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BACKGROUND Fatal coronary heart disease (FCHD) is often
described as sudden cardiac death (affects .4 million people/
year), where coronary artery disease is the only identified condition.
Electrocardiographic artificial intelligence (ECG-AI) models for
FCHD risk prediction using ECG data from wearable devices could
enable wider screening/monitoring efforts.

OBJECTIVES To develop a single-lead ECG–based deep learning
model for FCHD risk prediction and assess concordance between
clinical and Apple Watch ECGs.

METHODS An FCHD single-lead (“lead I” from 12-lead ECGs) ECG-AI
model was developed using 167,662 ECGs (50,132 patients) from
the University of Tennessee Health Sciences Center. Eighty percent
of the data (5-fold cross-validation) was used for training and 20%
as a holdout. Cox proportional hazards (CPH) models incorporating
ECG-AI predictions with age, sex, and race were also developed. The
models were tested on paired clinical single-lead and Apple Watch
ECGs from 243 St. Jude Lifetime Cohort Study participants. The cor-
relation and concordance of the predictions were assessed using
Pearson correlation (R), Spearman correlation (r), and Cohen’s
kappa.
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RESULTS The ECG-AI and CPH models resulted in AUC 5 0.76 and
0.79, respectively, on the 20% holdout and AUC 5 0.85 and 0.87
on the Atrium Health Wake Forest Baptist external validation
data. There was moderate-strong positive correlation between pre-
dictions (R5 0.74, r5 0.67, and k5 0.58) when tested on the 243
paired ECGs. The clinical (lead I) and Apple Watch predictions led to
the same low/high-risk FCHD classification for 99% of the partici-
pants. CPH prediction correlation resulted in an R 5 0.81, r 5
0.76, and k 5 0.78.

CONCLUSION Risk of FCHD can be predicted from single-lead ECGs
obtained from wearable devices and are statistically concordant
with lead I of a 12-lead ECG.
KEYWORDS Fatal coronary heart disease; Artificial intelligence;
ECG-AI; Apple Watch; Risk prediction; Concordance
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Introduction
Fatal coronaryheart disease (FCHD) leads to suddencardiac fail-
ure and is attributed tohaving a history of cardiovascular disease,
historyof nonfatalmyocardial infarction, or underlying coronary
disease risk factors.1–3 Owing to similarities in its outcomes,
researchers have suggested that FCHD is highly correlated
with sudden cardiac death (SCD).4,5 While the proximate cause
of FCHD is difficult to ascertain owing to its typically unwit-
nessed nature, the underlying cause is often coronary artery dis-
ease (CAD),5,6 ventricular arrhythmias,7 heart failure (HF),8

congenital and acquired cardiomyopathies,9,10 or other compli-
cations of atherosclerotic disease.11 In addition, FCHD risk
increases by age, but is now also more observed in 30- to
40-year-olds,12,13 males,14,15 African Americans,16,17 and ath-
letes,18–20 highlighting the need for routine risk assessment.
However, assessment tools remain suboptimal.1,21–23
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Primary prevention for FCHDwithout evidence of clinical
symptoms or conditions is difficult, with interventions pro-
vided only to those with underlying risk factors such as
HF, CAD, hypertrophic cardiomyopathy, or certain ventricu-
lar arrhythmias.24–27 Interventions in these populations
include implantable cardioverter-defibrillators or treatment
of other pharmacological therapies,28 evaluation for anoma-
lous coronary arteries,29,30 or, for less severe cases, recom-
mendations for lifestyle modifications. Noninvasive
screening for potential FCHD has been elusive. Artificial in-
telligence (AI) methods are now available to detect and pre-
dict risk for a variety of cardiovascular outcomes, given
advances in computational capacity and in machine
learning.31,32 Nevertheless, AI methods require data, hereto-
fore only available in patients presenting to a clinical setting
to receive screening. However, the increasing number of in-
dividuals wearing smart devices, including wearables with
health monitoring applications, has potential for implementa-
tion of AI predictive tools that can leverage a single-lead
electrocardiogram (ECG) for screening and risk monitoring,
providing an easy and cost-effective pathway to facilitate pre-
ventive and remedial interventions.

Electrocardiographic AI (ECG-AI) models assessing car-
diovascular disease risk have been developed, yet virtually
none exist for FCHD. Accurate ECG-AI models based on
single-lead ECG signal data from wearable devices would
enable scalable screening and/or monitoring of larger popula-
tions. Raw single-lead ECG data may, therefore, be useful to
predict risk of FCHD, but there is a need for assessment of
correlation and concordance between AI models developed
on single-lead (typically “lead I” of a 12-lead clinical ECG)
ECGs with those obtained from smartwatches (since smart-
watch ECGs typically mimic lead I).33

The main objective of this study was to assess the feasi-
bility of using single-lead ECG–based deep learning models
for FCHD risk prediction by assessing the correlation and
concordance between predictions obtained from paired clin-
ical single-lead and Apple Watch ECGs.
Materials and methods
FCHD ECG-AI model development
Data sources and ECG signal data
We obtained demographic and clinical data (eg, comorbid-
ities) from the electronic health records (EHR) and standard
raw 12-lead 10-second time-voltage supine ECG data from
patients at the University of Tennessee Health Science Cen-
ter/Medical Center in Memphis, TN (UTHSC). The study
was approved by the institutional review board of both
UTHSC and Atrium Health Wake Forest Baptist, Winston-
Salem, NC.

The 12-lead ECG data were in either 500 Hz or 250 Hz
voltage. All ECGs were downsampled to 250 Hz by
removing amplitudes at every other time point. In addition,
the first second of the 10-second ECGwas removed to reduce
noise associated with ECG initiation, resulting in a 9-second
ECG with 225 Hz sampling rate. A single-lead version using
lead I of the 12-lead ECG was developed, since this lead is
often mimicked in wearable devices with ECG functionality,
such as smartwatches. Lead I was extracted from the 12-lead
ECG and replicated 12 times, to retain consistency between
the model architectures.
Inclusion/exclusion criteria
Patients aged 18 or older with at least 1 ECG recording were
included in the initial dataset. For initial analysis, there were
no time restrictions between ECGs and FCHD event (cases).
Controls were matched by age, sex, and race and had no sud-
den fatal event. In the case of controls, the date last seen in the
EHR system was used as the anchor point, and any previous
ECGs were extracted.
FCHD outcome definition
FCHD refers to sudden cardiovascular failure with the only
identifiable cause being CAD.1,2 FCHD events were derived
from a combination of ICD-9 codes 410, 427.5, and 799 and
ICD-10 codes I46.2, I46.9, I21, and I25.1,34
Study design and model development
The single-lead ECG dataset was split (and stratified) into
80% for derivation and 20% as a holdout dataset. The 20%
holdout dataset was only used for final testing and perfor-
mance assessment. Five-fold cross-validation was employed
on the 80% derivation data. The ECG-AI model was devel-
oped based on an adjusted ResNet convolutional neural
network deep learning architecture.35 The Adam optimizer
was used with default parameters. The batch size was 1024
and ran over 100 epochs. The single-lead ECG-AI models
were assessed using the area under the receiver operating
characteristic curve (ROC AUC) on the 20% holdout data.

In addition to the ECG-AI framework, we also developed
a Cox proportional hazards (CPH) model that incorporated
the predictions from the single-lead ECG-AI model for
FCHD with simple demographic variables: age at time of
ECG, sex, and race. The CPH model was assessed on the
same 20% holdout data using the concordance index (C-in-
dex) and AUC.
The St. Jude Lifetime Cohort Study
The St. Jude Lifetime Cohort Study (SJLIFE) is an institu-
tional review board–approved (NCI U01CA195547, MPI
Hudson & Ness) pediatric cancer cohort established to longi-
tudinally evaluate health outcomes among survivors previ-
ously treated for childhood cancer at St. Jude Children’s
Research Hospital who had survived�5 years following can-
cer diagnosis.36 The SJLIFE study involves an ongoing pro-
spective cohort study for patients diagnosed and treated over
5 decades from 1962 until June 30, 2012.36 Participants re-
turn to St. Jude for comprehensive clinical assessments
approximately every 5 years. By 2020, 6560 participants
had agreed to participate in the study, of whom 5223 had
completed a baseline clinical assessment.
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As a part of an existing ancillary SJLIFE study (NCI
1R01CA261834, MPI Akbilgic & Hudson), and following
informed consent, paired clinical 12-lead and Apple Watch
single-lead ECGs were recorded from participants during
their SJLIFE evaluation since December 2022. The availabil-
ity of the 2 ECG modalities from the same patient, taken at
the same time, provided a unique resource to test for correla-
tion of FCHD predictions using both ECG modalities: the
lead I of 12-lead clinical ECGs and single-lead Apple Watch
ECGs.

Following model development, we aimed to prospectively
test the ECG-AI and CPH models on ECG and demographic
data obtained from SJLIFE. At each visit, a 12-lead clinical
ECG, an Apple Watch ECG, and demographic information
are recorded. The 12-lead clinical ECGs were obtained as
XML files, from which the patient ID and demographic
data are parsed out and de-identified. The Apple Watch
ECGs are transferred to a secure cloud-based storage system
and linked to the paired clinical ECG via the participant’s
study ID code.
Paired electrocardiogram data (clinical and Apple
Watch ECGs)
For the single-lead clinical ECG model, the first lead (lead I)
of the 12-lead ECG was extracted and replicated 12 times to
maintain the same input structure into the previously devel-
oped model. All clinical ECGs were downsampled to 250
Hz and the first second was removed, resulting in ECGs at
225 Hz of 9-second length.

ECGs obtained from the Apple Watch had a sampling rate
of 512 Hz. The middle 9 seconds (downsampled to 250 Hz)
of the 30-second Apple Watch ECGs were used in the anal-
ysis.
Prediction of FCHD using ECG-AI and CPH
This research employed an adjusted ResNet convolutional
neural network deep learning architecture from Akbilgic
and colleagues35 for ECGs to predict risk of FCHD. The
input into this deep learning architecture is a 1-dimensional
ECG signal and the output was the predicted risk of
FCHD. Similarly, the developed CPH models, with inputs
of age at time of ECG, sex, and race, as well as the ECG-
AI were employed on data from single-lead and AppleWatch
ECGs.
ECG-AI and CPH correlation of predictions
Correlation and concordance between the predictions from
the ECG-AI model single-lead clinical and Apple Watch
was assessed using coefficient of determination, Pearson cor-
relation coefficient, Spearman correlation coefficient, and
Cohen’s kappa. In addition, we assessed concordance of
the ECG-AI model predictions using the paired single-lead
ECGs and the Apple Watch ECGs. For the CPH models,
we followed the same protocol for assessment of correlation
and concordance using predicted risk scores from the CPH
models between single-lead and Apple Watch ECGs.
Model development and all additional analyses were per-
formed using the Python programming language.
Results
Clinical characteristics
The analytical UTHSC cohort data, on which model develop-
ment and internal testing was performed, included a total of
167,662 ECGs collected from a total of 50,132 patients after
applying inclusion and exclusion criteria. From these, 29,093
were controls with 78,472 ECGs and 21,039 were cases for
FCHD with 89,190 ECGs. The average age at time of ECG
was 62.586 14.0. A total of 51.69% were African American
and 45.72% were white, and 53.09% were male. The median
time between ECG and FCHD diagnosis in the derivation
cohort was 1.38 years. A patient cohort from Atrium Health
Wake Forest Baptist (AHWFB) was selected for external
validation. A total of 2305 patients were included for valida-
tion, with 461 patients as cases for FCHD. The mean age of
the validation cohort was 63.046 16.90, with 18.79% being
of African American race, and76.31% of white race; 51.02%
were male.

The SJLIFE cohort, from which the paired clinical and
Apple Watch ECGs were prospectively obtained, included
a total of 243 SJLIFE participants. The average age of this
cohort was 35.4 6 10.0. A total of 13.7% were of African
American race and 83.1% were white, and 49.6% were
male. Table 1 summarizes the clinical characteristics for
both cohorts.

FCHD risk prediction model on 20% UTHSC holdout
data for ECG-AI
The single-lead ECG-AI model, when tested on the UTHSC
holdout data, resulted in an AUC of 0.76 (0.76–0.77).37 The
accuracy of the lead I–based ECG-AI was 70% with a sensi-
tivity of 67% and specificity of 71%. The positive predicted
(PPV) and negative predicted (NPV) values were 55% and
81% respectively. The CPH model, when tested on the
same holdout data set, resulted in a C-Index of 0.70 (0.69-
0.71) and an AUC of 0.79 (0.78-0.80).

3.1 FCHD model external validation on the AHWFB
cohort
The single-lead ECG-AI model, when tested on the AHWFB
external cohort, resulted in an AUC of 0.85 (0.83-0.87) while
the CPH model resulted in an AUC of 0.87 (0.84-0.89). The
accuracy of the Lead I-based ECG-AI was 82% with a sensi-
tivity of 71% and specificity of 84%. The positive predicted
and negative predicted values were 53% and 92%, respec-
tively. The CPH model, when tested on the same holdout da-
taset, resulted in a C-index of 0.83 (0.80–0.85) and an AUC
of 0.87 (0.85–0.89).

Concordance between the single-lead clinical and
Apple Watch FCHD predictions
Correlation and concordance between predictions from the
single-lead clinical ECG with those using the Apple Watch



Table 1 Demographics and clinical characteristics of the patient cohort from UTHSC EHR

Demographics UTHSC cohort AHWFB external cohort St. Jude LIFE cohort

Npatients 5 50,132 Npatients 5 2,305 Npatients 5 243
NECGs 5 167,662 NECGs 5 2,305 NECGs 5 243

Age at ECG taken (y) 6 SD 62.58613.98 63.04616.89 35.4610.0
Sex
Male (0), n (%) 26,616 (53.1) 1176 (51.02) 123 (49.6)
Female (1), n (%) 23,513 (46.9) 1129 (48.98) 125 (50.4)

Race/ethnicity
African American, n (%) 25,911 (51.7) 433 (18.79) 34 (13.7)
White, n (%) 22,918 (45.7) 1746 (75.75) 206 (83.1)
Other, n (%) 1303 (2.6) 126 (5.5) 8 (3.2)

AHWFB 5 Atrium Health Wake Forest Baptist; ECG 5 electrocardiogram; LIFE 5 [St. Jude] Lifetime Cohort Study; UTHSC 5 University of Tennessee Health
Science Center/Medical Center in Memphis, TN.
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ECGs were performed. The correlation (Figure 1) and
concordance results were favorable, with a Pearson correla-
tion (R) of 0.74, Spearman correlation (r) of 0.67, and Co-
hen’s kappa (k) of 0.58. The correlation between
predictions of the CPH model tested on single-lead and Ap-
ple Watch ECGs resulted in R 5 0.81 and r 5 0.76, and
concordance resulted in k 5 0.78.

To further compare predictions from the single-lead and
Apple Watch ECGs, the predictions were stratified into low
and high risk for FCHD (Table 2). Overall, using just the
ECG-AI predictions, 99% of the study participants were pre-
dicted to be in the same risk group when using both ECGmo-
dalities. Two study participants out of 4 (50%) were predicted
as high risk for FCHD by both the single-lead and Apple
Watch ECGs. Two participants were predicted to be at high
risk by ECG-AI using the Apple Watch ECGs but at low
risk when using the corresponding single-lead clinical
Figure 1 Linear correlation of fatal coronary heart disease predictions from clini
trocardiographic artificial intelligence (ECG-AI; boxes) and Cox proportional hazar
line is for CPH.
ECG. In addition, no participants were predicted to be at
high risk for FCHD from their single-lead clinical ECG and
at low risk from the AppleWatch ECG. Assessment of agree-
ment between these patient classifications resulted in a Co-
hen’s kappa of 0.66.
Discussion
FCHD is becoming a major health concern owing to its asso-
ciation with multiple risk factors and can lead to sudden car-
diac arrest. While there are efforts to reduce its prevalence,
often relying on lifestyle changes or pharmacological thera-
peutics to manage such associated risks (eg, hypertension,
diabetes, left ventricular hypertrophy, HF, etc), the sudden-
ness of the fatal event requires timely warning. Therefore,
there is a need for prediction models that can be easily acces-
sible within routine clinical care as well as for remote
cal single-lead electrocardiograms (ECGs) vs Apple Watch ECGs using elec-
ds (CPH; triangles). Red trendline is for single-lead ECG-AI and green trend-



Table 2 Risk classification of predictions from paired single-lead
ECG predictions and Apple Watch predictions

Apple Watch single-lead
ECG-based predictions

TotalLow risk High risk

Clinical lead I ECG-based
predictions
Low risk 239 2 241
High risk 0 2 2

Total 239 4 243

ECG 5 electrocardiogram.
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monitoring. In this research, externally validated ECG-based
models were used to assess the power of ECGs to predict risk
of FCHD and assess correlation and concordance with data
obtained from a single ECG lead and Apple smartwatches.
Results show moderate-to-good correlation and concordance
between single-lead and Apple Watch ECGs, with R5 0.74,
r5 0.67, and k5 0.58. In addition, when assessing ECG-AI
classification of high- and low-risk groups using paired
ECGs, there was moderate concordance between the risk
groups with a kappa of 0.66. When including age, race,
and sex with ECG-AI predictions within CPH models, corre-
lation and concordance resulted in R 5 0.81, r 5 0.76, and
k5 0.78. This serves as proof of concept that ECG-based AI
models developed on clinical ECGs can indeed be used with
ECG signals obtained from smartwatch devices. This in-
creases the potential utility for remote monitoring and clinical
consultations as well as facilitates opportunities for early
intervention.

The most common smartwatches, for example the Apple
Watch (from Apple Inc, Cupertino, CA), Samsung watch,
Fitbit (Fitbit LLC, San Francisco, CA), and the Google Pixel
Watch, enable the wearer to perform a single-lead electrocar-
diogram. Supporting our assertion that single-lead ECG anal-
ysis can have significant clinical applications, certain
smartwatches have recently garnered FDA clearance for dis-
ease detection (eg, atrial fibrillation within Apple Watches),
which leverages ECG sensors.38,39 Most of the measures
and calculations are performed within the watch itself, but
a health application on the linked iPhone provides associated
detailed information. This increases the usability of such
wearable devices in remote monitoring and also paves the
way for additional research and prediction of multiple cardio-
vascular diseases when single-lead ECG is used, with
possible incorporation of demographic and health data/infor-
mation, such as height, weight, level of physical activity, and
heart rate, which can be extracted from the phone application
(for example the Apple HealthKit).40,41

There is an increasing need for ECG-AI methods that use
raw ECGs to predict severe and fatal cardiovascular out-
comes. Even more so, the rise in use of wearable devices
with ECG monitoring capabilities can be an asset to both cli-
nicians and the general population.38,39,41–43 AI models may
be incorporated into future clinical care in aid to risk
stratification of different cardiovascular diseases as well as
outcomes, such as fatal coronary heart disease and SCD.
The current status of ECG functionality in multiple
smartwatch brands supports their use for remote
monitoring.44 Such models have already been incorporated
into smartphones (as an application) to obtain ECGs and pre-
dict risk for HF on the device.45 Incorporating use of such
AI-based models has the potential to help with clinical
assessment and develop patient-centered risk management
schemes.

As part of the SJLIFE prospective study, both clinical and
Apple Watch ECGs are being collected for comprehensive
testing on risk prediction for different cardiovascular dis-
eases. Owing to the efforts performed at SJLIFE as well as
the important resource of collecting paired ECGs, this
research made use of such a resource to test the ECG-AI
model’s capabilities using real smartwatch ECGs to show-
case their clinical application and utility.

Results from this research show that an AI deep learning
model trained on clinical single-lead ECGs is correlated
with predictions from the single-lead ECG obtained fromAp-
ple watches. Importantly, when the single-lead ECG-AI was
tested on the clinical ECGs and ECGs obtained from the Ap-
ple Watch, followed by participant stratification into low or
high risk groups, 94% of the predictions from the two ECG
modalities matched the same risk group. Most of the study
participants were, as expected, placed in the low-risk group
when ECG-AI was tested on the clinical single-lead ECG
and the paired Apple Watch ECG. Two participants were
placed in the high-risk group by both ECG modalities, repre-
senting a group that may benefit from further clinical ECG
assessment and evaluation of comorbidities linked with
high risk of FCHD, such as CAD, heart failure, diabetes,
and hypertension.1,34,46,47 Furthermore, while the single-
lead models did not overestimate predicted risk from the
12-lead models (ie, all participants classified at low FCHD
risk by the 12-lead model were also classified at low risk
by the single-lead model), half of the participants predicated
to be at high FCHD risk by the 12-lead model were classified
as low FCHD risk by the single-lead model. In future works it
will, therefore, be important to assess whether this represents
improved discrimination (since the positive predicted value
was 55% in the UTHSC sample and 53% on the AHWFB
data) or underestimated risk.

Monitoring patients with coronary heart disease for risks
for FCHD via consumer-level wearables with ECG function-
ality may offer improved outcomes as well as new chal-
lenges. People identified at medium or high risk for FCHD,
depending on the false-positive rates, may be referred for
clinical visits to confirm results and additional testing. If
the risk is confirmed, appropriate course of action can be
taken to reduce the identified FCHD risk. These preventive
actions can range from simple lifestyle changes to consider-
ation for implantable cardioverter-defibrillator, depending on
the patient profile and clinical testing/imaging results. How-
ever, development of such systems also brings some chal-
lenges inherent to full EHR integration of wearable data
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generated outside hospital settings, including concerns of
data quality, information security, and alarm fatigue. Addi-
tional clinical studies are needed to assess the clinical utility
of such tools before bringing them into clinical workflow.

This research can extend to other remote monitoring op-
tions, especially other smart watches with ECG functionality.
In addition, results from this research and planned future
work pave the way for the integration of such models within
mobile AI platforms such as ECG-Air,45 which can collect
ECG from wearable devices and offer an easy-to-use, simple,
and cost-effective framework for prescreening at the popula-
tion level. The availability of tools for prescreening is impor-
tant, since FCHD are also highly correlated with other cardiac
diseases, such as hypertrophic cardiomyopathy, heart failure,
and left ventricular hypertrophy, as well as additional under-
lying risk factors (eg, diabetes or hypertension).20,48,49 Hav-
ing a simple and usable AI model that can be integrated
within a smart device, especially a smartwatch with single-
lead ECG capabilities, can be an asset to the clinical work-
flow and help decision-making for triaging, testing, and
risk assessment.
Limitations, potential challenges, and future
studies
This study has some limitations. Predominantly, while
FCHD has been reported to be correlated to SCD, true
SCD data can substantially increase the utility of such AI
models. In addition, our study showed a strong correlation
between clinical lead I and Apple Watch single-lead ECGs.
Yet, the cohort (SJLIFE) used to assess correlation and
concordance of lead I of clinical ECG with single-lead Apple
Watch ECG was a significantly younger cohort compared to
the UTHSC derivation and AHWFB external validation co-
horts. Therefore, there were not many SJLIFE participants
predicted to be at high risk for FCHD. The correlation/
concordance analysis in this study would require validation
on a cohort more representative of UTHSC and AHWFB co-
horts. Finally, the resolution (signal depth) of Apple Watch
ECGs might need further adjustments to increase their
concordance with clinical ECGs (via analog-digital conver-
sion), yet such documentation is presently lacking. We also
plan to work with other institutes and clinical settings to
obtain ECGs from different smart wearable technologies to
increase and ensure generalizability in model performance.

Despite promising results from this research, there are also
challenges in implementation of ECG-AI models into clinical
workflow, both for standard clinical ECG and for wearable
ECG. Embedding ECG-AI models into the EHR for auto-
mated execution is not a straightforward task. The raw wave-
form ECG data in clinical settings almost never make it to
EHR and are typically collected and stored in cardiology in-
formation systems in an encrypted fashion.50,51 Accessing
the waveform ECG data requires specific technical expertise
and paying service fees to vendors to decrypt the data, and in
some cases these data are never made available for research.
Owing to such challenges, such data are only available for
research in only a very small number of institutes.50 Howev-
er, with appropriate investments, it is possible to automati-
cally transfer waveform ECGs from the cardiology
information systems to a computing environment that hosts
ECG-AI models. The models are then executed, and the re-
sults are returned to the EHR in a matter of seconds. Further-
more, we also acknowledge that there could be challenges in
execution of ECG-AI models on smartphones using data
generated from smartwatches or fitness trackers. These chal-
lenges include data quality, information security, and acces-
sibility. Yet, these challenges are no more than the challenges
one might experience when using atrial fibrillation detection
on smartwatches that have been FDA cleared owing to their
ECG functionality.
Conclusion
The results from this research show that FCHD events can be
predicted, with high accuracy, from both single-lead clinical
and Apple Watch ECGs using state-of-the-art ECG-AI
methods. In addition, we show that FCHD predictions from
single-lead clinical ECGs and ECGs from Apple Watches
are concordant. Such models can be implemented on Apple
Watch ECGs and can help screen large populations for
FCHD with ease and at low cost.
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