching 

frequency present in the data: the values for Γ0 in Table I correspond to the asymptotic 

maxima in Figs. 10. The discrepancy between this value of Γ0 and the gigahertz value 

typically used in the literature means that our values of β, which nominally represent the 

energy barrier in units of kT , cannot be directly compared to values extracted with the 

faster assumed prefactor. To extract a meaningful energy barrier, we would need to measure 

temperature dependence of the SMTJ statistics. We cannot discount the possibility that some 

experimental artifact causes the observed saturation of the rates. However, the rate saturates 

at a value about two orders of magnitude smaller than the bandwidth of the measurement (≈ 
14 MHz). Models [46] of Poisson processes with finite measurement bandwidth suggest that 

the effect of such a bandwidth on the measured rates should be negligible. It may be that for 

near-circular samples such as these, the reversal mode may be very different than that for a 

macrospin and the prefactor consequently differing from that expected for such a system.
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Appendix B: Appendix B: Markov models for coupled SMTJs

In this Appendix, we review the theoretical model used to predict the coupled system’s 

behavior from the uncoupled fits. The idea is to construct a Markov model based on 

the 2N possible states of the system, where here the number of devices is N = 2. In a 

continuous time Markov model, we need only consider single-device switching events, as 

the probability of two devices switching in the same infinitessimal dt is (dt)2 0. Therefore 

each transition rate in the Markov model can be understood from the switching of an 

isolated SMTJ, which is well-described by our Néel-Brown fits to the uncoupled SMTJ 

statistics, provided we account for the Markov-state-dependent voltage. The dependence 

of voltage on the states of the other SMTJs is the effective coupling mechanism, but the 

Markov process can be expressed purely using the uncoupled device fits. For our system, 

this model assumes that the state-dependent voltage arises instantaneously after a transition, 

which holds so long as the RC times in the circuit are faster than the fastest SMTJ dwell 

time. With similar restrictions, the formalism we describe below can be applied to any 

system of coupled SMTJs so long as the coupled system experiences jump transitions 

between a discrete number of metastable states.

Fig. 11 illustrates schematically the model we consider to characterize the mutual coupling 

mechanism. In this approach, the ith uncoupled SMTJ can be described by two states and 

two transition rates φ±, i corresponding to the characteristic time elapsed before SMTJ i
escapes its ± state. In the case of two coupled SMTJs, there are four possible states: P, P , 

P, AP , AP, AP , and AP, P . In the rest of this section, we refer to these four states as 

11, 10, 00, and 01 respectively to make the notation more compact. We consider transitions 

between these states as a continuous time Markov model so that eight nonzero transition 

rates φj j = 1
8  can be defined corresponding to the eight arrows in Figure. 11b. Note that due 

to the coupling, the rate for each SMTJ to transition out of a particular state depends on the 

state of the other SMTJ, so there are really 8 rates and not four as there would be in the 

absence of coupling.

We can then define a 4 × 4 transition rate matrix M giving the transition rates between 

states, where Mij = φj i. Eight of the sixteen matrix components are the nonzero transition 

rates; the diagonal elements are Mii = − ∑j φi j, and the remaining four elements correspond 

to double transitions that have zero probability. The vector P = P00, P01, P10, P11  indicating 

the conditional probabilities for the system to be found in each of the four states given some 

initial distribution P0 of the system then evolves according to the master equation Ṗ = MP , 

which has the generic solution

P(t) = exp(Mt)P0 .

(B1)

M is diagonalizable, but as it has no other symmetries, its right and left eigenvectors differ 

in general. It is a singular matrix, so one of the eigenvalues is zero. The other eigenvalues 

are all negative. We diagonalize M as M = V ΛV −1, with Λ the diagonal matrix carrying the 
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eigenvalues, λj. Then the evolution of P  can be expressed simply as P(t) = V exp(Λt)V −1P0. 

The elements of V −1 and Λ are all rational functions of the rates φ that can be computed 

analytically as solutions to the quartic characteristic equation of M but these solutions are 

not notationally compact.

The configuration P(t) can be expressed as a linear combination of the factors eλjt times the 

time-independent eigenvectors. Each element of P(t) corresponds to the probability density 

function of a hyperex-ponential distribution mixing the eigenvalues of M,

P i(t) = ∑
j, k

eλjtV ijV jk
−1Pk(0) .

(B2)

In the experiment, we have no information about the state of the SMTJs before 

measurements begin. If we observe the system at time t = 0, we can then declare the 

that P i(0) = δiℓ, indicating certainty that the system is in state ℓ. Our knowledge about the 

likelihood of each state in the times t > 0 then obeys the master equation above, and in 

particular P(t) will decay to P(∞), the steady-state probability distribution of the system. 

This steady state distribution is the eigenvector of M with eigenvalue zero. The other 

contributions in the sum over k in Eq. (B2) are time-dependent and decay to zero on 

timescales λi
−1 because the remaining eigenvectors have negative eigenvalues. Only the 

P(∞) contributes at long times after an observation. Since the coefficients under the sum 

of Eq. (B2) are readily computed numerically, we use the experimental fits from Table I 

together with our Néel-Brown model [Eq. (A1)] to compute the expected form of P(t).

To analytically compute the cross-correlation C(t) from the model, we compute the Pearson 

correlation between the two states, one at time t and one at time 0, using the time-dependent 

probability distributions for each SMTJ extracted from P(t) by summing the probabilities 

over both possibilities of the state of the other SMTJ. The complicated rational forms for the 

solutions can be evaluated at the fit parameters extracted from the uncoupled Néel-Brown 

models even though the results offer little useful intuition. As a result of Eq. (B2), the 

cross-correlation and each SMTJ’s coupled autocorrelation are all superpositions of the 

same three exponentials arising from the eigenvalues of the transition rate matrix plus the 

time-independent steady state solution. The steady state solution is present in the same 

amount in all physical solutions because it is the only eigensolution in which the elements 

of the eigenvector do not sum to zero. This follows from the fact that at all times, the 

probabilities must sum to one and the steady state solution must always be the long time 

solution.

We consider two SMTJs with encoded time series data A t  and B t  that correspond to the 

state of the devices at time t with A(t) = − 1 when the corresponding SMTJ is in the parallel 

state and A(t) = 1 when it is in the antiparallel state. The covariance of the two time series is

CA, B(t) = A(t) − A B(0) − B
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(B3)

= A(t)B(0) − A B ,

(B4)

where averages here are over Markov states. The terms in the covariance can be computed 

via the eigenspectrum of M by using the solution to the master equation as a generator 

of conditional probabilities. For example, consider the calculation of A(t)B(0) . This is by 

definition

A(t)B(0) = ∑
i = ± 1
j = ± 1

ij P(A(t) = j, B(0) = i)

(B5)

= ∑
i = ± 1
j = ± 1

ijP(A(t) = j ∣ B(0) = i)

(B6)

× P(B(0) = i) .

The joint probability P ji = P(A(t) = j, B(0) = i) is the probability that both P(A(t) = j
and B(0) = i are true and can be written in terms of the conditional probability 

pji(t) = P(A(t) = j ∣ B(0) = i) that A(t) = j given B(0) = i. The conditional probability is 

computed by assuming B(0) = i as an initial condition for the master equation and examining 

the evolved distribution at time t. This is analogous to computing the two-point correlation 

function j |G(t, 0) | i  between two states in quantum mechanics, except that here our 

propagator is given by the solution to the master equation, rather than the Schrödinger 

equation. We have for the joint probability

P ji(t) = P(A(t) = j ∣ B(0) = i)P(B(0) = i)

(B7)

= ∑
μ

A(t) = j
eμ

TV eΛtV −1P∞
B = i

(B8)

where P∞
B = i is the steady state distribution marginalized over the assumption that SMTJ B

is in the i state and eμ is the unit vector for the μth Markov state where the sum over μ
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is restricted to Markov states where SMTJ A is in the j state. As an example, if i = 1 and 

j = − 1, we might have P∞
B = 1 = P00, 0, P10, 0 T / P00 + P10 , and the two eμ of interest would be 

(0, 0, 1, 0) and (0, 0, 0, 1). Using Eq. (B8) as the conditional probability in Eq. (B6), all that 

remains in the latter equation is to take the sum of the ij = ± 1 weighted by the marginal 

probabilities P B0 = i .

Similar calculations based on using the master equation solution as a conditional probability 

can be used to compute any expectation values of interest. We used such expressions to 

generate the results shown in Fig. 5. From the perspective of Eq. (B8), we see that the 

curves in Fig. 5 are all intrinsically sums of three exponentials (corresponding to the three 

nonzero eigenvalues in Λ). The apparent single-exponential behavior of the autocorrelations 

in that plot is only approximate, arising because the coefficient of one of the exponential 

terms dominates over the others. The inset to that figure shows that at long times, the time 

dependence of all three functions is dominated by the exponential with the longest decay 

time but with different prefactors.

The t = 0 cross-correlation can be evaluated directly in terms of the stationary probabilities, 

without referring to any time-dependent evolution. By definition, the same-time correlation 

coefficient is

C(0) = AB − A B
σA

2σB
2

(B9)

where σA, B
2  are the SMTJ-wise variances. Using our ±1 realizations of the SMTJ states, we 

have

A = P00 + P01 − P10 − P11

(B10)

B = P00 − P01 + P10 − P11

(B11)

AB = P00 − P01 − P10 + P11

(B12)

where P i, j is the probability of the joint state (i, j) in the steady state limit. The numerator of 

Eq. (B9), which is just the covariance, then simplifies to cov(A, B) = 4detP, where P is the 

matrix of Eq. (2) from the main text. To arrive at this form of the covariance it is convenient 

to multiply AB  by 1 = ∑ij P ij. As for the denominator, each of the variances can be written
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σM
2 = M2 − M 2

(B13)

= 1 − P0 − P1
2

(B14)

where P1 and P0 are marginalized over the joint probabilities for the SMTJ of interest. The 

variances are then

σA
2 = 1 − P00 + P01 − P10 + P11

2

(B15)

= 4 P00 + P01 P10 + P11

(B16)

σB
2 = 4 P00 + P10 P01 + P11 .

(B17)

In passing from Eq. (B15) to Eq. (B16), it is useful to employ the identity 1 = ∑ij P ij
2. 

Taking these results together, the total correlation coefficient reduces to

C(0) = P00 × P11 − P01 × P10

P0
(1) × P0

(2) × P1
(1) × P1

(2)

(B18)

where P j
(k) are the marginal probabilities for SMTJ k (i.e. P0

(1) = P00 + P01).
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FIG. 1. 
Schematic of the electrical circuit used to couple two superparamagnetic tunnel junctions 

and the four metastable configurations they take. Each panel shows the constant voltage 

source V 0, the series resistor R0, the two SMTJs in parallel with each other, and a voltmeter 

representing the oscilloscope measurement of the shared voltage across the SMTJs. The 

yellow arrows connecting the four panels represent thermally driven transitions between the 

different configurations of the SMTJs. Panel (a) shows both SMTJs in the parallel (P) state, 

with the free layer (bottom) magnetization parallel to the fixed layer (top) magnetization. 

When the magnetization in the free layer of either SMTJ flips, panels (b) and (c), the 

resistance of the now antiparallel SMTJ (indicated by a purple free layer) increases so 

the voltage across both SMTJs increases. The voltages in these two cases differ due to 

differences in the magnetoresistance of the two devices. If both free layers flip, the system 

goes to the configuration in panel (d), with both SMTJs in the antiparallel (AP) state and the 

largest magnitude voltage across both SMTJs.
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FIG. 2. 
(a) Experimental evolution of the dc resistance of the studied SMTJs versus the applied 

in-plane magnetic field, swept from 6 mT to 10 mT and back. Those characteristics were 

obtained for a constant applied dc voltage V 0 = − 0.1 V and a series resistor of R0 = 473 Ω. 

(b) Experimental time trace of the voltage of a single SMTJ μ0H = 6.9 mT, V 0 = − 0.45
V, in parallel with a static resistor of Req = 1085 Ω. This panel covers a single transition 

from the antiparallel to the parallel state illustrating the effects of RC time constants on 

the transitions. Fit to an exponential gives a time constant τRC for the measurement of 

(71±14) ns. (c) Longer time trace showing approximately 50 transitions over 1 ms. The 

different noise levels around the two voltage states reflect that the measurement is being 

taken in an asymmetric configuration; the lower voltage state is relatively stabilized by the 

applied voltage, and consequently undergoes weaker thermal fluctuations. (d) Histogram 

of measured voltages over 2 s containing roughly 105 transitions. Note logarithmic x-axis; 

y-axis is shared with (c).
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FIG. 3. 
(a) Time trace of the voltage of two coupled SMTJs, for μ0H = 6.9 mT, V 0= −0.45 V and 

R0 = 473 Ω. (b) Histogram of measured voltages over 20 s. Note the logarithmic scale on the 

horizontal axis.
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FIG. 4. 
(b) Probabilities of occupancy for the different joint configurations of two coupled SMTJs, 

with V 0 = − 0.45 V. (a) Determinant of the probabilities in (b) as in Eq. (2). Error bars 

indicate single standard deviation uncertainties.
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FIG. 5. 
Auto- and cross-correlation for the states of two coupled SMTJs. Solid lines are derived 

from experimental data at μ0H = 7.6 mT, V 0= −0.3 V. Dashed lines are derived from the 

Néel-Brown model fit with the parameters of Table I (Appendix A) at the same field and 

voltage, and a Markov model for the coupling (Appendix B). In the log scale inset, the gray 

line is the geometric mean of the model-predicted coupled autocorrelations, which serves as 

an asymptotic upper bound for the cross-correlation.
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FIG. 6. 
The correlation coefficient (equivalently the t = 0 cross-correlation) between the states of 

the coupled SMTJs at a series of source voltages V 0. Filled circles show the experimental 

data; curves are the model predictions based on the Markov model described in Appendix B 

using the Néel-Brown fits to isolated SMTJs described in Appendix A. The single standard 

deviation uncertainties for the experimental points are smaller than the symbols. They are a 

result of the finite number of intervals measured in each state.
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FIG. 7. 
Model predictions of the correlation coefficient (equivalently the t = 0 cross-correlation) 

between the states of coupled SMTJs at a series of tunneling magnetoresistances 

demonstrating that greater TMR gives stronger correlation. The SMTJs are identical and 

based on the experimental SMTJ 1.
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FIG. 8. 
Model predictions of the correlation coefficient (equivalently the t = 0 cross-correlation) 

between the states of coupled SMTJs over a sequence of series resistor values (as multiples 

of R0 = 473 Ω) values wherein the mean voltage drop across the four Markov states is 

fixed. The data demonstrates that changing from a voltage to a current source gives stronger 

correlation. The model was evaluated with two identical SMTJs based on the experimental 

SMTJ 1. The cyan curve (102 R0) is covered almost entirely by the teal curve (103 R0), 

demonstrating saturation behavior of the correlation at high series resistance.
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FIG. 9. 
Antiparallel state probability for each of five SMTJs electrically coupled in parallel as a 

function of applied magnetic field. The symbols give the probabilities computed with a 

Monte Carlo simulation (statistical error bars are smaller than the symbols) and the lines 

give the probabilities computed with a numerical extraction of the eigenvectors of the 

analytic Markov model.
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FIG. 10. 
Fits of the Néel-Brown model Eq. (A1) to the uncoupled SMTJ transistion rates Γ± (e.g. 

Fig. 2) at four different source voltages. Error bars indicate single standard deviation 

uncertainties due to the imprecision in setting the applied field value and the statistical 

uncertainty due to the limited number of transitions recorded for each point.
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FIG. 11. 
a) Schematic of the model in the individual uncoupled case for the two different SMTJs; 

note the correspondence to Fig. 1. (1) or (0) corresponds to the parallel and antiparallel 

configuration of the SMTJ. Arrows represent jumping events characterized by a transition 

rate that forms the arrow label. b) Schematic of the model in the coupled case. Four different 

configurations are possible: (00), (01), (10), and (11). The first index corresponds to the state 

of SMTJ 1 while the second one is for the state of SMTJ2.
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TABLE I.

Néel-Brown model parameters for SMTJ 1 and SMTJ 2 obtained from fits to the dwell times derived from the 

experimental voltage time traces for each device. The set of values shown here is one of several roughly 

equivalent sets obtained from a high-dimensional fit with significantly nonorthogonal parameters. These 

values should be considered useful for modeling, but should not be considered numerically definitive.

SMTJ 1 SMTJ 2

Γ0 0.254 MHz 0.161 MHz

β 4.34 6.55

V c −0.55 V −2.7 V

μ0Hk
+ 2.11 mT 2.31 mT

μ0Hk
− 4.15 mT 2.78 mT

μ0H0
+ 7.32 mT 7.27 mT

μ0H0
− 9.76 mT 9.86 mT

A −0.50 V −1 −1.7 V −1

B 3.8 V −2 4.2 V −2
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