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W e have read the original article entitled “The role of rifampicin within the 
treatment of Mycobacterium avium pulmonary disease” by Schildkraut et al. (1). 

We would like to contribute to the ongoing discussion on the role of rifampicin in the 
treatment of non-tuberculous mycobacteria (NTM). The authors showed no advantages 
in rifampicin use since it lacks bactericidal activity, and no adjunctive role in preventing 
the emergence of resistance was observed. Additionally, NTM MICs for rifamycins are 
generally higher than those in Mycobacterium tuberculosis, requiring higher doses (2, 3).

The other relevant point to be considered is rifampicin-mediated reduction in 
macrolide exposure. It should be mentioned that macrolides are key drugs for the 
treatment of NTM, and their absence was identified as a significant risk factor for both 
microbiological and clinical failure (4). Several publications showed that clarithromycin 
(CRL) exposure is significantly reduced by the concomitant administration of rifampicin, 
while fewer data are available for azithromycin (AZM) (5–8). Jeong et al. (6) reported 
that patients treated with regimens containing AZM and rifampicin [for Mycobacterium 
avium complex (MAC) infections] had lower AZM maximal concentrations (Cmax) than 
patients with M. abscessus who received rifampicin-free regimens (220 vs 530 ng/mL, 
P < 0.001); they also identified AZM Cmax above 400 ng/mL as a factor predicting 
microbiological response at multivariate analysis. Van Ingen et al. reported that 56% 
and 34% of the patients who received rifampicin failed to reach CLR and AZM plasma 
target concentrations (200 ng/mL), respectively (7). This observation directly reflects the 
induction by rifampicin (RIF) of cytochrome 3A4, of which macrolides are the substrate. 
AZM is metabolized by CYP3A4, albeit to a lesser extent than CLR (9, 10). AZM plasma 
concentration undergoes a noteworthy reduction although less pronounced than CLR. 
If the effect of RIF-induced metabolism of CLR has been described in multiple studies 
(11, 12), likewise van Ingen has shown for the first time how this interaction affects AZM 
Cmax (7). Another possible mechanism included p-glycoprotein induction, as shown in 
early works on AZM disposition (13). Therapeutic drug monitoring of anti-NTM drugs 
is recommended by guidelines in selected patients such as those in which subtherapeu­
tic levels are suspected, in case of delayed sputum conversion or in those reporting 
tolerability issues (14).

We here report preliminary data on AZM Cmax in serum and in peripheral blood 
mononuclear cells (PBMC) of patients treated for NTM infections. They were enrolled 
in an observational study on the effect of anti-NTM pharmacokinetics on treatment 
outcomes and signed a written informed consent (MOTT Study, Ethics approval number 
44132/22). Samples for AZT Cmax were withdrawn 2 hours post dose, and they were 
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analyzed through an LC-MS/MS Kit (from CoQua Lab, Italy; code: TBC100) for quantify­
ing tuberculosis and non-tuberculous mycobacteria plasma drugs, modified for PBMC 
drug quantifications [process validation described in reference (15)]. Data are reported 
as median values (interquartile range) and compared through non-parametric tests 
(Mann-Whitney and Spearman’s tests).

AZM Cmax was assessed in 26 plasma and 13 PBMC samples, withdrawn from 15 
participants. A median of 1 (1-2) plasma measurement for each patient was available. The 
population was mainly composed of female participants (66.7%) with a median age of 64 
years (46-75). Median weight and body mass index were 55 kg (48–58) and 17.9 kg/m2 

(16.2–18.9). No one had cystic fibrosis, while 66.7% had underlying pulmonary diseases: 
chronic obstructive pulmonary disease and bronchiectasis were the most commonly 
reported (33.3% each). M. avium complex represented 60.0% of all the species isolated. 
Nodular-bronchiectatic NTM-PD was present in 60.0% of the participants. All of the 
patients enrolled were initially treated with targeted anti-NTM combination therapy 
according to the ATS/ERS/ESCMID/IDSA Guidelines (14). In 10 patients (66.7%), the 
regimen was modified or interrupted due to the occurrence of adverse events, drug 
interactions, or treatment failures. The blood samples for therapeutic drug monitoring 
(TDM) evaluation were collected after a median time interval of 12.6 weeks (4.1–38.2) 
after the introduction of the first or new line regimen.

When the plasma AZM Cmax measurements were performed, eight (53.3%) 
participants received AZM with rifampicin, while seven (46.7%) were receiving rifampi­
cin-free regimens. In the former group, one (12.5%) patient received clofazimine (CLO), 
while in the latter, CLO was administered in four (57.1%) participants. Ethambutol (ETB) 
was included in 12 regimens (80%), and in 9 (75%) of them, it was associated to RIF. 
Moxifloxacin (n = 4, 57.1%), linezolid, and cotrimoxazole (n = 1, 14.3%) were used as an 
AZM companion in RIF-free regimens. A total of 19 (73.1%) and 7 (26.9%) samples were 
collected for the two groups, respectively. Median AZM Cmax was 165 ng/mL (140–227) 
in plasma and 37,466 ng/mL (20,029–59,427) in PBMC, with a median plasma/PBMC 
ratio of 227 (143–261). Higher dose-per-weight of AZM (mean AZM: 9.0 mg/kg, 8.6–10.2) 

FIG 1 Azythromycin maximal concentrations in participants receiving and not receiving rifampicin. 

The statistical analysis was performed using Mann-Whitney’s test. Dashed horizontal lines are proposed 

thresholds associated with favorable treatment outcomes.
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did not correspond to higher plasma (rho = 0.090, P = 0.690) or intracellular (rho = 
0.405, P = 0.319) concentrations, and moreover, higher plasma AZM concentrations 
were not associated with higher intracellular AZM Cmax (P = 0.553). AZM Cmax was 
significantly lower in participants with vs without rifampicin coadministration (152 vs 
710 ng/mL P = 0.041; Fig. 1). The prevalence of AZM Cmax below 200 ng/mL (78.9% vs 
28.6%, P = 0.017) and below 400 ng/mL (94.7% vs 42.9%, P = 0.003) was significantly 
higher in patients concomitantly receiving rifampicin. Furthermore, a linear reduction 
of AZM Cmax was observed along with increasing rifampicin dose-per-weight (P = 
0.036). Significantly lower intracellular AZM Cmax was observed in rifampicin-receiving 
participants (27,166 vs 237,778 ng/mL, P = 0.026). Clofazimine-containing regimens (n 
= 5, 33.3%) were associated with greater AZM plasma Cmax (350 vs 150 ng/mL, P = 
0.030) and a higher prevalence of AZM Cmax > 200 ng/mL (75.0% vs 16.7%, P = 0.004). 
The majority of clofazimine-including regimens did not contain rifampicin and, therefore, 
were associated with a higher chance of reaching therapeutic AZM exposure, likely due 
to reduced drug-drug interaction. Recent data support the efficacy of clofazimine-con­
taining regimens (16, 17).

Higher AZM concentration has been described to be predictive for more favorable 
outcomes in MAC-PD (6, 16), thus emphasizing the need for optimized macrolide doses 
and the avoidance of interacting drugs. In our population, AZM Cmax above 200 ng/mL 
was associated with improved radiological outcome (P = 0.045), while a non-significant 
relation was observed with microbiological response (P = 0.0063).

This study presents major limitations due to its small sample size and limited 
pharmacokinetic data, restricting the generalizability of the findings. A broad spectrum 
of confounding factors, unrelated to rifampicin, has not been taken in account. Despite 
these limitations, our study aims to utilize the available data set to provide preliminary 
insights and justify the need for a larger, randomized clinical trial with rifampicin-free 
regimens with bactericidal activity in order to improve the outcomes of patients with 
NTM-PD (16, 18).
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