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Abstract

Multi-factor screenings are commonly used in diverse applications in medicine and bioengi-

neering, including optimizing combination drug treatments and microbiome engineering.

Despite the advances in high-throughput technologies, large-scale experiments typically

remain prohibitively expensive. Here we introduce a machine learning platform, structure-

augmented regression (SAR), that exploits the intrinsic structure of each biological system

to learn a high-accuracy model with minimal data requirement. Under different environmen-

tal perturbations, each biological system exhibits a unique, structured phenotypic response.

This structure can be learned based on limited data and once learned, can constrain subse-

quent quantitative predictions. We demonstrate that SAR requires significantly fewer data

comparing to other existing machine-learning methods to achieve a high prediction accu-

racy, first on simulated data, then on experimental data of various systems and input dimen-

sions. We then show how a learned structure can guide effective design of new

experiments. Our approach has implications for predictive control of biological systems and

an integration of machine learning prediction and experimental design.

Author summary

Using limited data to predict how biological systems respond to combinations of pertur-

bations is important for better understanding of biological systems and for practical

applications. Here we present a new method, structure-augmented regression, that effi-

ciently learns biological response landscapes from sparse measurements. Our method

exploits the property that many biological response landscapes have distinct lower-

dimensional structures, which can be learned first to assist the subsequent quantitative

predictions. We demonstrate that our algorithm outperforms existing algorithms on

simulated and experimental data of various biological systems and dimensions. We fur-

ther exploit the learned structure by suggesting new experiments that refines the learned

structure to further improve the prediction accuracy. By integrating machine learning
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with experimental design, our approach has implications for the predictive control of

biological systems.

Introduction

Biological systems respond to a wide range of environmental cues, including temperature [1–

3], nutrient variations [4–6], and stresses [7–9]. On one hand, these responses reflect the

intrinsic properties of each system; on the other hand, they serve as a tunable property that is

being widely exploited [10–12]. This type of manipulation has allowed us to maximize bacte-

rial growth for synthesis of desirable chemicals, such as bioplastic [13–15], biofuels [16–18]

and artificial flavors in beer [19,20]. Conversely, one may need to optimize drug combinations

(e.g. antibiotics) to eliminate target cell populations [21–23]. In addition, the need for more

precise control of sensing, computation and long-term stable production are rising [24,25].

For instance, overexpression of synthetic gene circuits can have deleterious effects on cell via-

bility by imposing too much burden on the system, since these circuits take up limited

resources [26,27] or even secret toxic within the host [28,29]. This in turn makes the long-term

stable production challenging. In such situations, the ability to fine tune system behavior can

enable optimization and greater predictability of the specific system outputs [30–32].

Establishing this predictability is challenging given usually limited experimental data

[33,34] or, in clinical operations, limited patient samples [35]. For example, while combination

treatment is a promising approach in treating bacterial infections and other complex diseases

like cancers [36–38], the number of possible combinations increases exponentially with the

number of drugs. For two drugs, exhausting 10 concentrations for each requires testing 100

drug-concentration combinations, which remains feasible. For newer combination therapies

that utilize up to 8 drugs [39], exhaustively testing 10 concentrations per drug will require 108

tests, which becomes labor-, material- and cost-prohibitive [40,41].

To improve predictive power using limited data, one approach is to use phenomenological

models to guide data analysis [42–44]. A recent study formulated a dose-response model that

considers drug interactions enables prediction of 3-drug combination effects using responses

of single drugs and of few drug pairs [45]. The key advantage of formulating such a model is to

narrow the parameter space by imposing a structure of the dose-response, as reflected by the

formulation of model equations, on the data based on the prior knowledge. If the model struc-

ture is properly formulated, this approach can be highly data efficient. However, the formula-

tion of these model equations requires sufficient prior knowledge on the system of interest.

For example, in this study mentioned above, the key assumption of the model is that the effects

of each drug on other drugs in the same combination are multiplicative, and that one can

neglect third- and higher-order interactions between drugs. Therefore, such models always

raise the question of generalizability.

An alternative approach is machine-learning models that are entirely data driven

[33,46,47]. On this front, existing studies mainly combine different available machine-learning

(ML) models to generate ensemble predictions by simultaneously taking advantage of all of

them, after learning on a small dataset, usually less than 100 datapoints. In one example, multi-

ple general-use regressors are combined, each with a weight, to predict productions of syn-

thetic molecules, including renewable biofuels and hoppy-flavored metabolites, from

bioengineered cells, as well as to guide new engineering design to further increase the yields

[48]. Designed as a recommendation system, the primary goal of the method is to guide exper-

imental design instead of increasing prediction accuracy. Indeed, while the platform has
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successfully recommended new yeast strain design that improved the tryptophan productivity

by more than 100%, the prediction accuracy of the outcome alone is wanting. In another

example, a regularized boosted regression tree, when combining with composite non-negative

matrix factorization, can predict drug combination effect using less training data [47]. This

study shows that using this ensemble algorithm, to predict two-drug combination landscape,

one only needs single-drug dose responses of both drugs and the diagonal drug combination

responses. However, the same study only demonstrates such capability on various two-drug

combination applications.

While these ML applications have demonstrated that combining ML methods can improve

the prediction accuracy, their results show that reaching a high prediction accuracy remains to

be highly data demanding, especially when dealing with combinations of three or more inputs.

Drawing inspiration from the use of mechanistic models that impose a structure of the dose-

response from prior knowledge that’s potentially nonlinear and complex, we wondered if we

could exploit the advantage of imposing a structure, without explicitly relying on prior knowl-

edge. Doing so would require us to learn a structure directly from the data.

In response to environmental perturbations, many biological systems exhibit characteristic

response landscapes in their outputs, including growth, gene expression, or metabolic func-

tions. The landscapes can often be approximated by a lower-dimensional structural feature.

For example, drug pairs can generate different types of dose-response curves on the two-

dimensional dose-response landscape. A synergistic pair that improves each other’s effect cre-

ates concave-down curves; an antagonistic pair that impedes each other’s action creates con-

cave-up curves [49]. The whole landscape is filled by similar shaped dose-response curves,

each is a certain value away from the previous one. Similarly, a cell population can exhibit

characteristic landscapes in response to different combinations of nutrients [13].

We show that the low-dimensional representation of each landscape can be learned from a

limited amount of data. Incorporating this learned structure as a soft constraint improves the

quality of subsequent data prediction. This new prediction scheme generalizes well to systems

that are being tuned by higher-dimensional inputs. Finally, such a learned response structure

can be incorporated into an active-learning framework, which consists of iterations of struc-

ture learning, quantitative prediction, targeted data collection, and improved structure learn-

ing and quantitative prediction. This framework enables data-efficient and accurate

construction of the response landscape of a biological system of interest.

Results

Learnt structure contains rich information to assist regression

To demonstrate the value of learning structure in regression, we consider a community of two

populations, a plasmid-carrying population (S1) and a plasmid-free population (S0) (Fig 1A).

S0 cells can turn into S1 cells by receiving a plasmid from S1, and S1 can turn into S0 by losing

the plasmid. In the same environment, the two populations compete for a common nutrient,

glucose. The rate of gene transfer can be suppressed by a conjugation inhibitor chemical, lino-

leic acid (Lin). The simulated dynamics reveals a gradual transition of the output, final density

of S1, in response to different glucose and Lin concentrations (Fig 1B).

In this simulation, we generated high-density data that reveal a smooth response landscape,

which serves as the ground truth for learning (Fig 1B). A common task in experimental analy-

sis is to reconstruct this full landscape from sparsely sampled data. A typical strategy is to do

direct regression on the sampled data, which can be sensitive to the sampling variability and

learn poorly. Despite the sparsity of sampled data, however, we noted that the key features of

the landscape structure can be maintained.
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On the full landscape, a key structure is the survival boundary by thresholding the land-

scape (Fig 1B and 1C). We learn this structure in two steps. First, we convert the density to

binary classes by considering how well the plasmid-carrying population S1 survives: if the den-

sity is greater than 0.2, it survives well; else, it survives poorly. We then learn the boundary

using a support vector classifier (SVC). The learned boundary is denoted by the solid black

line on Fig 1C. The figure also shows that an equal distance from the boundary corresponds to

approximately equal values of the density of S1, as evident in the approximately constant dis-

tance between neighboring contour lines. As such, the boundary represents an approximate

lower-dimension (2D) signature of the overall response landscape (3D). SVC is suitable for the

estimated distance assignment, since it returns a function for the learned boundary that can be

used to calculate the distance (see Methods). Indeed, this distance is strongly correlated with

the real S1 density (Fig 1C, right panel).

Given sparsely yet sufficiently sampled data, the boundary can still be approximately recon-

structed directly from the training data (Fig 1D and 1E). In this example, 10 data points suffice

Fig 1. Structure contains rich information for regression. A. A simple community of a plasmid-carrying population (S1)

and a plasmid-free population (S0). S0 acquires the plasmid through conjugation at rate η, becoming S1. S1 reverts to S0

through plasmid loss at rate κ. The conjugation efficiency η is modulated by an inhibitor, linoleic acid (Lin). The growth

rates of both populations are modulated by a common nutrient, glucose. B. Heatmap of the final density of S1 under

different concentrations of linoleic acid and glucose. It shows a structured monotonically decreasing response from

bottom left to top right on the full simulated landscape. C. Demonstration of the rich structural information. The left-hand

side is a heatmap of estimated structural information of S1, calculated as the distance between each point and the

boundary, across the landscape. The boundary is denoted by the solid black line. Multiple contour lines of the same

distance, denoted as dash lines, are highlighted on top of the heatmap. From bottom to top, these calculated distances are

-2, -1, -0.5, 0.5, 1 and 2. The contours of -2, -1, 1 and 2 are labeled on the heatmap. The right-hand side is the scatterplot of

the calculated distance and the ground truth over the whole landscape, which serves as a more direct comparison between

the estimated structural information and the ground truth. D. Comparison of the two regression methods. The left-most

panel shows a training set of 10 data points, sampled from the high-resolution growth truth (A). The top flow shows the

scheme of the regression constrained by a learned structure (SAR). This strategy first learns the boundary between high

and low S1 using a classification method (E). The subsequent regression is constrained by assuming that equal distance

from the boundary should have approximately equal output value, in addition to considering the input combinations. This

structure-augmented prediction gives an R2 of 0.96 (F). Direct regression (bottom row), which directly maps inputs to the

output, gives an R2 of 0.81 (G).

https://doi.org/10.1371/journal.pcbi.1012185.g001
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for the boundary learning. The key to our method is to impose the learned boundary onto the

subsequent regression analysis, as a constraint. Specifically, the regression model support vec-

tor regression (SVR) takes in three inputs, glucose and Lin concentrations, as well as the

assigned distance of each training data from the learned classification boundary. To account

for the possibility that the learned structure does not reflect the true data structure, especially

when training data is sparse, in the regression learning step, we let the algorithm choose a

weight from 0.01, 0.1, and 1 for this extra feature (see Methods). We find that our soft-con-

straint regression method is superior in the same prediction task, compared with direct regres-

sion (SVR alone) (Fig 1F and 1G). Specifically, after learning on the same 10 training data,

SAR gives a prediction power of R2 = 0.96, while the direct regression only has a prediction

power of R2 = 0.81. To test the robustness of this improvement, we train both methods on 40

different sets of 10 training data and test on the rest of the data, then compare the 40 R2 value

(S1B Fig). Indeed, our method performs statistically better than the simple regression (S1C

Fig). To test whether the advantage of SAR is not limited to one training size, we increase the

training data to 50, 10 at a time, and carry out the same statistical tests on the four new groups.

SAR consistently outperforms direct regression in all cases (S1C Fig).

Application of structure-augmented regression on simulation data

To examine the robustness of our method, we simulated dynamics of two biological systems

that exhibit more complex response landscapes.

We first considered the same simulated community of S1 and S0 (Fig 1) using a different set

of model parameters (Methods). The final density landscape of S1 now has a much sharper

transition (Fig 2B). While the required training data size increases, starting from 20 training

data, SAR reaches a median R2 of 0.7 and above, and it consistently outperforms direct regres-

sion (S2D Fig), which, given 20 training data, leads to a R2 of 0.3. SAR captures the sharp tran-

sition at the bottom left of the landscape, while SVR alone misses this structure, resulting in a

poor performance, even when using 50 data points (Fig 2C). Moreover, when the training

dataset is small, the same method can lead to different prediction powers after learning from

data of different distributions, as some distributions capture the overall dynamics and land-

scape better than others. However, SAR consistently shows a smaller variance in its perfor-

mance across all training dataset sizes, thus exhibits a stronger reliability (S2D Fig). After

training on 50 data points, SVR reaches a median R2 of 0.5, with quartile one and three spans

across R2 of 0.25 and 0.85, while SAR reaches a median R2 of 0.75 with quartile one and three

spans across R2 of 0.7 and 0.85, a much smaller variance. This smaller variance is again a result

of the soft structural constraint imposed on regression.

We next considered a more complex community of two bacterial species transferring one

plasmid (Methods). This community has four different populations (S1
1, S1

0, S2
1, S2

0), with

each species either carrying or not carrying the plasmid (Fig 2D). Under the modulation of

glucose and Lin, the density of final plasmid-carrying population shows an irregular structure

with two underlying boundaries (Fig 2E). In this scenario, using the same framework, SAR

learns a larger curved boundary that captures the two boundaries in one. As a result, SAR also

consistently outperforms the direct regression: in terms of average R2 and its variance when

applied to different training data sets (S2E Fig). Again, as shown in Fig 2F, the SAR captures

the irregular landscape, but SVR does not.

The key behind the better performance of SAR is the use of the structural constraint. Thus,

the response landscape must have a sufficiently clear structure that can be deduced and applied

for regression. As an illustration, we examine a fully random synthetic landscape as a negative

PLOS COMPUTATIONAL BIOLOGY Data-driven learning of structure augments systems biology predictions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012185 June 3, 2024 5 / 24

https://doi.org/10.1371/journal.pcbi.1012185


control (S2A Fig). SAR and SVR shows equally poor performance in learning the landscape

(S2C Fig).

SAR improves prediction on experimental data

We next examined the performance of SAR, in contrast to direct regression, on different types

of experimental data. As a first example, we considered the response of a β-lactam-resistant E.

coli population (SR) in response to 100 combinations of a β-lactam antibiotic and a beta-lacta-

mase inhibitor, created by 10 different concentrations of each drug (Fig 3A, See Methods for

experimental details). The bacteria are resistant due to the expression of a beta-lactamase (Bla)

that can degrade the antibiotic [50,51]; at a sufficiently high concentration, the Bla inhibitor

inactivates Bla, thus sensitizing the bacteria to the antibiotic [52].

We measured the response of SR to the 100 combinations of β-lactam and Bla inhibitor con-

centrations (Fig 3B). Note that while the overall dynamics changes mostly along the vertical

axis, i.e., the inhibitor concentration, there is a sharp transition between the survival and the

death of SR as the Bla inhibitor increases. When applied to 30 points, SAR is able to predict the

landscape with an averaged R2 of 0.75, much better than the R2 of 0.65 by direct regression as

it captures this sharp transition (Figs 3C and S3A).

As another example, we considered a mixed community consisting of approximately equal

fractions of SR and its sensitive counterpart SS, the same strain without expressing Bla (Fig

Fig 2. Better performance on simulation data of higher complexity. A. Another community with one species transferring one plasmid,

under modulation of a nutrient, glucose and an inhibitor, linoleic acid (Lin). B. Simulated response of final S1 density in response to

changing [glucose] and [Lin]. It shows a sharper transition at bottom left on the full simulated landscape. C. Prediction of the landscape

using 50 data points with SAR (top) or SVR (bottom). SAR could capture the sharp transition, shown on the predicted heatmap and reach a

R2 of 0.88, while SVR alone fails to do so, reaching a R2 of 0.30. D. A community with two species transferring one plasmid, resulting in four

populations, with two carrying and two not carrying the plasmid. E. Simulated response of final S1
1+S2

1 density in response to changing

[glucose] and [Lin]. It shows a complicated landscape with two boundaries. F. Prediction of the landscape using 50 data points with SAR

(top) or SVR (bottom). SAR could capture both boundaries, shown on the predicted heatmap and reach a R2 of 0.95, while SVR alone fails to

do so, reaching a R2 of 0.17.

https://doi.org/10.1371/journal.pcbi.1012185.g002
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3D). In the mixture, SS can benefit from antibiotic degradation mediated by SR. The two popu-

lations also interact due to competition for nutrient. In response to the same 100 combinations

of the antibiotic and the Bla inhibitor, the mixture generates slightly more complex response

landscape (Fig 3E). Again, when applied to 30 points sampled from this landscape, SAR out-

performs SVR (Figs 3F and S3B), and it consistently does so when we increase the training

data up to 50 points.

The benefit of imposing the structural constraint is not limited to the use of SVR for regres-

sion. We applied SAR using other regression methods, including polynomial regression, kNN

and random forest to the two experimental systems and several more (S3 and S4 Figs). In each

case, the use of the structural constraint in SAR improves the overall prediction performance

in comparison to the counterpart that does not apply the constraint. Likewise, we replaced the

classification method with logistic regression classification, and used the returned logistic

regression value as the distance value; our conclusion held (S5 Fig).

SAR facilitates active learning

The three simulated cases have shown that while SAR consistently outperforms direct regres-

sion, an increase of the landscape complexity also implies an increase in required training data

even for SAR. While this is generally true for all data-driven algorithms, we want to further

Fig 3. Structural-augmented regression outperforms on 2D experimental data. A. A β-lactam resistant E. coli community, under

modulation of an antibiotics and a Bla inhibitor. B. Experimental results of final SR density in response to changing antibiotics and inhibitor

concentrations. The response exhibits a sharp transition as the concentration of the inhibitor changes. C. Prediction of the landscape using

30 data points with SAR (top) or SVR (bottom). SAR could capture the sharp transition, shown on the predicted heatmap and reach a R2 of

0.92, while SVR alone fails to do so, reaching a R2 of 0.75. D. A mixed community consisting of approximately equal fractions of the resistant

SR and the sensitive SS populations, under modulation of an antibiotics and a Bla inhibitor. E. Experimental results of final SR density in

response to changing antibiotics and inhibitor concentrations. The response exhibits a slightly more complex landscape. F. Prediction of the

landscape using 30 data points with SAR (top) or SVR (bottom). SAR could capture the complex landscape better, shown on the predicted

heatmap and reach a R2 of 0.88, than SVR alone, which reaches a R2 of 0.68.

https://doi.org/10.1371/journal.pcbi.1012185.g003
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exploit the boundary information to generate high prediction accuracy with a minimal

amount of data in systems with complicated landscape as well. So far, we have only applied

SAR on 2D experimental systems, which generally show relatively simple landscapes. How-

ever, simple landscapes are not guaranteed in higher-dimensional systems. While exhaustively

generating 100 different experimental conditions for a 2D system was doable, generating 1000

different conditions for a single 3D system is nontrivial. Comprehensive exploration of higher-

dimensional response landscapes will be even more challenging or experimentally prohibitive.

Therefore, further reducing the need for data for higher-dimensional systems, while maintain-

ing high accuracy in predictions, is ideal.

To this end, we designed a 3D system based on the same β-lactam resistant community in

Fig 3. In addition to the two drugs mentioned above, we apply an additional third drug, mem-

brane permeabilizer to destabilize the membrane structure of the bacteria (Fig 4A). We then

used this community to exploit the property of the boundary information. Specifically, we

investigated whether the learned boundary can be used to guide the next round of experiments

in a closed-loop ML-guided experimental design.

The general scheme of such ML-augmented guidance is called “active learning.” Being

“active” means ML actively takes part in the investigation process instead of merely serving as

a passive prediction tool [53–55]. Our workflow contains two steps. After carrying out the first

round of experiments, we first use SAR to learn from this round of experimental results as

usual. The extra step is that it will now suggest another round of experiments that could

Fig 4. Learned structure actively guides further experiments. A. A mixed E. coli community consisting of approximately equal

fractions of the resistant SR and the sensitive SS populations, under modulation of three drugs: a β-lactam antibiotic, a Bla inhibitor

and a membrane permeabilizer. B. R2 comparison after the first round of learning. Each dot represents performance of the two

methods on one specific training set. The x-axis is the R2 value of the simple regression prediction; the y-axis is the R2 value of the SAR

prediction. Majority of the scatter points aggregates above the diagonal line, showing that SAR outperforms the simple regression. C.

Active learning needs to take advantage of the learned structure to work. Naive active learning, sampling 20 new points without taking

advantage of the learned structure, does not outperform simple regression, as shown by the pair of bar plots on the right. While

sampling 20 new points around the best learned boundary, indicated by the dots in the red circle, significantly improves the prediction

accuracy. D. A well-learned structure is necessary to assist active learning. When the sampled data are based on the worst learned

structures in the second round of data generation, indicated by the dots in the grey circle, SAR does not improve the prediction

accuracy. p-value annotation legend: ns: 0.05< p< = 1.0; *: 0.01< p< = 0.05; **: 0.001< p< = 0.01; ***: 0.0001< p< = 0.001;

****: p< = 0.0001.

https://doi.org/10.1371/journal.pcbi.1012185.g004
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generate more informative data than randomly selected new ones. The goal of the active learn-

ing approach is to gather most information with minimal experiments. This approach has

already been shown to reduce the total amount of experimental data needed to reach good pre-

diction accuracies in various areas, especially in drug optimization and design [56,57].

Since we have already shown that learned boundary information is valuable in reducing the

amount of data needed for a good prediction accuracy, we hypothesized that using this bound-

ary to guide the active learning process could combine the two methods’ advantages. We dem-

onstrate the incorporation of SVR into active learning on the new β-lactam resistance

experimental data.

For the first round of experiments, we randomly generated 25 three-drug combinations for

the same initial bacterial community. We then let SAR learn from 20 random datapoints and

tested its performance on the rest 5 datapoints. Since SAR can learn a different data structure

from each training set, we applied SAR on 30 different training sets of 20 datapoints to ensure

some learned structures are more representative of the true landscape. We then introduced the

active learning by selecting 20 new datapoints to generate around the top learned boundaries.

The quality of the boundary is evaluated by the improvement of the final regression prediction

accuracy (Fig 4B). To test the prediction accuracy for the overall landscape, for the next round

of experiments, we exhaustively generated all 64 combinations, 4 variations for each of the

three conditions, but we only let the pipeline learn on the 40 datapoints, 20 from the previous

experiments and 20 newly selected ones. After relearning, the pipeline is tested on 24 data-

points (see S6A Fig for implementation).

Since as the total training data increases, the prediction accuracy generally improves, we

first evaluate whether taking advantage of the learned structure from the first iteration is neces-

sary for accuracy improvement in the second round of learning. For this evaluation, we ran-

domly generated 20 new datapoints without utilizing the knowledge of the learned boundary.

As Fig 4C shows, this naïve active learning does not enable SAR to outperform the simple

regression. However, if we sampled new data close to the top learned boundaries, our method

significantly improves the prediction accuracy. Therefore, indeed, the improvement of the pre-

diction performance is not simply due to the increase of the training data size.

We then verify that a well-learned structure in the first SAR step is also necessary in this

active learning pipeline. To do so, instead of sampling new data closest to the best learned

boundaries, we sampled the same amount of new data closest to the worst learned ones, i.e.,

the ones that result in the poorest SAR performances in the first round of learning (Fig 4D). As

expected, sampling data based on these boundaries does not improve the prediction accuracy

either. Therefore, both a well-learned structure from SAR and taking advantage of it in active

learning are necessary.

Lastly, given the importance of a well-learned structure in the first step, we ask whether in

the second round, further refining structure information is important also. We tested this by

considering three selection schemes (S6B Fig). For each learned boundary, the first scheme is

to sample new data around the learned boundary. The goal of this selection is to further refine

the boundary accuracy during the second iteration of learning. The second option is to sample

the data away from the learned boundary, so that the data will be highly segregated. The ratio-

nale of this choice is to take more advantage of the regression power by letting it learn points

of more diverse quantitative values. The third scheme is to combine the advantage of classifica-

tion and regression by picking half of the new experimental points close to the boundary and

half of the new experimental points away from the boundary. Across the three different sam-

pling schemes, the first showed significant improvement, where further structure refinement

is the priority in the new data sampling (S6C Fig). Therefore, all three tests tell us that structure
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information is essential to consider throughout active learning, which is a natural extension of

our structural-augmented regression method.

Structure-augmented regression is universally applicable to higher-

dimensional systems

In combination therapies, up to eight drugs are being utilized [39] and in bacterial growth

engineering, up to 10 nutrients are being tuned simultaneously [13]. To merely vary three con-

centrations for each of the 10 nutrients, there are 310, 59,049 possible total combinations.

Thus, a model that can learn well on few training data is especially valuable in this scenario.

To demonstrate that our method can be generalized to higher-dimensional systems, we

analyzed three extra experimental datasets from different applications. First, we applied our

method to an E. coli 3-sensor platform that could sense pH, thiosulfate (THS) and tetrathio-

nate (TTR) (Fig 5A). This E. coli population contains three circuits, each senses one chemical

respectively (see Methods). Specifically, upon sensing THS, E. coli would emit CFP fluores-

cence; it would also emit YFP fluorescence upon sensing TTR and mCherry fluorescence upon

sensing pH. The concentration of each chemical determines the intensity of each correspond-

ing fluorescence signal. In total, there are 16 concentration combinations in this dataset. After

training on 10 combinations and testing on 6 combinations for THS sensing for 30 times, SVR

reaches a median R2 of 0.63, with quartile one and three spans across R2 of 0.33 and 0.73, while

SAR reaches a median R2 of 0.70 with quartile one and three spans across R2 of 0.52 and 0.83,

a much smaller variance (Fig 5B).

We then applied our method to two published datasets. The first one is a multiple cancer

drug combination treatment experimental dataset on lung cancer cell-line 786-O [58]. This

dataset contains 50 7-drug combinations and their effects on the cancer cell-line (Fig 5C). We

trained on 10, 20 or 30 different combinations and tested on the rest. While learning on 10

data points is not sufficient for either algorithm to excel, SAR outperforms on the 7-drug com-

bination starting from learning on 20 data points. When training on only 20 data, SAR reached

a median R2 of 0.7, with the 1st and 3rd quantile spanning 0.6 to 0.8, while direct regression

alone reached a median R2 of 0.6, with the 1st and 3rd quantile spanning 0.3 to 0.7, a much

wider variance than SAR (Fig 5D). The same dataset also contains some 4-drug combination

tests, each has 25 combinations in total (S7C and S7D Fig). When training on 20 data, SAR

performs well as well, reaching a median R2 of 0.9, with the 1st and 3rd quantile spanning 0.7 to

1.0, while regression alone only reached a median R2 of 0.7, with the 1st and 3rd quantile span-

ning only 0.2 to 0.8 (S7C and S7D Fig). We then further applied our method to a system of

even higher dimension from a study of 10 common nutrients’ effect on the growth of the bio-

plastic producing bacteria, Cupriavidus necator H16 [13] (Fig 5E). This dataset contains 64

combinations in total, so we trained on 10, 30 or 50 data and tested on the rest. Likely due to

the high dimensionality of these two datasets, learning on 10 data was not sufficient, but SAR

significantly outperformed regression alone when learning on 30 or 50 data (Fig 5F). Specifi-

cally, after learning on 50 data points, while regression could only reach a median R2 of 0.2,

SAR reached a median R2 of 0.55.

Discussion

ML has been recognized as an effective tool to predict the behavior of biological systems with-

out thorough mechanistic understanding. Such predictions are valuable in engineering system

behaviors and in aiding further explorations for deeper understanding of these systems. How-

ever, biological experiments and clinical applications usually do not generate enough data for

ML methods to reach satisfying performance. This issue is exacerbated when the underlying
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landscape of the system is complicated, which can be the case when the amount of input fac-

tors is large. Past studies have attempted to resolve this issue by exploiting existing ML meth-

ods via combining them in ensemble [33,46,47]. Here we provide a different approach by

exploiting the data itself instead of the method. The key difference of our approach is to first

extract an intrinsic property, the structural feature of the system, from the data itself. This

structural feature is then used to augment the downstream analysis, regardless of the algo-

rithms used. We envision that in the future, these two types of approaches can be used

together. For instance, one can continue to use ensemble predictions, after imposing the struc-

tural constraint.

Like all regression ML methods, our method, SAR, first takes in a set of training instances,

each consisting of the measurements of interest. Then the method provides a predictive model

that maps the input to the desired output. The difference is that, during the training process,

instead of directly learning the quantitative response from input measurements, the method

first estimates the landscape from this set of training data, then learns the response from both

input measurements and the estimated landscape. The landscape estimation takes advantage

of classification algorithms that can draw a boundary between some critical transition of the

system, which no quantitative learning algorithms have utilized before. Combining these two

types of learning methods, SAR assumes that a biological system shows structured responses

to a set of inputs, a feature that is common. Therefore, the essence of this strategy lies in our

Fig 5. Structural-augmented regression for higher-dimensional data prediction. A. A 3-chemical E. coli sensor. Each

chemical induces the bacteria to emit one type of fluorescence. For the ML pipelines, the input of each instance is the

concentration combination of all the chemicals and the output is the fluorescence intensity. B. Statistical comparisons of

regression and SAR. Given 16 different combinations in total, 10 different results are used to train both methods, with the

rest of the data being the testing set. C. A 7-drug combination cancer treatment. Each input is the dose combination of all the

drugs and the output is the final cell density (created with BioRender.com). D. Statistical comparisons of regression and SAR.

Given 50 different combinations in total, 10, 20 and 30 different results are used to train both methods, with the rest of the

data being the testing set. E. A 10-nutrient combination bacterial growth investigation. Each input is the concentration

combination of all the nutrients and the output is the final cell density. F. Statistical comparisons of regression and structure-

augmented regression. Given 64 different combinations in total, 10, 30 and 50 different results are used to train both

methods, with the rest of the data as the testing set. p-value annotation legend: ns: 0.5< p< = 1.0; *: 0.01< p< = 0.05; **:
0.001< p< = 0.01; ***: 0.0001< p< = 0.001.

https://doi.org/10.1371/journal.pcbi.1012185.g005
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ability to take advantage of this feature. To this end, we demonstrated that SAR can capture

either one (Figs 1B and 2B) or two boundaries (Fig 2E). However, there is no clear way of

knowing how many boundaries are necessary for a satisfying prediction power beforehand,

especially in high-dimensional systems where data visualization itself is challenging. Therefore,

determining critical transition boundaries will involve some trial and error based on data dis-

tribution. Note that the training process remains the same, as SAR will automatically learn the

multiple boundaries in the original landscape.

Our method can be extended to biological systems where there are more than two pheno-

types. Specifically, for applications with n classes (n>2), one can apply the standard one-

against-all or one-against-one strategies [59,60] in the classification step. Specifically, to use

the one-against-all strategy, one first trains n-1 one-against-all binary support vector classifiers

and get n-1 boundaries. One then calculates the distance between each point and the bound-

aries as the calculated distances. Essentially, this provides n-1 new features for each point that

capture the overall system response landscape. Another common classification method appli-

cable to n classes is to train n(n-1) one-against-one binary support vector classifiers for each

pair of classes and get n(n-1) boundaries. Likewise, one would then calculate each point’s dis-

tance from all n(n-1) boundaries. This leads to n(n-1) new features.

Our method is complementary to other established methods for guiding experimental

design or data analysis. Specifically, Design of Experiments (DOE) is one such method. Dur-

ing DOE, for each factor, a specific set of values to be tested are first determined from some

previous screening or available literature data. These values are combined in a (full or partial)

factorial manner for experimental data generations [61]. With our method, we could ran-

domly select the values for each factor and then combine them in a random instead of in a

factorial manner. Therefore, to use these two methods together, one can apply our method to

the data selected from the DOE. Likewise, Bayesian optimization also estimates a landscape

while optimizing a specific objective function. The key difference is that our method does

not specifically aim to optimize any function. Instead, our method aims to estimate the over-

all landscape. To combine the advantages of these two methods, one can first use our method

to learn the structural information as an additional input for the Bayesian optimization

method.

We have demonstrated our method can be used in a range of applications where multiple

factors affect system outputs, such as gene expression and metabolic pathway yields. As the

number of factors increases, this method could become particularly useful as the exhaustive

search will require an exponentially growing total number of combinations. However, if the

system has no distinctive structure to be derived from the data, this method would not be

applicable. Similarly, if certain landscape is so complex that no simple underlying structure

could capture its major trend, this method would not be helpful either. However, it seems to

be a common, both from literature and from our experimental data, for biological systems to

respond in a structured manner to structured perturbations. Another advantage of our

method is that, to further aid high-dimensional prediction, we can exploit the information

from the learned landscape more by combining SAR with active learning. Specifically, we

have demonstrated that this combination works the best when active learning suggests more

data to collect around the previously learned boundary, which further takes advantage of a

well-estimated landscape. As has been suggested recently that ML in biological applications

will be particularly effective when combined with automation [25], we envision that combin-

ing the active learning version of SAR with automation will help to achieve the full potential

of ML application in biological data.
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Methods

Modeling

One-species, one plasmid community. For the one bacterial community that carries one

plasmid, we simulated a community of two populations, S1 represents the plasmid-carrying

population, and S0 represents a plasmid-free population. S0 acquires the plasmid through con-

jugation at rate η, becoming S1. S1 reverts to S0 through plasmid loss at rate κ. The conjugation

rate η is modulated by a conjugation inhibitor, linoleic acid (Lin in heatmap, i in equations).

The growth rates of both populations are modulated by a common nutrient, glucose (g).
Our model is as follows:

dS1

dt
¼ mS1

max
� mS1

min

� � gns1

gns1 þ K1
ns1

� �

þ mS1
min

� �

S1 1 � S1 � S0ð Þ � kS1 þ Zmax � Zminð Þ
Ki

ni

ini þ Ki
ni

� �

þ Zmin

� �

S1S0 � DS1 ð1Þ

dS0

dt
¼ mS0

max
� mS0

min

� � gns0

gns0 þ K0
ns0

� �

þ mS0
min

� �

S0 1 � S1 � S0ð Þ þ kS1 � Zmax � Zminð Þ
Ki

ni

ini þ Ki
ni

� �

þ Zmin

� �

S1S0 � DS0 ð2Þ

This model assumes that growth depends on nutrients according to Monod kinetics, mod-

eled as Hill equations. The growth rate for S1 can reach mS1
max

given sufficient nutrient (g). Like-

wise, the growth rate for S0 can reach mS0
max

given sufficient g as well. The model also assumes

that the conjugation efficiency depends on conjugation inhibitor (i) in the same manner. The

conjugation rate reaches ηmax when I = 0. Both populations are also subjected to dilution rate D.

For the simulated community in Fig 1, we used initial conditions of S1(0) = 0.1, S2(0) = 0.1,

5< g< 50, 5< i< 50. Parameters used for were:mS1
max
¼ 0:7; mS1

mix
¼ 0:05; nS1 ¼ 0:1; K1 = 40;

mS0
max
¼ 0:8; mS0

min
¼ 0:05; nS0 ¼ 0:5; K0 = 10; κ = 10−3; ηmax = 10−1; ηmin = 10−5; ni = 1; Ki = 20;

D = 0.05. For the simulated community in Fig 2A, we used initial conditions of S1(0) = 0.1,

S2(0) = 0.1, 5< g< 50, 5< i< 50. Parameters used for were: mS1
max
¼ 0:7; mS1

min
¼ 0:05;

nS1 ¼ 1; K1 = 15; mS0
max
¼ 0:8; mS0

min
¼ 0:05; nS0 ¼ 5; K0 = 10; κ = 10−3; ηmax = 10−1; ηmin = 10−5;

ni = 0.5; Ki = 2; D = 0.05.

To understand the mathematical implications of these models in more detail, please see ref-

erences [7,62,63].

Two-species, one plasmid community. For the community of two bacterial species S1

and S2, transferring one plasmid, we simulated a community of four subpopulations, S1
0, S1

1,

S2
0 and S2

1. S1
0 acquires the plasmid through conjugation at rate η1

1
1

0 from S1
1, and η2

1
1

0 from

S2
1, becoming S1

1. S1
1 reverts to S1

0 through plasmid loss at rate κ1. Likewise, S2
0 acquires the

plasmid through conjugation at rate η1
1

2
0 from S1

1, and η2
1

2
0 from S2

1, becoming S1
1. S2

1

reverts to S2
0 through plasmid loss at rate κ2. All conjugation rates are modulated by a conju-

gation inhibitor, linoleic acid (Lin in heatmap, i in equations). The growth rates of all four pop-

ulations are modulated by a common nutrient, glucose (g).

Our model is as follows:

dS1
1

dt
¼ mS11

max
� mS11

min

� � g1
n1

g1
n1 þ K1

n1

� �

þ mS11
min

� �

S1

1
1 � S0

1
� S1

1
� S0

2
� S1

2

� �
� k1S

1

1
þ

Z1110max � Z1110min

� � Ki1
ni1

i1ni1 þ Ki1
ni1

� �

þ Z1110min

� �

S1
1
S0

1
þ

Z2110max � Z2110min

� � Ki2
ni2

i2ni2 þ Ki2
ni2

� �

þ Z1110min

� �

S1
2
S0

1
� DS1

1

ð3Þ
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dS0
1

dt
¼ mS10

max
� mS10

min

� � g2
n2

g2
n2 þ K2

n2

� �

þ mS10
min

� �

S0

1
1 � S0

1
� S1

1
� S0

2
� S1

2

� �
þ

k1S1
1
� Z1110max � Z1110min

� � Ki1
ni1

i1ni1 þ Ki1
ni1

� �

þ Z1110min

� �

S11S10 �

Z2110max � Z2110min

� � Ki2
ni2

i2ni2 þ Ki2
ni2

� �

þ Z1110min

� �

S1
2
S0

1
� DS0

1

ð4Þ

dS1
2

dt
¼ mS21

max
� mS21

min

� � g3
n3

g3
n3 þ K3

n3

� �

þ mS21
min

� �

S1

2
1 � S0

1
� S1

1
� S0

2
� S1

2

� �
�

k2S1
2
þ Z1120max � Z1120min

� � Ki3
ni3

i3ni3 þ Ki3
ni3

� �

þ Z1120min

� �

S1
1
S0

2
þ

Z2120max � Z2120min

� � Ki4
ni4

i4ni4 þ Ki4
ni4

� �

þ Z1120min

� �

S1
2
S0

2
� DS1

2

ð5Þ

dS0
2

dt
¼ mS20

max
� mS20

min

� � g4
n4

g4
n4 þ K4

n4

� �

þ mS20
min

� �

S0

2
1 � S0

1
� S1

1
� S0

2
� S1

2

� �
þ

k2S1
2
� Z1120max � Z1120min

� � Ki3
ni3

i3ni3 þ Ki3
ni3

� �

þ Z1120min

� �

S1
1
S0

2
�

Z2120max � Z2120min

� � Ki4
ni4

i4ni4 þ Ki4
ni4

� �

þ Z1120min

� �

S1
2
S0

2
� DS0

2

ð6Þ

This model assumes that growth depends on nutrients according to Monod kinetics, mod-

eled as hill equations. The growth rate for S1
1 can reach mS11

max
given sufficient glucose (g). The

same applies to all other three populations. The model also assumes that the conjugation effi-

ciency depends on conjugation inhibitor (i) in the same manner. The conjugation rate

between S1
1 and S1

0, η1
1

1
0 reaches Z1110max when i = 0. All four populations are also subjected to

dilution rate D.

For the simulated community in Fig 2D, we used initial conditions of S1
1 (0) = 0.1, S1

0 (0) =

0.1, S2
1 (0) = 0.1, S2

0 (0) = 0.1, 5< g< 50, 5< i< 50. Parameters used for were: mS11
max
¼ 0:6;

mS11
min
¼ 0:05; mS10

max
¼ 0:9; mS10

min
¼ 0:00; mS21

max
¼ 0:5; mS21

min
¼ 0:05; mS20

max
¼ 0:85; mS20

min
¼ 0:00; n1

= 2; K1 = 25; n2 = 1; K2 = 40; n3 = 2; K3 = 20; n4 = 2; K4 = 35; Z1110max ¼ 0:25; Z1110min ¼ 10� 4;

Z2110max ¼ 0:25; Z2110min ¼ 10� 4; Z1120max ¼ 10� 1; Z1120min ¼ 10� 4; Z2120max ¼ 10� 1;

Z2120min ¼ 10� 4; Ki1 = 1; ni1 = 5; Ki2 = 1; ni2 = 5; Ki3 = 3; ni3 = 10; Ki4 = 3; ni4 = 10; D = 0.05.

Structure-augmented regression

The structure-augmented regression is a regression method that also takes advantage of the

classification method. The classification, support vector classification (SVC), is done first to

aid the regression. The choice of the regression method is flexible, which includes support vec-

tor regression (SVR), linear regression, polynomial regression, k-nearest neighbor (KNN) and

random forest (RF). In the two-step regression pipeline, we utilized the distance function

returned by SVC as the additional distance input parameter for the following regression

function.

Specifically, the labels for the first classification task represent the two distinct phenotypes

of the biological system subjecting to different perturbations. Under antibiotic combination
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treatments or cancer drug combination treatments, the two distinct phenotypes would be cell

survival versus death. In response to nutrient combinations, the two distinct phenotypes

would be high cell yield versus low cell yield. In a biosensing application, the two phenotypes

are responses that pass a certain acceptable threshold or not.

In the following regression task, the quantitative values to be predicted are the cell densities

or sensory responses (i.e., fluorescence measurements) in different environments.

For the concreteness of the following explanation, we will use the drug combination treat-

ment as an example where we explain the whole SAR working follow. However, this method is

applicable to all systems mentioned in this paper and beyond, as long as the quantitative out-

put of the biological system under various perturbation can be categorized under a reasonable

criterion.

For the first classification step, the input data for SVC are the following:

Label of cell survival versus death : Y ¼ y
1
; . . . ; yi; . . . ; yn

� �
: ð7Þ

Tuning parameters : p ¼ p1; . . . ; pi; . . . ; pn½ �: ð8Þ

In Eqs (7) and (8), n represents total number of datapoints, either from simulations or

experiments, and each index represents one observation. Each yi takes values of 1 or −1, repre-

senting cell survival versus death. The list p contains the experimentally controlled conditions,

under which the observations are obtained; and each pi is a vector of which each element rep-

resents a tunable condition. For a system with two tunable conditions, like the ones in Figs 1, 2

and 3, pi = (pi1, pi2).
The outputs of SVC include both the predicted labels and a distance function:

Predicted label of cell survival versus death : Ypred ¼ ypred1
; . . . ; ypredi; . . . ; ypredn

h i
: ð9Þ

The distance function : f pð Þ ¼
X

i
aiyiK

�
pi; p

�
þ l0; ð10Þ

yi and pi are input values for observation i. αi is the weight of observation i, and λ0 is the bias

term. K here represents a kernel function that transforms the input data into a new space

where the transformed data is now linearly separable by SVC in that space. Both the parame-

ters αi and λ0, and the kernel, as well as the kernel hyperparameters are optimized by the SVC

algorithm. Specifically, we choose the best kernel from linear, polynomial and RBF kernels

based on the performance of SVC. Likewise, the kernel hyperparameters, i.e., the degree and

the coefficient term for the polynomial kernel, and the gamma term for both polynomial and

RBF kernels are all optimized with cross-validation. We used python’s scikit packages for all

training and optimization.

The function f returns a numerical value for each input p. For datapoints on the learned

classification boundary from SVC, the numerical values are all optimized to be 0. SVC also

locates a set of support vectors from the input vector list p that are closest to the boundary

from both classes (1 and -1); αi for these vectors and vectors on the boundary are non-zero,

whereas αi for all other vectors are zero.

For any unseen input p, since the numerical value f(p) is the sum of dot product of p and

each support vector, the magnitude of the value reflects the distance between p and the bound-

ary in the kernel-transformed space. Note given that the optimal kernel K might not be a linear

kernel, a nonlinear kernel can return f(p) values that are not the same for points that are the

same distance away from the boundary in the original space. However, as f(p) have a monoto-

nical dependence on the distance to the boundary in the transformed space, we found
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empirically, this monotonic relationship between f(p) and distance in the transformed space

could still assist the regression by providing useful information.

This magnitude f(p) is the additional parameter for the following regression step.

For the regression step, the input for SVR or any other regression is:

Cell density : D ¼ d1; . . . ; di; . . . ; dn½ �: ð11Þ

A new set of input parameters : p’ ¼ p’1; . . . ; p’i; . . . ; p’n½ �: ð12Þ

In Eqs (5) and (6), n represents total number of datapoints like in Eqs (7) and (8), and each

index represents one observation. Each di takes a quantitative value of the cell density. The list

p’ now contains both the experimentally controlled conditions and the estimated structure

information represented by the SVC-calculated numerical value of the experimental condi-

tions. Specifically, each p’i is a vector that contains two parts. The first part is the tunable con-

dition pi and the second is the estimated distance returned by f(pi) from SVC. For a system

with two tunable variables, p’i = (pi1, pi2, f(p’i)).
During the learning process, a soft constraint is applied to the additional feature from clas-

sification, f(p’i), by letting the regression method choose the optimal weight w for it, along with

other regression hyperparameters. The w is one of the three values from [0.01, 0.1, 1]. The

rationale is that this estimated structure might not be representative if the training data is

sparce.

The output of SVR is the predicted cell density : Dpred ¼ dpred1; . . . ; dpredi; . . . ; dpredn

h i
: ð13Þ

The hyperparameter tuning of both the classification and regression algorithms are done by

random search in a 5-fold cross validation.

Methods comparison

We first randomly split the ground truth into training and testing sets. The size of the training

set is 10, 20, 30, 40 or 50, according to the total amount of available experimental data from

each system. We then train the traditional regression model and our structure-augmented

regression model on the same training set simultaneously. The two learned models will then

be applied to the same testing set for prediction. The prediction accuracy is evaluated using R2

measurements.

To test the significance of the method improvement, for each dataset, we carried out the

same training and testing procedure 40 times on 40 different randomly split training and test-

ing sets for each amount of training data. We then compare the pair of 40 R2 values using

Mann-Whitney test (S1 Fig).

Application of SAR to active learning

SAR can be applied to the active learning framework in an iterative four-step process. We

demonstrated this combined pipeline on a 3-drug combination treated antibiotic resistance

dataset. After generating the initial experimental dataset, the combined pipeline consists of

four steps, which is described in detail in the following paragraphs. The four steps in sequence

are method comparison application to different training and testing sets, informative learned

boundary selection, new training data selection and experimental generation, and model and

boundary updating (S5A Fig). Iteration of these four steps can happen for multiple rounds if

needed.
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In our application, the specific procedure is the following: the initial experimental dataset

consists of 25 datapoints, generated under 25 randomly picked drug combinations out of the

4*4*4 = 64 exhaustive combinations. The first step of the active learning is applying the

method comparison pipeline on the initial experimental data to learn 30 different structures

by training on 30 different randomly selected training sets. Specifically, for each learning, we

randomly split the 25 datapoints into a training set of 20 points and a testing set of 5 points.

Due to the difference in the 30 training dataset distributions, we get 30 different learned

boundaries, as well as 30 pairs of prediction accuracies of the testing sets from the two meth-

ods, i.e., 30 pairs of R2 of SAR, R2
SAR, and of SVR, R2

SVR. In the second step, we use the differ-

ence in each pair as a metric to measure the informativeness of the 30 learned boundaries.

Specifically, higher R2
SAR—R2

SVR values correspond to better learned boundaries. We only

consider learned boundaries that give positive R2
SAR—R2

SVR values in the following steps, as

only these ones provide useful information. The third step is, for each selected boundary from

the previous step, generating 20 more experimental training datapoints using the learned

boundary and generating the rest of the 24 datapoints for testing. Lastly, the ML pipeline is

applied on the data generated in both rounds. If needed, the number of iterations for active

learning, can increase further. For our application, we did one round.

During the third step, we investigate three sampling strategies (S5B Fig). Given that SAR

takes advantage of the underlying structures by identifying a key boundary, the first strategy is

to further refine this boundary in the additional data generation step. We implement this strat-

egy by picking the additional 20 data that are closest to the learned boundary in the previous

round, 10 on each side of the boundary. Such selection can be determined by the f(p) values,

i.e., 10 points of the smallest positive f(p) values and 10 points of the largest negative f(p) val-

ues. The second strategy is to explore previously less explored sample space by selecting new

data that are farthest away from the boundary. This is done by choosing 10 new points of the

largest positive f(p) values and 10 new points of the smallest negative f(p) values. Given these

points are farther apart in the sampling space than the points closest to the boundary, they pro-

vide more information for the regression step instead of the boundary estimation step. The

third strategy is to combine these two strategies by sampling half of the new data closest to the

boundary and the other half farthest from the boundary.

Antibiotic-resistant community

All experiments are done on two E. coli strains, Top10F’ or DA28102. Each strain contains

either a high-copy-number or a moderate-copy-number plasmid expressing a β-lactamase. We

created two types of communities, either clonal resistance communities or a mixture commu-

nity with approximately half of the initial population being the sensitive background strain.

We treated the communities using combinations of an antibiotic and a β-lactamase inhibi-

tor. The antibiotic is amoxicillin, and the inhibitor is either clavulanic acid (CLA) or sulbactam

(SUL). For the three-drug combination, the additional drug is an out membrane permeabili-

zer, polymyxin B nonapeptide (PMBN).

Growth conditions of the antibiotic-resistance community

To generate bacterial growth in a high-throughput manner, we used the following protocol.

Frozen stocks were streaked on lysogeny broth (LB) agar plates, and individual colonies

selected to inoculate growth media. Overnight cultures of strains (prepared separately for

mixed cultures) were prepared in 2 mL of LB broth in 15 mL culture tubes (Olympus) with 1

mM IPTG and 50 μg/mL kanamycin for plasmid selection if applicable; tubes were shaken at

37˚C for 16 h at 225 rpm. The OD (absorbance at 600 nm) for the overnight culture was taken
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on a plate reader (Tecan Spark multimode microplate reader). To ensure a consistent initial

cell number, cultures were diluted to 1 OD600 (assumed to be equivalent to 8 × 108 cells/mL).

For mixed culture experiments, equal volumes of each population were mixed at this step. For

all experiments, the resulting culture was further diluted 1:8 (1 × 108 cells/mL). Cultures were

then finally diluted 10-fold in 100 μL of media in a 384-well deep-well plate (Thermo Scien-

tific) using a MANTIS liquid handler for an initial cell density of 1 × 106 cells/well. The media

in each well, containing the appropriate amounts of amoxicillin and beta-lactamase inhibitor

(clavulanic acid, or sulbactam) for a total of 100 different conditions, was prepared ahead of

time in appropriate concentrations and dispensed using the MANTIS liquid handler. Three

technical replicates (3 separate wells) were generated for each condition. The spatial position

of all wells for each experiment was randomized across the plate to minimize plate effects. To

minimize evaporation, the plate was loaded with the lid into the Tecan Spark microplate

reader equipped with a lid lifter, and the chamber temperature was maintained at 30˚C.

OD600 readings were taken every 10 min with periodic shaking (5 s orbital) for 24 h.

E. coli sensor design

The pH, TTR, and THS sensor strains were created by modifying previously developed two-

component systems [64–66]. Plasmids pKD279.8, pKD280.7, pKD236-4b, pKD237-3a-2,

pKD238-1a, and pKD239-1g-2 were gifts from Jeffrey Tabor lab. The plasmids containing the

regulator gene and fluorescence reporter gene (pKD239-1g-2, pKD237-3a-2, pKD279.8) were

modified to each have a different fluorescent reporter gene, and the constitutively expressed

mCherry gene was removed. The mCherry, YFP, and CFP gene sequences were obtained from

plasmids previously developed in our lab. Plasmid modifications were performed using poly-

merase chain reaction (PCR) and Gibson Assembly cloning method and verified through

whole plasmid sequencing by Primordium Labs [67]. The other plasmids were unmodified.

The two plasmids for each sensor were co-transformed into an MG1655 E. coli strain via

CaCl2 transformation. Colonies were cultured in chloramphenicol and spectinomycin over-

night, then glycerol was added to create a freezer stock with 25% glycerol.

Sensor experiment protocol

Freezer stocks were streaked onto LB agar plates with chloramphenicol and spectinomycin

and grown overnight. Single colonies were picked and cultured overnight in 3 mL LB media

with appropriate antibiotics. OD was measured, cells were pelleted by centrifugation, and the

supernatant was removed. Cultures were resuspended in LB pH 5.79, LB pH 8.05, M9 with

0.04% glucose pH 5.73, or M9 with 0.04% glucose pH 7.25 each to a final OD of 0.45. Appro-

priate antibiotics, 1 mM IPTG, and 100 ng/uL aTc were added to all tubes. Cultures were dis-

tributed to 96-well plates (Corning) and 1 mM THS or 1 mM TTR was added to the

appropriate wells. Mineral oil was added on top to prevent evaporation. OD and fluorescence

intensity was measured every 5 minutes using a plate reader (Tecan).

Supporting information

S1 Fig. Training and testing procedures to compare pipeline performances. A. The ground

truth to demonstrate the flow of training and testing procedure. The x- and y- axis represent

two environmental factors that can be tuned to control the growth of some biological system:

in this case, glucose and linoleic acid (Lin). The heatmap color represents the final cell density

of that system. B. The training and testing procedure. We first split the ground truth into train-

ing and testing sets. Note the small size of training set corresponds to the limited amount of

experimental data usually available. We then train the traditional regression model (direct
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regression pipeline) and our structure-augmented regression (SAR) model on the same train-

ing set simultaneously. The two learned models will then be applied to the same testing set for

prediction. The traditional regression pipeline is represented by the light blue arrows and the

structure-augmented regression pipeline is represented by the dark blue arrows throughout

this figure and all other figures in the manuscript. The prediction accuracy is evaluated using

R2 measurements. Here we just show one set of 10 training data. The “X40” means we carry

out the same training and testing procedure 40 times on 40 different training and testing set

splits. We then compare the 40 pairs of R2 using the Mann-Whitney statistical test. This gives

us the pipeline performance comparison on one specific training data amount, highlighted in

orange in C. C. For each of the 10, 20, 30, 40 or 50 specific amount of training data, we carry

out the same type of pipeline comparison shown in B. This gives us a more comprehensive

view of method performance across a wide range of training data availability. p-value annota-

tion legend: ns: 0.05< p< = 1.0; *: 0.01< p< = 0.05; **: 0.001< p< = 0.01; ***: 0.0001 < p

< = 0.001; ****: p< = 0.0001.

(TIFF)

S2 Fig. Structure is essential for method application. A. Ground truth of a synthetic random

landscape. B. One learning example of the random landscape. The learning algorithm struggles

to learn any structure. C. The method comparison of the two methods. The performance eval-

uation is done in the same way as in S1 Fig. The two methods perform equally poorly on a

landscape with no structure. D. Method comparison on the community of one species and one

plasmid as in Fig 2A. Structure-augmented regression consistently outperforms starting from

with a training data set of 20 points and shows less variance. E. Method comparison on the

community of two species and one plasmid as in Fig 2D. Structure-augmented regression con-

sistently outperforms starting from with a training data set of 20 points and shows less variance

as well. p-value annotation legend: ns: 0.05< p< = 1.0; *: 0.01< p< = 0.05; **: 0.001< p<

= 0.01; ***: 0.0001 < p< = 0.001; ****: p< = 0.0001.

(TIFF)

S3 Fig. Structure-augmented regression is a flexible pipeline. Statistical tests of the regres-

sion and structure-augmented regression methods on the two communities in Fig 3. The first

row corresponds to the example in Fig 3A–3C. The second row corresponds to the example in

Fig 3D–3F. Here we include three different kinds of regression methods: SVR, polynomial

regression and random forest regression. The layout of the two rows (A and B) are the same.

The first panel from left: schematic of the community. The second panel: ground truth of final

population density. The next three panels: method comparisons using flexible ML pipelines.

We can see that structure-augmented regression consistently outperforms the regression itself

for all these three regression methods. The improvement for the first dataset is not as obvious,

since that the landscape itself in this sample is very simple. p-value annotation legend: ns:

0.05< p< = 1.0; *: 0.01< p< = 0.05; **: 0.001< p< = 0.01; ***: 0.0001 < p< = 0.001; ****:
p< = 0.0001.

(TIFF)

S4 Fig. Additional application on experimental data demonstrates the generalizability of

the regression method in the pipeline. All experimental data here are still the final cell density

of β-lactam resistance communities, under combination treatments. The communities are

either DH5α or Top10F’ E.coli cells, shown as labels on top of each ground truth panel. All

combinations use two drugs: one antibiotic and one β-lactamase inhibitor. Each row repre-

sents application on one specific experimental result. The layout of each row is the following:

Left panel: ground truth of final population density. The next four panels: method
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comparisons using flexible ML pipeline that integrates various regression methods with SVC,

including SVR, KNN, polynomial regression and random forest regression. We can see that

when applying to landscapes of different types of structures, our method consistently improves

the prediction accuracy. p-value annotation legend: ns: 0.05< p< = 1.0; *: 0.01< p< = 0.05;

**: 0.001 < p< = 0.01; ***: 0.0001 < p< = 0.001; ****: p< = 0.0001.

(TIFF)

S5 Fig. Additional application on experimental data demonstrates the flexibility of the

classification method in the pipeline. All experimental data here are the same as in S4 Fig

(still the final cell density of β-lactam resistance communities, under combination treatments).

The communities are either DH5α or Top10F’ E.coli cells, shown as labels on top of each

ground truth panel. All combinations use two drugs: one antibiotic and one β-lactamase inhib-

itor. Each row represents application on one specific experimental result. The layout of each

row is the following: Left panel: ground truth of final population density. The next four panels:

method comparisons using flexible ML pipeline that integrates various regression methods

with logistic regression classifier, including SVR, KNN, polynomial regression and random

forest regression. We can see that when applying to landscapes of different types of structures,

our method with logistic regression classifier in the first step also consistently improves the

prediction accuracy. p-value annotation legend: ns: 0.05< p< = 1.0; *: 0.01 < p < = 0.05; **:
0.001< p< = 0.01; ***: 0.0001 < p< = 0.001; ****: p< = 0.0001.

(TIFF)

S6 Fig. Workflow that combines structure-augmented regression and active learning. A.

The four-step process of combining structure-augmented regression and active learning. The

key is to utilize the learned structure in future rounds of experimental data generation after the

first round of learning. After experimentally generating 20 data, the first step is to apply the

pipeline on them as usual to learn 30 different structures by learning on 30 different training

sets. The second step is to pick the top informative boundaries out of the 30 learned ones by

final prediction accuracy improvement of SAR over SVR. The boundary that contributes to

the most improvement is the most informative. The third step is to generate the next round of

experimental data based on the best boundary. Fourth, the ML pipeline is applied on the data

generated in both rounds. If needed, the number of iterations, n, can increase for further

actively learn. To achieve statistically significant comparison, in our test, we pick the bound-

aries that contribute to an increase of R2 value > 0.1, sample new data around each of these

boundaries and relearn, then compare two sets of new R2 values. B. Cartoon for three types of

combination schemes. Assume that the dashed black line in the middle of the scatter plot is the

learned boundary from the first round of learning, there are three combination schemes given

this information. There are three schemes of the new data selection: refining boundary by

selecting data around the boundary; exploiting regression by selecting data away from the

boundary; combining the advantages of classification and regression by combing these two

approaches. C. Second round of experiments needs to further refine learned structure. There

are three schemes of the new data generation based on the best learned structure of the first

round: refining boundary by selecting more data around the boundary; exploiting regression

by selecting data away from the boundary; combining the advantages of these two strategies.

Running the same algorithm on new data generated from these three strategies shows that

only the first sampling scheme works well with active learning.

(TIFF)

S7 Fig. More applications on high-dimensional drug combination treatment. A. Illustration

of applying four different cancer drugs for better treatment results (created with BioRender.
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com). B. The seven drugs and their tested range for Fig 5A. (C, D.) Applications on two differ-

ent 4-drug combination treatments of cancer cell-line 786-O. Both figures follow the same for-

mat. The top table contains the drug and dosage information; the bottom figure is the method

comparison results. Both experiments generated 25 datapoints in total, so the method compar-

ison only trained on either 10 or 20 data and tested on the rest. The structure-augmented

regression consistently outperforms direct regression while being trained on 20 datapoints.

(TIFF)
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