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ABSTRACT
Background:  Intestinal barrier dysfunction and systemic inflammation are common in obstructive 
sleep apnoea (OSA). We aimed to investigate the role of melatonin, an anti-inflammatory mediator, 
in mediating the relationships between OSA, intestinal barrier dysfunction and systemic 
inflammation.
Methods:  Two hundred and thirty-five male participants who complained with sleep problems 
and underwent whole night polysomnography at our sleep centre between 2017 and 2018 were 
enrolled. Polysomnographic data, anthropometric measurements and biochemical indicators were 
collected. Serum melatonin, intestinal barrier function biomarker zonula occludens-1 (ZO-1) and 
inflammatory biomarkers C-reactive protein (CRP) with lipopolysaccharide (LPS) were detected. 
Spearman’s correlation analysis assessed the correlations between sleep parameters, melatonin 
and biomarkers (ZO-1, LPS and CRP). Mediation analysis explored the effect of OSA on intestinal 
barrier dysfunction and systemic inflammation in moderate-severe OSA patients.
Results:  As OSA severity increased, serum melatonin decreased, whereas ZO-1, LPS and CRP 
increased. Spearman’s correlation analysis showed that serum melatonin was significantly 
negatively correlated with ZO-1 (r = −0.19, p < .05) and LPS (r = −0.20, p < .05) in the moderate-OSA 
group; serum melatonin was significantly negatively correlated with ZO-1 (r  =  −0.46, p  <  .01), LPS 
(r  =  −0.35, p  <  .01) and CPR (r  =  −0.30, p  <  .05) in the severe-OSA group. Mediation analyses 
showed melatonin explain 36.12% and 35.38% of the effect of apnoea–hypopnea index (AHI) on 
ZO-1 and LPS in moderate to severe OSA patients.
Conclusions:  Our study revealed that melatonin may be involved in mediating intestinal barrier 
dysfunction and systemic inflammation in moderate-to-severe OSA patients.

1.  Introduction

Obstructive sleep apnoea (OSA) is a common 
sleep-related breathing disorder that affects an esti-
mated 936 million adults worldwide, with the largest 
number in Chinese [1]. It is mainly characterized by 
recurrent hypopnea and apnoea during sleep, includ-
ing intermittent hypoxemia and sleep fragmentation 
(SF), which can lead to hypertension, coronary heart 
disease, diabetes, cerebrovascular diseases, dementia, 
mood disorders and even sudden death at night [2–6].

OSA characteristic pathological changes, chronic inter-
mittent hypoxia (CIH) and SF, could induce oxidative stress 

and further lead to activation of proinflammatory cascade 
and systemic inflammation [7–11]. Thus, inflammatory 
biomarkers were increased in OSA patients, such 
as  C-reactive protein (CRP) and lipopolysaccharide (LPS) 
[12–14]. The source of inflammatory biomarkers might be 
derived from gut intestinal leakage as evidenced by ele-
vated zonula occludens-1 (ZO-1) [15]. Functions of the 
intestinal mucosal barrier and the intestinal microbiota are 
impaired in OSA patients, which are highly sensitive to 
hypoxia [16,17]. Previous studies confirmed that intestinal 
barrier biomarkers and inflammatory markers are associ-
ated with apnoea–hypopnea index (AHI) in middle-aged 
OSA patients [15,18].
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Melatonin is a neurohormone synthesized mainly in 
the pineal gland of animals and is responsible for reg-
ulating the biological clock [19–22]. In addition to reg-
ulating day rhythm, melatonin is an important 
anti-inflammatory agent or antioxidant. The gut, with 
the help of the gut microbiota, can also synthesize 
melatonin and exert its antioxidant and 
anti-inflammatory effects through paracrine and auto-
crine pathways [23]. Melatonin has a positive protec-
tive effect against both endogenous irritation (gastric 
acid and pepsin) and exogenous damage (alcohol and 
stress) in the gastrointestinal tract [24]. Studies have 
found that OSA has a significant impact on the level 
of serum melatonin, which can cause the disturbance 
of the physiological secretion rhythm of melatonin in 
patients and reduce the level of serum melatonin in 
the morning [25]. In addition, melatonin has also been 
found in animal experiments to relieve high blood 
pressure and vascular endothelial dysfunction caused 
by intermittent hypoxia in rats [26]. It was also found 
that prophylactic use of melatonin in rats to reduce 
myocarditis and myocardial fibrosis as well as isch-
emia–reperfusion injury caused by CIH [27]. However, 
whether melatonin could mediate the relationships 
between OSA, intestinal barrier dysfunction and sys-
temic inflammation was unknown.

In this study, we aimed to clarify the relationship 
among serum melatonin, intestinal barrier dysfunction 
and systemic inflammation in OSA.

2.  Materials and methods

2.1.  Study participants

A consecutive sample of all participants referred for sus-
pected OSA and presented with snoring and/or daytime 
sleepiness, was recruited from our sleep centre between 
2017 and 2018. All participants completed a survey that 
collected basic information such as health status and 
personal medical history. Written informed consent was 
obtained from all participants. The human study proto-
col was approved by the Ethics Committee of Sixth 
People’s Hospital Affiliated to Shanghai Jiao Tong 
University School of Medicine and conducted in accor-
dance with the Declaration of Helsinki.

The exclusion criteria: (1) age less than 18  years; (2) 
female participants; (3) previous treatment for OSA (i.e. 
treatment with an oral appliance, surgery or continuous 
positive airway pressure); (4) taking melatonin medications; 
(5) treating with probiotics or prebiotics; (6) taking sero-
tonin reuptake inhibitors; (7) suffering from cardiovascular 
and cerebrovascular diseases; (8) suffering from digestive 
system disease; (9) having an inflammatory or infectious 

disease; (10) suffering from rheumatic immune system dis-
ease; (11) suffering from benign and malignant tumours; 
(12) suffering from other sleep disorders; (13) other medi-
cal conditions such as severe trauma, fractures, reflex inju-
ries; (14) recent vaccination or surgery; (15) use of 
glucose-lowering, lipid-lowering or antihypertensive drugs.

2.2.  Sleep evaluation

To objectively evaluate sleep and breathing parame-
ters, all participants underwent a comprehensive over-
night laboratory-based polysomnographic monitoring 
(Alice 5, Philips Respironics Inc., Murrysville, PA). Skilled 
sleep technicians manually scored and collected vari-
ous physiological data, including electroencephalo-
graphic, electrooculographic, chin electromyographic, 
electrocardiographic, rib cage and abdominal move-
ment, oronasal airflow (measured via nasal pressure 
and oronasal thermistor), pulse oxygen saturation 
(SpO2), body position. These data were evaluated 
according to the 2012 criteria of the American Academy 
of Sleep Medicine [28].

Apnoea was defined as a decrease in nasal airflow 
of more than 90% from baseline that was sustained 
for at least 10 s, and hypopnea was defined as a 
decrease in nasal airflow of more than 30% associated 
with a decrease in oxygen saturation of 2.3%. AHI was 
defined as the number of apnoea and hypopnea 
events per hour during sleep; mean pulse oxygen sat-
uration (MSpO2) was defined as the mean value of 
whole oxygen saturation observed during sleep; low-
est pulse oxygen saturation (LspO2) was defined as the 
lowest value of whole oxygen saturation observed 
during sleep; oxygen desaturation index (ODI) was 
defined as the number of times per hour of sleep that 
the blood oxygen level dropped by ≥4% from base-
line; microarousal index (MAI) was defined as the num-
ber of arousals per hour of sleep. Daytime sleepiness 
was assessed using the Chinese version of the 
self-administered Epworth Sleepiness Scale (ESS), 
scored on a range of 0–24, with higher scores indicat-
ing increased severity of sleepiness [29]. In accordance 
with the established guidelines of the American 
Academy of Sleep Medicine, OSA severity was catego-
rized into four distinct levels: normal (AHI < 5), mild 
OSA (5  ≤  AHI < 15), moderate OSA (15  ≤  AHI < 30) 
and severe OSA (AHI ≥ 30) [30].

2.3.  Anthropometric and biochemical 
measurements

Five anthropometric indices (i.e. height, weight, waist 
circumference (WC), neck circumference (NC) and hip 
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circumference (HC)) were measured at baseline by 
trained physicians when wearing only undergarments 
and standing upright. Body mass index (BMI) was cal-
culated as weight/height squared (kg/m2). Systolic 
blood pressure (SBP) and diastolic blood pressure 
(DBP) were measured to the nearest 2 mmHg using a 
mercury sphygmomanometer after participants had 
rested for 15 min. All of the basic parameters men-
tioned above were measured twice and mean values 
were calculated. All participants were requested to 
abstain from food and water after 10 p.m. on the night 
of PSG monitoring. Peripheral blood samples were 
obtained at 7  a.m. the next morning, and centrifuged 
at 3500 rpm for 10 min, after standing for 30 min at 
room temperature. Serum profiles, including fasting 
glucose, insulin, triglycerides (TGs), total cholesterol 
(TC), high-density lipoprotein cholesterol (HDL-C), 
low-density lipoprotein cholesterol (LDL-C), apolipo-
protein A (ApoA) and apolipoprotein B (ApoB), were 
measured in the hospital’s clinical laboratory. The 
homeostatic model of insulin resistance (HOMA-IR) was 
calculated as glucose (mmol/L)  ×  insulin (μU/mL)/22.5.

2.4.  Detection of serum melatonin and biomarkers 
levels

In this study, ZO-1 was used to assess intestinal barrier 
dysfunction; CRP and LPS were used to assess systemic 
inflammation. Blood samples were taken from all set 
patients (n  =  235) at 7  a.m. and allowed to stand for 
one hour at room temperature. Clear serum was clearly 
precipitated after one hour of standing in a cryogenic 
high speed centrifuge (Eppendorf, Hamburg, Germany) 
at 3000 rpm for 5 min. All serum samples were used for 
analysis of melatonin, ZO-1, LPS and CRP concentra-
tions. The analyses were conducted using a competi-
tive enzyme-linked immunosorbent assay (ELISA) 
(melatonin: CEA908Ge; ZO-1: SEC262Hu; CRP: 
SEA821Hu; LPS: IEB526Ge; USCN Life Science, Wuhan, 
China) following the manufacturer’s protocols. The 
intra-assay coefficient of variation was 7.9%. Each sam-
ple was tested in duplicate.

2.5.  Statistical analysis

Normally distributed data are presented as means  ±  SDs, 
skewed data are presented as medians with IQRs, and 
categorical data are presented as percentages. Differences 
in baseline characteristics among the groups were exam-
ined using the Kruskal–Wallis H test, one-way analysis of 
variance (ANOVA) or the χ2 test according to the distribu-
tion characteristics of the data. SPSS software (ver. 22.0, 

SPSS Inc., Chicago, IL) was used to address most of the 
statistical analyses. Data are presented with descriptive 
statistics such as mean, standard deviation (SD), standard 
error of the mean (SEM) and percentage. Spearman’s 
rank correlation coefficients were calculated to determine 
the effect of PSG indices on serum variables and were 
displayed by a heatmap using the correlation plot model 
in OriginPro software (version 2021, OriginLab Inc., 
Northampton, MA). We applied the simple mediation 
model from the PROCESS macro in SPSS (model #4; ver-
sion 2.16.3, IBM Corp., Armonk, NY) for mediation analy-
sis, which included the bootstrapping procedure for 
bias-corrected bootstrap confidence intervals (CIs) [31]. 
Two-sided p values  <.05 were considered significant.

3.  Results

3.1.  Basic characteristics

A total of 235 male subjects matched for age and BMI 
was finally included in our study, and the baseline 
characteristics are presented in Table 1. No significant 
differences in the WC, HC, waist/hip ratio, SBP and DBP 
were observed between the non-OSA group and OSA 
groups. Fasting glucose, insulin, HOMA-IR, TC, TG, 
HDL-C, LDL-C, ApoA and ApoB concentrations were no 
statistically significant differences between the groups. 
Compared with non-OSA group, severe-OSA group 
had lower MspO2 (p  <  .01) and LspO2 (p  <  .01), but 
had higher ODI (p  <  .01), MAI (p  <  .01) and ESS score 
(p  <  .05). Serum melatonin decreased gradually with 
increasing OSA severity. The serum melatonin concen-
tration in moderate-to-severe OSA groups was signifi-
cantly lower than that in the non-OSA group (all 
p  <  .05). In contrast, the levels of ZO-1, LPS and CRP 
progressively increased with OSA severity.

3.2.  The relationships between sleep parameters, 
melatonin, intestinal barrier function biomarker 
(ZO-1) and inflammatory biomarkers (CRP and 
LPS)

Spearman’s correlation analyses of the sleep parame-
ters, serum melatonin, intestinal barrier function bio-
marker (ZO-1), inflammatory biomarkers (CRP and LPS) 
levels were performed in these OSA groups. In the 
mild-OSA group, melatonin was negatively correlated 
with the AHI (r  =  −0.36, p  <  .05) and ZO-1 level 
(r  =  −0.35, p  <  .05) (Figure 1). In moderate-OSA 
patients, melatonin was negatively correlated with the 
AHI (r  =  −0.32, p  <  .05), ZO-1 level (r  =  −0.19, p  <  .05) 
and LPS level (r  =  −0.20, p  <  .05). Additionally, ZO-1 
(r  =  0.32, p  <  .05) and LPS (r  =  0.16, p  <  .05) levels 
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were positively correlated with the AHI (Figure 2). In 
severe-OSA patients, melatonin showed negative cor-
relations with the AHI (r  =  −0.29, p  <  .05), ZO-1 level 
(r  =  −0.46, p  <  .01), LPS level (r  =  −0.35, p  <  .01) and 
CRP level (r  =  −0.30, p  <  .05) (Figure 3).

In the severe-OSA group, AHI was positively cor-
related with the ZO-1 (r  =  0.68, p  <  .01), LPS (r  =  0.58, 
p  <  .01) and CRP (r  =  0.84, p  <  .01). Furthermore, CRP 
showed a positive correlation with ZO-1 level (r  =  0.79, 
p  <  .01) (Figure 3).

3.3.  Melatonin mediated the relationship between 
OSA, intestinal barrier dysfunction and systemic 
inflammation

Next, we explored whether melatonin, as a mediating 
variable, mediated the effect of AHI on intestinal bar-
rier dysfunction and systemic inflammation in 
moderate-severe OSA patients (n  =  116, Tables S1–S3, 
S5–S7). Bootstrap mediation analysis of the relation-
ship between AHI, ZO-1, and mediator melatonin 

yielded a significant intermediary effect (Tables S1 and 
S5 Figure 4(A)). Approximately, 36.12% of the 
AHI-generated gross effects was mediated via mela-
tonin (p  <  .05). Likewise, bootstrap mediation analysis 
of the relationship between AHI, LPS and mediator 
melatonin also yielded a statistically significant inter-
mediation at approximately 35.38% (p  <  .05) (Tables 
S2 and S6, Figure 4(B)) and 5).

4.  Discussion

Female OSA patients are special, which are greatly 
affected by oestrogen and progesterone in the body 
[32]. Therefore, this study specifically targets middle-aged 
male patients as the population. In our study, we found 
that the serum melatonin from OSA patients decreased 
with the OSA severity, while ZO-1, LPS and CRP 
increased with it. Serum melatonin was significantly 
negatively correlated with ZO-1, LPS and CRP, and then 
mediated analysis determined that melatonin was a 
mediator in the relationship between AHI and ZO-1, 

Table 1.  Baseline characteristics of male subjects.
Variables Non-OSA group Mild-OSA group Moderate-OSA group Severe-OSA group

Demographics
Number 60 59 55 61
Males (%) 100 100 100 100
Age (years) 41.27  ±  8.84 43.00  ±  8.99 42.81  ±  7.06 43.47  ±  8.12
Height (m) 1.74  ±  0.05 1.73  ±  0.05 1.73  ±  0.05 1.72  ±  0.06
Weight (kg) 78.54  ±  10.28 77.98  ±  9.09 75.29  ±  7.56 77.54  ±  10.82
BMI (kg/m2) 25.84  ±  2.75 25.96  ±  2.33 25.29  ±  2.48 26.00  ±  2.73
WC (cm) 93.00  ±  9.97 95.33  ±  7.74 95.69  ±  6.56 95.15  ±  7.36
HC (cm) 101.36  ±  6.23 101.28  ±  6.29 100.53  ±  4.56 100.74  ±  5.94
Waist/hip ratio 0.92  ±  0.07 0.92  ±  0.14 0.93  ±  0.44 0.94  ±  0.05
SBP (mmHg) 124.92  ±  12.53 125.65  ±  15.08 125.06  ±  13.39 126.57  ±  14.72
DBP (mmHg) 79.77  ±  8.79 82.65  ±  11.06 79.11  ±  11.37 83.92  ±  11.70
Glucometabolic and lipometabolic indices
Fasting glucose (mmol/L) 5.47  ±  1.15 5.17  ±  0.62 5.33  ±  1.11 5.42  ±  0.83
Fasting insulin (μU/mL) 10.33  ±  6.08 11.08  ±  5.31 9.86  ±  4.54 13.46  ±  10.61
HOMA-IR 2.70  ±  2.58 2.62  ±  1.65 2.40  ±  1.42 3.32  ±  2.96
TC (mmol/L) 4.44  ±  0.85 4.53  ±  0.85 4.67  ±  0.72 4.91  ±  0.94
TG (mmol/L) 1.72  ±  1.62 1.58  ±  0.85 1.99  ±  2.04 2.05  ±  1.31
HDL-C (mmol/L) 1.02  ±  0.24 1.03  ±  0.19 0.99  ±  0.19 1.05  ±  0.26
LDL-C (mmol/L) 2.76  ±  0.72 2.82  ±  0.82 2.96  ±  0.59 3.04  ±  0.74
Apo A (g/L) 1.06  ±  0.20 0.99  ±  0.14 1.07  ±  0.23 1.10  ±  0.17
Apo B (g/L) 0.81  ±  0.17 0.84  ±  0.21 0.86  ±  0.17 0.91  ±  0.18
Sleep data
AHI 2.70  ±  1.30 10.13  ±  3.09** 22.11  ±  4.12** 57.07  ±  14.35**
MSpO2 (%) 96.01  ±  1.10 95.89  ±  1.47 95.23  ±  1.35 88.43  ±  19.30**
LSpO2 (%) 90.67  ±  8.14 83.68  ±  2.29 84.51  ±  7.79 71.26  ±  11.42**
ODI 3.49  ±  3.20 9.99  ±  4.64** 20.69  ±  6.61** 54.42  ±  17.97**
MAI 18.06  ±  13.30 21.90  ±  16.32 19.89  ±  14.05 34.90  ±  18.10**
ESS 4.06  ±  3.01 7.55  ±  4.26 6.61  ±  4.78 9.35  ±  5.78*
Serum biomarkers
Melatonin (pg/mL) 114.41  ±  32.78 112.99  ±  31.83 110.18  ±  35.71* 110.13  ±  40.56*
ZO-1 (ng/mL) 364.72  ±  191.14 371.83  ±  201.99 394.88  ±  192.10* 572.84  ±  923.11*
LPS (pg/mL) 1.49  ±  1.25 2.12  ±  1.48 2.21  ±  1.61* 2.54  ±  1.71**
CRP (ng/mL) 19.41  ±  16.99 20.13  ±  32.10 22.48  ±  16.89* 23.20  ±  14.65**

BMI: body mass index; WC: waist circumference; HC: hip circumference; SBP: systolic blood pressure; DBP: diastolic blood pressure; AHI: apnoea–hypopnea 
index; MSpO2: mean pulse oxygen saturation; LSpO2: lowest pulse oxygen saturation; ODI: oxygen desaturation index; MAI: micro-arousal index; ESS: 
Epworth Sleepiness Scale; HOMA-IR: homeostasis model of assessment for insulin resistance index; TC: total cholesterol; TG: total triglycerides; HDL-C: 
high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; Apo A: apolipoprotein A; Apo B: apolipoprotein B; ZO-1: zonula occludens-1; 
LPS: lipopolysaccharide; CRP: C-reactive protein.
Normally distributed values are displayed as means  ±  SD. Differences were analysed by independent sample t-test between OSA of varying severities and 
non-OSA (mild OSA vs. non-OSA, moderate OSA vs. non-OSA, and severe OSA vs. non-OSA), and denoted as follows: *p  <  .05; **p  <  .01.
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Figure 1. C orrelations between sleep data and serum biomarkers in mild OSA. Spearman’s rank correlation coefficients were cal-
culated to determine the influence of PSG variables on the levels of serum biomarkers in mild OSA (n  =  59). The r values are 
represented by gradient colors, with red cells indicating positive correlations and the blue cells indicating negative correlations. 
*p  <  .05; **p  <  .01. AHI: apnea-hypopnea index; MSpO2: mean pulse oxygen saturation; LSpO2: lowest pulse oxygen saturation; 
ODI: oxygen desaturation index; MAI: micro-arousal index; ESS: Epworth sleepiness scale; MT: melatonin; ZO-1: zonula occludens-1; 
LPS: lipopolysaccharide; CRP: C-reactive protein; PSG: polysomnography.

Figure 2. C orrelations between sleep data and serum biomarkers in moderate OSA. Spearman’s rank correlation coefficients were 
calculated to determine the influence of PSG variables on the levels of serum biomarkers in moderate OSA (n = 55). The r values 
are represented by gradient colors, with red cells indicating positive correlations and the blue cells indicating negative correla-
tions. *P < .05; **P < .01. Abbreviations: AHI: apnea-hypopnea index, MSpO2: mean pulse oxygen saturation, LSpO2: lowest pulse 
oxygen saturation, ODI: oxygen desaturation index, MAI: micro-arousal index, ESS: Epworth sleepiness scale, MT: melatonin, ZO-1: 
zonula occludens-1, LPS: lipopolysaccharide, CRP: C-reactive protein, PSG: polysomnography.
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LPS in moderate-to-severe OSA patients. It suggested 
that significant inhibition of melatonin in pathological 
states like intermittent hypoxia and SF, may be an 
important cause of intestinal barrier dysfunction and 
systemic inflammation in moderate-severe OSA patients.

As an anti-inflammatory substance, melatonin can 
alleviate inflammatory damage by inhibiting the pro-
duction of inflammatory factors, clearing reactive oxy-
gen species and free radicals, inhibiting NF-κB pathway, 

and reducing mitochondrial autophagy [33–35]. OSA 
patients are in a systemic inflammatory state and are 
often found to coexist with inflammatory diseases of 
various systems (including myocarditis, chronic kidney 
disease, irritable bowel syndrome, asthma, etc.) [7,36–41]. 
Consistent with previous studies, serum melatonin lev-
els were significantly lower in OSA patients than in 
controls [25]. We found that levels of markers ZO-1, 
CRP and LPS were significantly negatively correlated 

Figure 3. C orrelations between sleep data and serum biomarkers in severe OSA. Spearman’s rank correlation coefficients were 
calculated to determine the influence of PSG variables on the levels of serum biomarkers in severe OSA (n = 61). The r values are 
represented by gradient colors, with red cells indicating positive correlations and the blue cells indicating negative correlations. 
*P < .05; **P < .01. Abbreviations: AHI: apnea-hypopnea index, MSpO2: mean pulse oxygen saturation, LSpO2: lowest pulse oxy-
gen saturation, ODI: oxygen desaturation index, MAI: micro-arousal index, ESS: Epworth sleepiness scale, MT: melatonin, ZO-1: 
zonula occludens-1, LPS: lipopolysaccharide, CRP: C-reactive protein, PSG: polysomnography.

Figure 4.  Path diagram showing how melatonin mediated the effect of AHI on intestinal barrier dysfunction and systemic inflam-
mation in moderate-severe OSA patients. (A)shows melatonin mediates association between AHI and ZO-1; (B)shows melatonin 
mediates association between AHI and LPS. *means P< .05. B: the unstandardized coefficient. AHI: apnea-hypopnea index; ZO-1: 
zonula occludens-1, LPS: lipopolysaccharide.
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with melatonin in OSA patients. The systemic inflam-
matory state of OSA may be highly related to the 
decrease of serum melatonin. A meta-analysis of clini-
cal trials on the anti-inflammatory effect of melatonin 
showed that exogenous melatonin reduced the levels 
of a variety of inflammatory biomarkers, which may be 
helpful for the prevention and adjuvant treatment of 
inflammatory diseases [42]. The meta-analysis by 
Akbari et  al. showed that melatonin had a favourable 
effect on reducing inflammatory markers such as CRP 
and IL-6 in patients with metabolic syndrome [43]. The 
relationship between melatonin and systemic inflam-
mation and intestinal barrier dysfunction in OSA 
patients has not been previously reported. Distributed 
in the gastrointestinal tract, melatonin plays an import-
ant role in local antioxidant and intestinal motility reg-
ulation [44]. Our study demonstrated the mediating 
effect of serum melatonin in the influence of AHI on 
ZO-1 and LPS. These results suggest that exogenous 
melatonin supplementation in OSA patients may 
reduce intestinal barrier dysfunction and systemic 
inflammatory response. In fact, previous studies have 
reported the therapeutic effect of melatonin on intes-
tinal mucosal injury and intestinal inflammatory dis-
eases. Adjuvant melatonin therapy for ulcerative colitis 
can play an anti-inflammatory role and reduce the 
severity of ulcerative colitis [45]. In a sleep-deprived 
mouse model with colon mucosal damage and intes-
tinal microbiome dysregulation, melatonin supplemen-
tation improved mucosal damage and colon 

microbiome dysregulation [46]. Melatonin is also an 
important hormone in the central nervous system to 
regulate circadian rhythm and sleep, and it is also an 
important target for the treatment of sleep rhythm 
disorder and insomnia in OSA patients. The melatonin 
agonist ramelteon can relieve the insomnia symptoms 
of OSA patients [47]. Long-term continuous positive 
airway pressure treatment can improve the circadian 
clock disorder caused by OSA and restore the secre-
tion rhythm of melatonin and cortisol [48]. However, 
the improvement effect of melatonin on systemic 
inflammation and intestinal barrier damage in OSA 
patients and its mechanism need to be further stud-
ied, and melatonin is expected to become a new ther-
apeutic drug [49–51].

It has been found that sleep deprivation interventions 
impair intestinal barrier function in rats by reducing 
blood melatonin levels through oxidative stress and acti-
vation of the NF-κB pathway [46]. Bertuglia and Reiter 
found that melatonin supplementation in hamsters alle-
viated oxidative stress and insulin resistance induced by 
CIH [52]. Some studies founded that the gut microbiome 
of OSA patients was significantly different from that of 
the normal population [37,38]. In our previous microbi-
ota 16S rRNA analysis, it was found that the composi-
tion, abundance and metabolic function of intestinal 
microorganisms in mice with CIH model and SF model 
of OSA disease were significantly changed, and the rela-
tive abundance of Clostridium was significantly reduced 
[53]. Ten  weeks of IH intervention caused changes in the 

Figure 5. S chematic representation of the relationship between melatonin and intestinal barrier damage (biomarker: ZO-1) and 
systemic inflammation (biomarker: LPS, CRP). This figure was created using BioRender.com and further edited with Adobe 
Photoshop 2023 and Adobe Illustrator 2021. ZO-1: zonula occludens-1, LPS: lipopolysaccharide, CRP: C-reactive protein.
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abundance of certain bacteria in the gut (e.g. Akkermansia 
muciniphila, Clostridium spp., Lactococcus spp. and 
Bifidobacterium spp.) in turn affected the levels of some 
metabolites, such as tryptophan (a synthetic precursor 
amino acid of melatonin), bile acids and branched-chain 
amino acids [53]. The gut microbiome contributes to 
melatonin synthesis in the colon, and the abundance of 
Roseburia was positively correlated with melatonin levels 
in the colon mucosa [54]. Melatonin can be recovered 
by supplementation with probiotics, including 
Akkermansia and Faecalibacterium, to improve intestinal 
microecological imbalance caused by sleep deprivation 
[55,56]. Our previous study found that exogenous mela-
tonin supplementation could alleviate intestinal mucosal 
barrier damage, intestinal microbiota imbalance, intesti-
nal Th17 polarization and systemic inflammation induced 
by CIH intervention in mice [57]. Previous studies have 
reported that OSA-related changes in intestinal microbi-
ota may promote bacterial translocation through the 
defective intestinal barrier, which in turn promotes sys-
temic inflammation [58]. It is speculated that the 
long-term pathological changes of OSA destroy the nor-
mal microbial environment and affect the synthesis of 
melatonin in the intestine. Under the chronic stimulation 
of intermittent hypoxia and SF, an abnormal microbiome 
and insufficient melatonin synthesis work together to 
cause damage to the intestinal barrier and systemic 
inflammation.

The main clinical treatment options for OSA are 
divided into non-surgical interventions (behavioural ther-
apy, medical devices, etc.) and surgical interventions 
(uvulopalatopharyngoplasty, lateral pharyngoplasty, etc.), 
but few treatments can effectively alleviate the intestinal 
barrier dysfunction and systemic inflammation caused 
by OSA [59,60]. Our study offers promising prospects for 
the treatment of intestinal barrier dysfunction and sys-
temic inflammation in OSA patients. This study is the 
first to investigate the relationship among melatonin and 
intestinal barrier function biomarker and systemic inflam-
mation biomarkers in OSA patients, aiming to provide 
theoretical basis for the treatment of intestinal barrier 
function dysfunction and systemic inflammation in OSA 
patients. However, there are some limitations need to be 
discussed. First of all, due to the small number of female 
patients recruited, female patients were not included in 
our study, resulting in the lack of gender control in our 
study. Second, a relatively small OSA patients were 
enrolled. Third, confounding factors such as lifestyle 
(diet, exercise, smoking and alcohol consumption) were 
not considered. Fourth, only three characteristic bio-
markers ZO-1, LPS and CRP, were selected, and other 
biomarkers were to be further studied. Fifth, this study 
was an exploratory cross-sectional study and could not 
effectively demonstrate a causal relationship between 

melatonin and intestinal barrier dysfunction and sys-
temic inflammation. Sixth, further intervention experi-
ments are needed to verify the effects of melatonin on 
intestinal barrier dysfunction and systemic inflammation 
in OSA patients. Deeper explorations are needed to 
determine the mechanism between melatonin, intestinal 
barrier dysfunction and systemic inflammation.

5.  Conclusions

In our study, we explored the relationship between 
melatonin and intestinal barrier dysfunction and sys-
temic inflammation in OSA patients, and found that 
melatonin may be involved in mediating intestinal bar-
rier dysfunction and systemic inflammation in 
moderate-to-severe OSA patients.
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