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Abstract

Background.—Single-pulse electrical stimulation (SPES) is an established technique used 

to map functional effective connectivity networks in treatment-refractory epilepsy patients 

undergoing intracranial-electroencephalography monitoring. While the connectivity path between 

stimulation and recording sites has been explored through the integration of structural 

connectivity, there are substantial gaps, such that new modeling approaches may advance our 

understanding of connectivity derived from SPES studies.

New Method.—Using intracranial electrophysiology data recorded from a single patient 

undergoing stereo-electroencephalography (sEEG) evaluation, we employ an automated detection 

method to identify early response components, C1, from pulse-evoked potentials (PEPs) induced 

by SPES. C1 components were utilized for a novel topology optimization method, modeling 

3D electrical conductivity to infer neural pathways from stimulation sites. Additionally, PEP 

features were compared with tractography metrics, and model results were analyzed with respect 

to anatomical features.

Results.—The proposed optimization model resolved conductivity paths with low error. 

Specific electrode contacts displaying high error correlated with anatomical complexities. The 

C1 component strongly correlated with additional PEP features and displayed stable, weak 

correlations with tractography measures.

Comparison with existing methods.—Existing methods for estimating neural signal 

pathways are imaging-based and thus rely on anatomical inferences.
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Conclusions.—These results demonstrate that informing topology optimization methods with 

human intracranial SPES data is a feasible method for generating 3D conductivity maps linking 

electrical pathways with functional neural ensembles. PEP-estimated effective connectivity is 

correlated with but distinguished from structural connectivity. Modeled conductivity resolves 

connectivity pathways in the absence of anatomical priors.
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brain connectivity; intracranial recordings; single-pulse electrical stimulation; pulse-evoked 
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1. Introduction

As stimulation-based approaches for the treatment of refractory neurological and psychiatric 

disorders emerge as promising therapeutics, mapping human brain connectivity using 

electrophysiological techniques represents an integral objective in both scientific and 

clinical research settings (Sheth et al., 2022). The examination of brain networks and 

information processing spans across structural, functional, and effective connectivity 

domains. Recruiting the appropriate networks in an optimal manner remains an ongoing 

goal of stimulation-based therapies, and hinges on an advanced understanding of the 

intricate anatomical organization of brain areas and knowledge of the structure-function 

relationships. Brain networks likely represent spatially dispersed yet functionally and 

structurally interconnected nodes facilitating cellular communication. The clinical need for 

intracranial recordings creates unique research opportunities, delivering exceptional spatial 

and temporal resolution to provide critical insights into human brain electrophysiology and 

functional mapping (Keller et al., 2014). Here, we leverage intracranial electrophysiology 

in the construction of a three-dimensional conductivity model capable of identifying the 

connectivity path between stimulation and recording sites in the human brain without need 

for prior anatomical information.

The use of single-pulse electrical stimulation (SPES) is common clinical practice for the 

identification of seizure propagation patterns in medically intractable epilepsy (Boido et al., 

2014). Through probing a causal influence between brain regions, SPES represents a method 

for estimating functional effective connectivity (Matsumoto et al., 2017). Application of 

low-frequency milliampere current pulses through electrode contacts distributes energy 

to the electrode-tissue interface (contact into neural tissue), disseminating its effects 

across associated networks and allowing estimation of electrical brain connectivity with 

high spatiotemporal resolution. Traditionally, cortico-cortical electrical potentials (CCEPs) 

are evoked and measured from the cortical surface using strips or grids of electrodes 

(Logothetis et al., 2010; Matsumoto et al., 2004). More recently, the use of stereo-

electroencephalography (sEEG) with intracranial depth electrodes has enabled the recording 

of neural activity across cortical, subcortical, and white matter regions. CCEP produces 

relatively clear response profiles across sampled brain regions due to the consistent 

orientation of neuronal components (Crocker et al., 2021). However, surgical insertion of 

sEEG electrode leads at varied orientations results in differing stimulation dipoles relative 

to cortical axes (Prime et al., 2018). Having neurons at different orientations imparts a 
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spectrum of response morphologies during SPES in sEEG, wherein orientations favoring the 

cortical axis exhibit stronger responses (Paulk et al., 2022). Recognizing this key difference, 

we refer to the event-related responses (ERP) to SPES recorded through sEEG as pulse-

evoked potentials (PEPs).

SPES has aided in the mapping of functional brain networks, including the language 

network (Matsumoto et al., 2004), limbic network (Enatsu et al., 2015), and frontal lobe 

networks (Greenlee et al., 2007). Several ERP features are reported in SPES. A sharp 

early negative potential (N1 peak) occurring 10-50 ms post-stimulation, and a second slow-

wave potential (N2 peak) typically occurring 50-300 ms are commonly used in CCEPs to 

characterize response morphology (Matsumoto et al., 2004). These ERP components may 

reflect anatomical or functional processing in neuronal ensembles (Kundu et al., 2020; Luck, 

2014). Similar response components exist in sEEG PEPs, although they occur with higher 

variability, likely due to inconsistencies in neuronal morphology and dipole orientation 

across sampled spatial locations. To acknowledge key differences between CCEP and sEEG 

PEPs, we exploit the relative temporal constraints presented in N1 and N2 detection to 

employ a consistent and automated detection method for the identification of the first 

two response components in sEEG SPES, hereby labeled C1 and C2. By adopting this 

terminology, we preserve the value of each response element as explanatory profile metrics, 

while remaining agnostic to their precise correspondence to N1 and N2 CCEP components.

Comparisons of SPES with other forms of connectivity have laid a foundation for 

relating PEPs to established structural connectivity measures (Babaeeghazvini et al., 2021). 

Diffusion magnetic resonance imaging (dMRI) is a non-invasive technique that uses 

information on the displacement of water molecules in neural tissues to reconstruct the 

white matter pathways mediating anatomical connections in the brain (Le Bihan and Iima, 

2015). Structural connectivity can be quantified using probabilistic tractography algorithms 

to provide an estimate for the strength of the association between nodes. In tractography, 

the number of streamlines is considered a proxy for axonal projections and is commonly 

reported as the primary outcome measure. Tractography-based connectomes are increasingly 

used for image-guided surgical planning (Essayed et al., 2017; Noecker et al., 2018). 

However, the inability of tractography algorithms to accurately recapitulate all elements 

of underlying anatomical connectivity means that additional measures of connectivity are 

sorely needed (Grier et al., 2020; Jbabdi and Johansen-Berg, 2011; Thomas et al., 2014). 

Still, recent literature highlights cross-modality similarities with PEPs across several brain 

regions (Adkinson et al., 2022; Crocker et al., 2021). Despite reporting distinct types of 

brain connectivity, the correlation between tractography and SPES-induced PEPs suggests 

that the two connectivity modalities (i.e., structural and functional effective) may share the 

ability to report information on pathways supporting network connectivity in general.

As a conductive medium, the human brain facilitates the transmission of information in 

part via electrical signaling. Within biological tissue, conductivity constitutes the movement 

and density of ionic content within an electric field, and such values are tissue-type 

dependent (McCann et al., 2019; Miklavčič et al., 2006). Estimates of conductivity in 

neural tissue are used widely in transcranial magnetic stimulation (TMS), as the stimulation-

induced electric field is influenced by fluctuations in conductivity at interfaces between 
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gray matter, white matter, cerebrospinal fluid (CSF), and the skull (Niu et al., 2023). 

In intracranial electrophysiology, conductivity is one of the several important biophysical 

properties considered when calculating the electric field created by stimulation (Alonso 

et al., 2023; Carvallo et al., 2019; Howell et al., 2019). Electrical fields generated by 

neurons travel by neural propagation (e.g., active or passive membrane potentials) and 

by volume conduction (Alarcon et al., 1994). In the present paper, we introduce a novel 

method for estimating three-dimensional conductivity maps based solely on intracranial 

recordings during SPES, while implicitly including and accounting for neural propagation. 

Our proposed model is naïve to anatomical priors, removing the need for access to dMRI, 

data, which remains limited to institutions with sufficient technical expertise. We model the 

propagation of electric potentials from the stimulated electrodes to the recording electrodes 

and resolve a 3D conductivity map that fits the potential values measured by the C1 PEP 

peaks. The biological signal related to external perturbation via electrical stimulation may 

reflect a combination of neural propagation and volume conduction. Within this work, we 

do not aim to disentangle such mechanisms, but rather, we aim to show the relationship 

that exists between neural pathways and a physics-based model encoding the electrical 

conductivity information. Regardless of the signal propagation mechanism involved, a 

conductivity pathway should exist between stimulating and recording electrodes. In this 

context, our model aims to identify a physically consistent conductivity map that takes 

into account all the neural pathways probed through the electrical measurements to infer 

the most reliable blueprint describing brain connectivity within the sampled regions. In 

this way, we identify and reconstruct higher conductivity signal routes connecting nodes of 

functional networks. Importantly, this model allows us to identify electrical pathways that 

are consistently engaged in order to directly compare PEPs with tractography estimates.

2. Materials and Methods

The following section describes the electrophysiological recordings, stimulation, and the 

features extracted to capture the pulse-evoked potential (PEP) responses across the recording 

locations and the diffusion magnetic resonance imaging (dMRI) protocol.

2.1 Electrophysiological Data

2.1.1 Human subject—One human subject (40y old female) provided informed consent 

to participate in this study during ongoing intracranial epilepsy monitoring with stereo-

electroencephalography (sEEG) at our institution. Experimental procedures were conducted 

in accordance with the policies and principles outlined in the Declaration of Helsinki and 

were approved by the Institutional Review Board at Baylor College of Medicine (H-18112). 

The patient had no prior surgery, and brain imaging was unremarkable. Single pulse 

electrical stimulation (SPES) experiments were conducted one day following electrode 

implantation the patient was still on anti-epileptic medications and interictal epileptic 

activity was at its minimum.

2.1.2 sEEG probes—The subject underwent invasive surgical implantation of 14 depth 

probes, with a total number of 152 electrode contacts spanning various anatomical locations 

across right frontal and bilateral temporal regions (Figure 1a, b). Electrode contacts ranged 
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from 8-16 per probe, with a median of 10 electrode contacts per probe. The sEEG probes 

had either a 0.8 mm diameter with 8-16 electrode contacts and a 3.5 mm center-to-center 

distance (PMT Corporation, MN, USA) or a 1.28 mm diameter with 9 recording contacts 

and a 5.0 mm center-to-center distance between contacts (AdTech Medical Instrument 

Corporation, WI, USA).

2.1.3 Anatomical localization of electrodes—Locations of electrode contacts were 

determined by employing the intracranial Electrode Visualization software pipeline, iELVis 

(Groppe et al., 2017). Briefly, the acquired post-operative clinical CT image was co-

registered to the pre-operative T1 anatomical MRI scan using the linear image registration 

tool (FLIRT) as part of the Functional Magnetic Resonance Imaging for the Brain Software 

Library (FMRIB) (Jenkinson and Smith, 2001). Next, the location of each electrode contact 

was manually identified on the CT-MRI overlay in BioImage Suite (Papademetris et al., 

2006). The xyz coordinates for each electrode represent their position in space (mm) in an 

R-A-S convention (increasing values of x point to the Right, y to Anterior, and z to Superior, 

with an origin of the central voxel of the T1 volume). Coordinate locations of electrode 

contacts were extracted for anatomical labeling purposes. Contacts residing in cortical and 

subcortical regions were assigned anatomical locations according to a modified version of 

the volumetric HCPex atlas (Huang et al., 2022), while the XTRACT HCP probabilistic tract 

atlas (Warrington et al., 2020) was used for labeling contacts situated in white matter (Figure 

1b). In the case that a contact existed outside of the parcellations, such as superficial white 

matter, the most likely parcellation estimate was detected based on spatial proximity.

Additional anatomical information was obtained by quantifying electrode properties based 

on the proximity to the cortical surface and white-gray boundary surface, each reconstructed 

from the T1 using FreeSurfer (version 6.0; (Dale et al., 1999; Fischl, 2012)). First, for 

each electrode location, we computed its minimum distance to the pial surface and to the 

white-gray boundary; we obtained the cortical parcellation estimate for that closest cortical 

surface point based on the Destrieux Cortical Atlas (Destrieux et al., 2010). The atlas 

contains 76 cortical parcellation labels and each cortical surface point is assigned a label 

by mapping the parcellation estimates on the individual cortical surface. To quantify the 

complexity of nearby anatomy while constraining the maximum search distance allowed, 

we detected all cortical parcellation estimates within a 5 mm search radius around each 

electrode and ranked the labels by their proportion (e.g. one electrode is labeled as 91% 

superior temporal gyrus and 9% superior temporal sulcus). Lastly, from the ranked labels, 

we computed the likelihood of each electrode being located near a sulcus, near a gyrus, or a 

mixture of both by reducing the labels in these 3 categories (e.g. the example above would 

be 91% gyrus and 9% sulcus).

2.1.4 Electrophysiological stimulation—We employed a monopolar cathodic SPES 

paradigm. Biphasic pulses with 5 mA amplitude, 180 μs pulse width, and a 100 μs 

interphase gap were delivered to the electrode contact selected for stimulation using a 

Blackrock CereStim R96 stimulator (Blackrock Microsystems, Utah, USA). We refer to 

the electrode contact selected for stimulation as stimulation seed. For each experiment, 

a total of 315 single pulses were delivered to the stimulation seed with a variable inter-
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stimulation period ranging uniformly between 400 ms and 1.2 s. We performed a total of 

3 stimulation experiments using the parameter configuration described above and sampled 

several anatomical locations in the right hemisphere of the subject. Stimulated regions 

included the anterior insula (Experiment 1, Figure 1c), the posterior thalamus (Experiment 

2) and subgenual cingulate cortex (Experiment 3). Appendix A contains the anatomical 

visualization for the three stimulation seeds and additional anatomical information for 

the sampled cortical locations. The selection of stimulation seeds was motivated by both 

anatomical and clinical considerations (electrode contacts must not be in the suspected 

seizure onset zone and must be at least 10 mm from the reference electrode).

2.1.5 Electrophysiological recording and preprocessing—Neural signals from 

the sEEG probes were recorded using a 256-channel Blackrock Cerebus system (Blackrock 

Microsystems, UT, USA) at 30 kHz sampling rate, with a 4th order Butterworth high 

pass filter (0.3 Hz). Signals were recorded during each stimulation experiment from all 

electrode contacts except for the contact being stimulated. sEEG recordings were referenced 

to a pre-selected electrode contact visually determined to be in white matter during the 

implantation procedure. An in-house, custom MATLAB script was used to process acquired 

stimulation data. Initially, the quality of sEEG signals were visually inspected for line 

noise, excessive recording artifact, jaw contraction contamination, and interictal epileptic 

spiking. Electrode contacts displaying poor signal quality were excluded from analysis. 

Following the application of exclusion criteria, a total of 144 electrodes (out of 152) were 

used in signal-based analyses. The neural signal around each SPES onset was identified, 

and a window of interest was defined between 300 ms pre-stimulation and 300 ms post-

stimulation. An average waveform (one for each electrode contact) was calculated across the 

315 individual SPES response profiles (Figure 1d). This average waveform was extracted 

and used in the identification of specific PEP features. The same procedure was repeated for 

the different stimulation experiments.

2.1.6 Extracting PEP (pulse-evoked potential) features—Several features of PEPs 

were calculated in the present experiment. Below, we describe features obtained from the 

automatic detection of the C1 and C2 waveform components (Peak Amplitude, Latency, 

Area, Peak-to-peak Distance) and features calculated from the overall average waveform 

(i.e., not requiring detection of the components, Maximum Amplitude and Root Mean 

Square of Average Shape).

2.1.6.1 Automatic Detection of C1-C2 component characteristics.: The average 

waveform recorded at each channel location was high-pass filtered (cutoff frequency of 

300 Hz), and the filtered signal was subtracted from the average signal to obtain a smoothed 

average waveform with no high-frequency artifacts that could affect the automatic peak 

detection. The maximum and minimum values within the temporal window 10-80 ms after 

SPES were identified, corresponding to the peak of the C1-C2 components. This approach 

detects C1 as the first component (regardless of polarity), and C2 as the second component 

(opposite polarity with respect to the C1). The inflection points preceding and following the 

identified peaks were used to determine the initiation and termination of each component. 
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Then, the linear segment connecting the inflection points was calculated and used to delimit 

peak boundaries (Figure 2).

C1 and C2 Peak Amplitude.: Each component amplitude was quantified as the difference 

between the potential value at its peak and the voltage value at the linear segment during the 

corresponding time point. Note that the component features were calculated independent of 

their polarity, such that a C1 component could present as either the first positive or the first 

negative deflection following SPES.

C1 and C2 Latency.: The time point at which the C1 and C2 peaks were detected with 

respect to the SPES onset.

C1 and C2 Area.: The area of each component was calculated as the cumulative sum of all 

elements enclosed beneath the curve and the linear segment boundary.

Peak-to-Peak Distance.: We defined peak-to-peak distance as the distance between the 

detected maximum and minimum peaks (C1-C2 difference).

2.1.6.2 Calculation of PEP features independent of PEP components.

Max Amplitude.: The maximum potential value occurring in the 10-200 ms window 

following the stimulation pulse was obtained (regardless of polarity), as a proxy of the 

strongest collective response of a contact during stimulation.

RMS of Average Shape.: The root mean square (RMS) technique has been used previously 

to characterize CCEP responses (Dionisio et al., 2019; Prime et al., 2018). Here, we evaluate 

the RMS of the phase-consistency calculated across SPES repetitions (RMS-Shape) in 

sEEG in an effort to define consistency in the morphology of response profiles. Contacts 

displaying high values for RMS-Shape exhibit a consistent phase across individual trials in 

the prescribed analysis window.

2.2 Diffusion Magnetic Resonance Imaging (dMRI)

2.2.1 Imaging acquisition—Prior to surgical implantation of sEEG electrodes, the 

patient participated in anatomical imaging at the Core for Advanced Magnetic Resonance 

Imaging (CAMRI) at Baylor College of Medicine (Houston, TX, USA). Diffusion-weighted 

imaging (DWI) data was acquired on a Siemens Prisma 3T system for 2 b-values (b = 

1000, 2000 s/mm2) with two phase-encoding directions (anterior-to-posterior and posterior-

to-anterior) using a dual-echo echo-planar protocol (Repetition time (TR) = 3400 ms, Echo 

time (TE) = 85.8 ms, Voxel size: 1.5 mm isotropic, Multiband acceleration factor = 4, 99 

slices). A total of 7 interleaved non-diffusion-weighted (b0) volumes were collected and 92 

diffusion-sensitizing gradient directions were applied per acquisition.

2.2.2 DWI processing and diffusion model fitting—DWI data was processed using 

FSL’s diffusion toolbox (Jbabdi et al., 2012b). Initially, image pairs acquired with reverse 

polarities (distortions in opposite directions) were aligned across the time domain. From 

the merged DWI data, all 14 b0 volumes were used to estimate the susceptibility-induced 
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field and correct for resultant geometric distortion (Andersson et al., 2003). Additionally, 

distortions introduced by subject movement and eddy-current induced distortions caused 

by rapid diffusion gradient application were corrected using eddy software (Andersson and 

Sotiropoulos, 2016). A multi-shell diffusion model based on Markov Chain Monte Carlo 

sampling was then fitted to the preprocessed 4-dimensional DWI data to estimate intra-voxel 

fiber orientations (Jbabdi et al., 2012a). This approach uses anisotropic tensors in isotropic 

backgrounds to model free diffusion and axonal tracts, respectively.

2.2.3 Probabilistic tractography—To reconstruct white matter pathways and estimate 

structural connectivity non-invasively, probabilistic tractography was employed. Regions 

of interest (ROIs) were created for each electrode contacts. Specifically, 2 mm radius 

spherical masks were generated around each electrode coordinate location. Spherical masks 

were moved from native pre-operative structural to native diffusion space via linear 

transformation. Generated ROIs are representative of the stimulation field of electrode 

contacts. Spherical masks representing electrode contacts stimulated in SPES experiments 

are referred to as stimulation seeds, as the term seed is commonly used in neuroimaging to 

define the location where a process begins. Tractography was initiated and run iteratively 

from each stimulation seed to all other electrodes locations (targets). Tractography was 

conducted using the default parameters of FSL’s probtrackx algorithm with a distance 

correction feature applied (samples = 5000, curvature threshold = 0.2, step length = 0.5 

mm, subsidiary fiber volume fraction threshold = 0.01, loopcheck termination) (Behrens et 

al., 2007, 2003). A cerebrospinal fluid (CSF) exclusion mask was implemented to prevent 

erroneous tracking in CSF, and each target electrode was considered both a waypoint and 

termination mask to enable estimation of the connectivity between seed and target regions 

(Zhang et al., 2001). Streamlines are generated during probabilistic tractography using fiber 

orientations estimated from a diffusion model to reconstruct likely white matter pathways in 

the brain. Streamlines, as discussed here, represent likely paths, across voxels, connecting 

seed and target regions.

#Streamlines.: The number of streamlines, representing connectivity likelihood, was then 

extracted for each seed-target pair from the waytotal output and used in statistical evaluation 

against derived PEP features. To reduce skewness, a logarithmic base 10 transformation was 

applied to the raw streamline data count.

Streamline Length.: For every streamline found between each seed-target pair we extracted 

its path length as a measure of distance (in mm) between voxel locations of the seed and 

target region. We averaged the path lengths obtained across all the streamlines obtained for 

each seed-target pair.

3. Calculations

3.1 Conductivity Model

We use COMSOL Multiphysics® version 6.1 (Stockholm, Sweden), a Finite Element 

Method (FEM) software, to build and solve a model of brain connectivity based on the 

C1 SPES data. Rather than using statistical and machine learning methods to estimate 
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functional connectivity from SPES data or other neurophysiological biomarkers such 

as EEG (Rossini et al., 2019), methods which may struggle in terms producing readily-

interpretable descriptions of connectivity for a clinical audience (Murdoch et al., 2019), our 

FEM model solves a current conservation problem

J = − σ∇V

#(1)

for the electrical potential V  to construct a visual analog of connectivity in the form of an 

electrical conductivity map σ. Here, J is the current density.

Our approach provides a physically consistent conductivity map in accordance with the 

experimental data, while describing a passive system (i.e., it does not include voltage 

increases along electric current paths). This means that we set the potential value at 

the stimulated electrode to be larger than any other measured potential (C1 amplitude). 

This approach does not separate tissue conductivity from neural propagation but finds a 

physically constrained conductivity pathway between stimulated and recording electrodes 

regardless of the signal propagation mechanism involved. As a result, while the absolute 

values of the calculated conductivities are not representative of local electrical phenomena, 

the relative values across the probed brain locations determine functional connectivity 

compatible with neural signal pathways.

We estimate the spatial conductivity map σ through topology optimization of a domain 

of electrically conductive material. Topology optimization methods seek to generate the 

optimal structural layout for a system based on some design objective. Originally proposed 

as the continuous generalization of the discrete problem of shape optimization, topology 

optimization finds the best distribution of material within a given geometry using a 

continuous density model control variable (Bendsøe, 1989). These techniques have long 

been applied to optimize multiscale systems from a structural mechanics perspective in 

diverse fields such as mechanical engineering, aerospace engineering, architecture, and 

medical technology (Wu et al., 2021). More recently, topology optimization has been 

applied to electromagnetic metasurfaces as well (Zhao et al., 2022). Here, we present a novel 

application of topology optimization in neuroscience, where we produce simple physical 

models which aid in visualizing and understanding functional connectivity in the brain.

Before considering full 3D models to directly compare to the C1 Peak Amplitude values, we 

built simplified 2D models to investigate numerical procedures and parameters estimation 

with reduced computational expense and to provide clear descriptions of the modeling 

approach (Figure 3a shows a diagram of our FEM model in 2D). Given spatial coordinates 

of the sEEG electrodes, we construct a simple geometry containing circular (2D) or 

spherical (3D) electrodes of radius 0.65 mm within a circular or spherical domain of radius 

100 mm. In both cases, we place an electrical ground (V = 0 μV) on the exterior boundary 

of an extended domain (representing the probed brain regions) and a constant electrical 

potential V 0 on the boundary of a single electrode domain deemed the source electrode 

(stimulation seed). The electrodes are modeled as made of metallic material with large 
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electrical conductivity 6 × 107 S ∕ m. The electrical conductivity in the domain, σ = σ(x, y), 
is a function of position determined iteratively by topology optimization of a density 

model. For the optimization the density model control variable is an artificial volume factor, 

0 ≤ θc ≤ 1, defined across the domain and varied during the optimization process described 

below.

To improve the computational procedure, instead of directly scaling the domain 

conductivity, we enforce a minimum feature size, Rmin, by computing a filtered control 

variable θf as a solution to a Helmholtz equation:

θf = Rmin
2 ∇2θf + θc

#(2)

This filtering limits the complexity of the control variable map and enforces a certain degree 

of smoothness by smearing rough, small details into a grayscale blur. In all our models, Rmin

is the minimum mesh element size. This smearing effect is reduced by a hyperbolic tangent 

projection of θf

θ = tanh β(θf − θβ + tanh(βθβ)
tanh β(1 − θβ) + tanh(βθβ)

#(3)

where β and θβ are parameters controlling the strength of the projection. The hyperbolic 

tangent projection sharpens the solution but also increases the computational expense of the 

optimization, with larger values of β increasing both effects. Finally, inspired by material 

properties optimization in mechanical systems, we filter the projected control variable θ once 

more via the Solid Isotropic Material with Penalization (SIMP) method (Bendsøe, 1989):

θp = θmin + (1 − θmin)θpsimp

#(4)

this encourages well-defined structure in the final control variable map θp by forcing the 

density model toward small values (voids) or large values (solid material). The minimum 

value, θmin, ensures the solution does not vanish anywhere and is set to 0.001 for all of our 

models. The exponent psimp controls the strength of the penalization.

We thus define the electrical conductivity σ of the domain encapsulating the metallic 

electrodes as a scaling of the penalized density model

σ = σmaxθp

#(5)
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where σmax is the maximum electrical conductivity. We initialize the conductivity with 

θp = 0.2. With the electrical conductivity now defined everywhere in our model geometry, 

we begin the topology optimization by solving for the electric potential V  with Eq. 1. After 

the FEM solution for the potential converges, we probe the potential at each electrode: given 

N electrodes we collect electrode domain probe voltages Vp = [V p1, V p2, …, V pN]. Additionally, 

we probe a reference potential V ref at a specific coordinate in space consistent with 

experimental data. In models based on C1 data, this reference potential is taken at the 

same reference location as in the clinical measurement. Then, comparing with the clinical 

C1 potential data, V = [V 1, V 2, …, V N], we evaluate the objective function:

F(Vp, V, V ref) = ∑
n = 1

N
∣ (V pn − V ref) − V n ∣

#(6)

which is the sum of differences between the referenced model electrode potentials and the 

C1 data. With the Sparse Nonlinear OPTimizer (SNOPT) solver (Gill et al., 2005), we 

iteratively vary the map of θp and re-solve Eq. 1 to minimize Eq. 6. Figure 3b plots the 

decrease of the objective function over successive solver iterations. The final conductivity 

map is thus σ = σmaxθp where:

θp = argmin
θp

F(Vp, V, V ref) .

#(7)

Figure 3c gives a visual illustration of the optimization process in 2D, showing how 

the iteratively varied conductivity map changes the solution for the electric potential at 

increasing iterations. In 3D, the modeling procedure is exactly the same as described above 

beyond the addition of the z spatial coordinate and the use of spherical domains. Figure 

3d displays the 3D FEM mesh for the N = 143 electrode model used to compare with the 

clinical C1 data. The 3D model produces conductivity maps like the one displayed in Figure 

3e.

The key parameters we varied in search of the most accurate model of the C1 data were θβ, 

β, psimp and σmax. Trends in model accuracy were non-monotonic with all solver parameters. 

Thus, we performed a grid search over reasonable parameter values for the hyperbolic 

tangent projection and SIMP penalization to achieve the lowest average electrode error 

for a given dataset. The lowest error was achieved with moderately strong projection 

given by θβ = 0.1, β = 8, and cubic SIMP penalization given by psimp = 3. As we are using 

electrical conductivity only as a proxy for neural connectivity, the absolute value of the 

conductivity in S/m is not physically associated with the exchange of information between 

brain regions. However, on certain C1 Peak Amplitude values we did find that increasing the 

maximum conductivity within the range physiological neural tissue conductivities (McCann 

et al., 2019) —from 0.1-0.33 S/m to 1 S/m—improved average electrode error (defined as 

% absolute difference between C1 values and output electrode voltages) slightly without 

Schmid et al. Page 11

J Neurosci Methods. Author manuscript; available in PMC 2024 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



qualitatively changing the conductivity map, supporting the rationale that, despite describing 

a passive system, the calculated spatial variation of the conductivity values is indicative of 

neural activity. Regardless, tuning the parameters listed above was important in achieving 

the most accurate result for each dataset. It should be noted that the optimization problem 

as casted here is typically under constrained given the limited spatial sampling regions 

provided by electrode number and locations. The use of a larger number of probes in 

many regions can mitigate the optimization and lead to more accurate visualization of 

interconnected neural areas.

As we investigated the different model parameters, we noted that the absolute value of the 

source potential does not significantly affect model accuracy so long as the value is larger 

than the maximum C1 value. A constant potential V 0 = 700 μV was placed on the boundary 

of the source electrode, a source which exceeds the maximum C1 value of 624.57 μV. As 

expected, increasing the source potential further leads to larger void regions (low θp and thus 

conductivity values) immediately around the source electrode. The model is unconstrained 

by anatomy and has many degrees of freedom in addition to the free solver parameters 

discussed in Section 3. We found that a critical constraint was accounting for the reference 

potential V ref in the objective function. A preliminary model that did not track the reference 

potential had very poor accuracy, with a 43% mean error (median 7%, ranging from ~0 to 

1362%). The four electrode contacts with the largest error were located on the reference 

probe and were among the smallest in C1 value across the dataset. Explicitly probing the 

reference potential in the model at the location of the experimental reference improved the 

maximum error by an order of magnitude (1362% to 123%).

4. Results

Initially, we compare and validate different PEP features extracted from our data. We 

evaluate the agreement between different metrics, including those obtained with an 

automatic detection method to identify C1 and C2 neural components from pulse-evoked 

potential (PEP) responses to single pulse electrical stimulation (SPES). We then probe 

relationships between tractography-estimated structural connectivity and PEP metrics in 

order to measure effective connectivity. We select the C1 component to guide our proposed 

optimization model in resolving a conductivity map between the stimulation seed and 

electrode contact targets. The C1 Peak Amplitude values are used to construct the objective 

function in topology optimization and the locations of electrode contacts are utilized by the 

physical model to represent the probe insertions. While the electric current equations do not 

directly employ C1 values, the optimization solver operates iteratively to shift the solution 

toward C1 data, making repetitive comparisons of model values with C1 values. We lastly 

evaluate the model results by comparing the conductivity map with anatomical information 

and by identifying anatomical features that induce large voltage gradients and lead to large 

model errors at those locations.

4.1. Heterogeneity of C1 and C2 components across electrode locations

After visually inspecting and removing channels with significant biological and stimulation 

artifacts, the smoothed average waveform at each electrode contact was evaluated for 
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identification of C1 and C2 response components. We found that the average waveforms are 

dissimilar across different electrode contacts (Figure 2a, b), particularly when considering 

polarity, but also overall waveform morphology. Given the variable orientation of neural 

structures and resultant heterogeneous polarities at electrode contacts in sEEG, we detected 

the C1 and C2 pulse-evoked components based on their respective latency (first and second 

component) rather than their polarity (negative or positive deflecting components). 78% of 

electrodes displayed a negative deflection in the first component. The latency at which C1 

and C2 Peaks occurred was consistent across electrode contacts, occurring at 21.2 ± 10.1 ms 

on average for C1 (average ± standard deviation), and 54.2 ± 15.9 ms for C2. The stability 

of this temporal window supports the importance of relative latency, rather than polarity, 

for defining the neural components recorded with penetrating electrodes. We also note that 

our detection was purposefully detecting C1 and C2 in opposing polarities, unlike N1 and 

N2 components in CCEPs (both negative components). Our modeling approach employs the 

C1 Peak Amplitude, regardless of its polarity, as the feature of interest best capturing the 

neural response to stimulation (Figure 2c). Given its fast latency, this component is likely 

representing the first volley of stimulation-related activity, with minimal contamination by 

secondary and indirect network-wide interactions.

4.2. Correlation of derived physiologic and statistical PEP features

Since temporally-defined response components have been previously described as 

inconsistent in sEEG SPES, we aimed to evaluate a battery of PEP features and their 

pairwise correlations to examine their stability. Pairwise correlations between all features 

(C1 and C2 Peak Amplitude, Area, Peak-to-Peak difference, Max Amplitude and RMS-

Shape; total of 21 pairs) confirmed very strong correlations among the extracted metrics 

(correlation coefficients ranging from 0.96 to 0.67, all p-values < 0.0001). The variables 

more reliably correlating with all other pairs were the C1 Peak Amplitude and the Max 

Amplitude (correlation matrix marginal mean, excluding diagonal was r = 0.9 for both), 

while the RMS-Shape displayed the lower correlations with the other variables (marginal 

mean r = 0.73). The consistency of the correlations validates the selection of the C1 

Peak Amplitude feature as the measure of interest for our modeling approach (Figure 

4a). To further corroborate this finding, we tested its generalizability to different datasets 

(Experiments 2 and 3), with different electrodes used as stimulation seeds. The overall 

agreement between the metrics was preserved, with all pairwise correlations p < 0.0001 also 

in Experiment 2 and 3. We further validated that SPES targeted to different brain regions led 

to variable electrical potentials at a given electrode contact (Figure 4b) and showed specific 

patterns of C1 values across electrode locations. For example, an electrode contact located 

on the same probe and proximal to the stimulation seed contact, (or an electrode displaying 

effective connectivity with respect to the stimulation seed location) exhibits an elevated 

potential during SPES at that stimulation seed. However, that same electrode may display 

a decreased potential during stimulation at a different stimulation seed. All further analyses 

and results are based on data from Experiment 1 unless otherwise stated.

4.3. Concurrence among structural and effective connectivity modes

Cross-modality studies have demonstrated moderate similarity in connectivity measured by 

tractography with the occurrence and magnitude of PEPs (Adkinson et al., 2022; Crocker 
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et al., 2021). However, the nature of the relationship between tractography and SPES-based 

connectivity remains incompletely understood. Thus, we examine, in the context of sEEG 

SPES, how connectivity strength and path length correlate with PEP features. Pearson 

correlations were conducted in a pairwise manner between PEP metrics and tractography. 

The connectivity likelihood was computed by counting the total number of streamlines for 

all stimulation seed and target electrode contact pairs (and applying a base 10 logarithmic 

transformation to correct for skewness). This metric (# Streamlines) demonstrated a positive 

correlation with all PEP features (Figure 4a). The correlation values ranged between 0.25 

and 0.40, thus considerably lower than the correlation obtained within the PEP features, 

but nonetheless statistically significant (all p-values < 0.01). The second structural metric 

examined was the average length (in mm) of the streamlines connecting each electrode 

location to the stimulation seed (Streamlines Length), capturing the distance from the 

stimulation seed based on the white-matter pathways connecting them. All PEP features 

demonstrated a moderate negative correlation with the average Streamline Length (Figure 

4a), with correlation coefficient values ranging between −0.58 and −0.33 (all p-values 

< 0.0001). Thus, electrodes farther away from the stimulation seed display smaller PEP 

response features. Interestingly, the most negative correlation (r = −0.58) was found 

between the average streamline path length and the RMS-Shape, suggesting that PEP 

waveforms measured at farther locations from the stimulation seed display less consistent 

PEP waveform across SPES repetitions.

Finally, we evaluated the C1 peak amplitude feature and its relationship to the tractography-

estimated metrics. The C1 component was explained by an exponential decay in amplitude 

with increasing average streamline length (Figure 4c left), with a half-life of 44.1 mm, 

obtained by fitting an exponential decay function of the form: y = ae−l ∕ b to the streamline 

length (represented by l) and the C1 Peak Amplitude values (y). On the other hand, we 

observed a positive but weak correlation between C1 and streamline count (r = 0.29, 

p<0.001), with C1 amplitudes above ~150 μV displaying a very consistent association 

(Figure 4c, middle). Thus, while the likelihood of structural connectivity relates to the PEP 

response magnitude, the relatively low correlation values are indicative that the variation 

in C1 amplitude across brain locations cannot be fully captured by this information alone 

(Figure 4c, right and bottom).

4.4. 3-dimensional topology optimization model resolves conductivity map across 
electrode contact locations

The electric potentials of the first temporally-defined PEP component, C1, detected at each 

electrode contact during SPES at the stimulation seed used in Experiment 1 (Figure 1c) 

were used as input data to the optimization model. Across model optimization iterations, 

a conductivity map explaining known voltage behavior with minimum error is constructed, 

representing a general nodal connectivity path. The proposed model achieves an overall 

average error of 14% between measured and simulated potentials across all electrode 

locations (median 6%, ranging from 0 to 123%; Figure 5a). Notably, the model does not 

use or require anatomical constraints. When considering the electrode locations with the 

largest error, three electrode locations stood out as outliers (above 100%). Of these, two 

were located on the same probe as the reference electrode and had small C1 values (3 
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and 8 μV) that the model could not properly account for, leading to negative potential 

estimates in those locations. The overall worst electrode (123% error) was located in the 

right inferior frontal cortex, spanning pars triangularis and orbitalis and less than 1 mm from 

the gray-white matter boundary. Overall, inspection of the electrodes displaying the larger 

errors revealed that the model performed less accurately on locations where the C1 Peak 

Amplitudes varied considerably between neighboring electrodes (Figure 5a).

Next, we evaluated the similarity between the results of the model and the structural 

connectivity information offered by diffusion-based tractography. Despite the lack of any 

information on underlying anatomy, we observe a visually identifiable relationship between 

the 3D conductivity map and the tractography streamline map (Figure 5b, c). As depicted in 

Figure 5b, the conductivity values across the model domain (i.e., the sphere used to model 

the space around the electrodes) vary, supporting higher values of electrical conductivity in 

spatially preferred directions, highlighting neural signal pathways between electrode probes. 

We interpolated the conductivity values and rendered them into a volume, allowing for 

a more careful overlap between the model results and the white matter pathways in a 

specific sagittal plane encompassing prefrontal and temporal cortex (Figure 6a). By design, 

the model’s domain 3D mesh is finer closer to the electrodes, such that the conductivity 

values at locations proximal to the electrodes are estimated with a high spatial resolution. 

One caveat to the interpolated conductivity values is that locations farther away from the 

sampled cortical locations display less precise estimates and may diverge from the structural 

information. For example, parietal, posterior cingulate, and occipital connections cannot 

be captured in our results due to the lack of electrodes sampling from these regions in 

our dataset, as discussed above. Overall, the model would likely resemble the structural 

information more closely if applied to a dataset with a more distributed cortical sampling, 

offering a better triangulation of the voltage values.

While most data are modeled accurately, some electrode locations displayed significantly 

large error values, and we next focused more in depth on factors that could explain the 

observed variability in error rates. As discussed above, one factor contributing to the error 

distribution across brain locations is the presence of drastic differences in the potentials of 

neighboring electrodes (Figure 5a, large C1 Peak Amplitude differences among electrodes 

on the same probe), lowering the numerical model performance. Large potential differences 

across isolated small regions of space (i.e., the neighboring electrodes) imply large 

gradients that need to be associated with localized small conductivity values. Therefore, 

large voltage gradients translate into potentially large conductivity spatial gradients that 

are computationally demanding to address during the optimization process. The model, 

being naive to the underlying anatomy, may be unable to fit a spatial solution that fully 

accounts for sharp condition changes. However, from an anatomical perspective the complex 

cytoarchitecture of the human brain may contribute to observations of large differences in 

recorded potentials from neighboring electrode contacts. Specifically, sulcal landmarks have 

been recently described as natural barriers to electrical activity propagation (Maharathi et al., 

2019) and stimulation-induced electrical fields modeled variably based on the positioning of 

a stimulated electrode relative to sulcal orientation (Alonso et al., 2023).
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4.5. Location of high model error relates to proximity to complex anatomy

To test whether the electrode locations displaying high error can be tied to anatomical 

organization, we calculated and compared various anatomical features for each electrode 

location, including the distance to cortical surface, the distance to gray-white matter 

boundary, and the likelihood of an electrode contact being close to a sulcus versus a gyrus. 

We tested the association between these anatomical features and model error by performing 

median splits of the dataset based on each anatomical feature. The distance from the cortical 

surface significantly modulated the error, with electrodes closer to the pial surface showing 

higher model errors (8.2% vs. 3.7%, z = 3.49, Wilcoxon Rank Sum Test, p < 0.001, Figure 

6b). Finally, we focused on the electrodes localized in gray matter (i.e., electrodes with 

coordinates localized between the pial surface and the gray-white boundary, n = 69 out of 

143) and asked whether an electrode’s proximity to a sulcus affects model performance. 

We found that electrodes closer to a sulcus demonstrate larger model error (17% vs. 10%, 

z = 2.9, p = 0.004, Figure 6c). This result suggests that anatomical features can explain 

some variability in the model error. Specifically, complex cortical folding patterns in the 

proximity of the electrodes might be responsible for sharp transitions in PEP features, 

such as changes in the amplitude of the evoked components, due to crossing functionally 

distinct yet spatially proximal regions and/or due to changes in dipole geometry (e.g., nearby 

electrodes recording from two sides of a sulcus). These large potential gradients are not 

easily accounted for by a passive modeling approach, leading to larger errors in model 

estimates.

Because tractography algorithms are known to perform poorly in tracking sulcal regions 

(Chen et al., 2013; Reveley et al., 2015), we investigated the relationship between structural 

connectivity strength and model error. As expected, electrode contacts displaying high error 

also demonstrated weak to no structural connectivity. Beyond sulcal banks, tractography 

also poorly tracks gray matter regions, due to lower diffusion anisotropy in and around 

neuronal cell bodies and axon terminals. To further parse the relationship between model 

error and tractography, we adjusted our ROI masks for gray matter regions. Electrode 

contacts identified as residing in gray matter were rerun for each stimulation seed using 

a larger radius spherical mask (3 mm) to aid the tractography algorithm in detecting 

nearby streamline terminations, as diffusion in gray matter shows much weaker directional 

consistency than in white matter. We then compared the difference between connectivity 

strengths at the original and new ROI spherical mask sizes with the model error. We found 

that electrode contacts located in gray matter regions with increased connectivity likelihood 

(n = 29) did not have a significantly different model error with respect to electrode contacts 

with no improvement in streamline count (n = 40; z = 0.6261, p = 0.53). Taken together, 

these results suggest that our model can resolve conductivity to gray matter regions, unlike 

tractography, while displaying a lower accuracy for paths near or in sulci.

4.6. Generalizability to a second dataset

The above modeling results were obtained from data in Experiment 1. As a final step, 

we applied the same approach to the dataset from Experiment 2, where the stimulation 

seed was in the posterior thalamus. Overall, the C1 Peak Amplitudes in this dataset were 

smaller and less variable across electrode locations (Figure 4b, purple bars). From an 
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electrophysiological perspective, this can be ascribed to the stimulation seed not displaying a 

strong and specific connectivity pattern to any of our sampled locations. The model error for 

Experiment 2 was considerably lower than Experiment 1 (average error 1.7%, with a median 

of 5.5% and ranging from ~0% to 126%; Figure 6d). Thus, the model found a solution able 

to more accurately represent this homogenous dataset (i.e., less variable C1 Peak Amplitude 

values across brain locations). Interestingly, the top two worst errors in this model (110 

and 126% error) were the two electrodes closest to the reference location, associated with 

very small C1 Peak Amplitudes (4 and 6 μV), mirroring the result obtained in Experiment 

1. This generalizes the previous finding that the conductivity topological information in 

proximity of the reference electrode is less likely to be appropriately modeled and highlights 

the need of careful consideration when selecting the reference electrode for intracranial 

recordings. Overall, the results obtained validate the interpretation that our approach can 

resolve different conductivity maps and that the error can be used as a heuristic to identify 

locations associated with large gradients, as in cases where the stimulation seed shows a 

high effective connectivity with a specific subset of locations. This indeed leads to a higher 

variability in the C1 Peak Amplitudes, as found in Experiment 1, but not in Experiment 2. 

The direct comparison of the two conductivity maps (Figure 6e) highlights the prefrontal 

and temporal regions displaying the highest effective connectivity differences.

5. Discussion

In this paper, we introduce a 3-dimensional conductivity model, obtained through single-

pulse stimulation data, capable of recapitulating signal pathways. Provided with electric 

potentials recorded in-vivo from sEEG electrodes, our optimization model resolves a 

conductivity solution via passive propagation at nodes spanning spatially disparate distances 

to articulate pathways of brain connectivity. The proposed model remains naïve to 

anatomical organization, such as sulcal barriers. The electric potentials guiding our model 

are reliable and early pulse-evoked potential response components to single pulse electrical 

stimulation in sEEG, termed here C1. We evaluate the correlation of derived components C1 

and C2 with other established PEP features and further explore the structural and effective 

connectivity relationship from high-resolution tractography data. Finally, we consider how 

model error relates with anatomical features, providing insight to model performance and 

interpretation.

Understanding the behavior of electrical activity in the brain remains an ongoing goal in 

both clinical and research settings. Computational modeling approaches have consistently 

advanced toward describing conductivity in relation to induced stimulation fields and 

identifying conductivity of specific neural tissue structures. However, using conductivity 

as a lens for modeling functional brain connectivity remains less explored. Alternative 

methods for constructing conductivity maps in the human brain, such as electrical 

impedance tomography, are limited by confounds such as skull impedance (Oh et al., 

2009). Other techniques, including magnetic resonance electric properties tomography, 

extract conductivity at high frequencies from magnetic resonance signal read-outs, though 

these approaches are dependent on scanner frequency and signal phase processing 

(Borsic et al., 2016; Voigt et al., 2011). Complicating estimations of conductivity in the 

brain is the fact that conductivity varies with tissue type (gray matter, white matter, 
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CSF) and composition (McCann et al., 2019). A prominent component across neural 

tissue types is water, which may be associated with electrical properties in biological 

tissue based on concentration (Schepps and Foster, 1980). This relationship served as a 

basis for conductivity tensor imaging, combining water maps with diffusion MRI data 

(Marino et al., 2021). Critically, these methods rely on the strong assumption that water 

concentration is determinant of conductivity. The relationship of water molecules and brain 

conductivity is especially interesting in light of our model. Our initial inclusion of diffusion-

based tractography data was to explore the association between structural and effective 

connectivity metrics. However, we additionally observed a visually identifiable relationship 

between the volumetric topology conductivity map and the tractography streamline map. 

These similarities exist despite a lack of input information on water behavior to our 

model. Such results optimistically support a relationship between water concentration and 

conductivity in neural tissue elements, and future work should continue to explore this 

relationship more intimately.

The observed similarity between streamline and conductivity maps motivated subsequent 

investigation into possible anatomical explanations for model error. While most electrode 

contacts are resolved with minimal error, a subset of contacts present high error percentages. 

Extending beyond physics-based reasoning for higher error (see Methods section 4.4), 

the existence of structural barriers in the brain may play corresponding roles. We 

focus on the existence and proximity of sulcal bounds, since these areas present well-

documented difficulties for tractography-based connectivity methods (Van Essen et al., 

2014). Specifically, tracking algorithms bias toward termination points along gyral crowns, 

failing to quantitatively account for white matter fibers crossing the white-gray matter 

boundary (Schilling et al., 2017). As anticipated, our results support that sulcal bounds may 

represent one anatomical predictor for model error. Fiber connectivity densities have been 

shown to be elevated in gyral crowns compared to sulcal barriers, and fiber bending over the 

distance of even 1 mm can occur almost orthogonally along these proximal walls (Schilling 

et al., 2017). Thus, convoluted organization of the cerebral cortex into sulci and gyri and the 

accompanying variation in neuron orientation introduce anatomical complexities that may 

underlie some degree of model error. Additionally, we observe high model error at electrode 

contacts located on the same probe as the reference electrode. One important consideration 

in brain stimulation experiments is selecting the location of an intracerebral reference 

electrode. Typically, electrodes in well-insulated, deep white matter locations are preferred, 

though regardless of location, gleaning meaningful information from surrounding electrodes 

proves difficult. In our model, the high error observed at contact locations proximal to the 

reference demonstrates an inability to accurately model these locations. While selecting 

the optimal reference location, investigators should keep in mind the consequent loss of 

information in nearby regions to best avoid designating an anatomically intriguing region as 

the reference.

The proposed method models passive propagation of electrical signals. In biological tissue, 

both active and passive signal transmission occurs, where the latter sums electric potentials 

along the temporal domain with spatial-dependency (Elmslie, 2021). While passive 

electrical propagation may describe synaptic and receptor potentials, actively propagated 

signals arise from action potentials (Purves et al., 2001). Given that our model solves 
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for passive propagation, electrode contacts displaying high error may indicate a dominant 

role played by active potential summation effects. We can then assume that at specific 

nodes, higher conductivities are not accounted for by passive principles. In Experiment 2, 

using a stimulation seed in the thalamus, C1 Peak Amplitudes displayed little variation 

across stimulation sites. In pairing, our conductivity map was resolved with minimal error, 

supporting that electric potentials may have resulted from volume conduction effects. This 

is in comparison with higher error observed in Experiment 1, where stimulation of the 

anterior insula resulted in regionally dependent C1 amplitudes, and our conductivity map 

presented higher error. Thus, where C1 amplitudes were selective in response size across 

regions in the insula, the thalamic stimulation seed behaved in a non-selective manner, 

nearly preserving C1 response independent of spatial location. From this, we proffer that our 

model is informative about hyper-selective paths.

A secondary objective of the present study was to investigate the derived PEP features 

with tractography-based metrics, probing the relationship between functional effective and 

structural connectivity. We first evaluated statistical and physiologic PEP measures against 

one another and observed significantly strong correlations across all variables, validating 

our C1 and C2 detection algorithm. Then, we compared two tractography-based metrics, 

number and length of streamlines, against each PEP feature. For the number of streamlines, 

we reported stable yet weak correlations with PEP features, with the strongest positive 

association to RMS-Shape. This result supports that streamline count correlates with 

consistent PEP responses across stimulation repetitions, suggesting a stronger structural 

relationship between seed and target electrode location may tie with stable effective 

responses. Separately, we observed moderate negative relationships between path length 

and all PEP features, with the strongest effect also from PEP shape consistency. As distance 

between stimulation seed and target electrode contact increases, weaker consistency in 

waveform shape is preserved. Such influence of distance on SPES-induced evoked responses 

has been previously documented, diminishing the observed relationship between stimulation 

response and diffusion-based tractography connectivity measures (Crocker et al., 2021). 

For the C1 component amplitude, reliable but weak correlations were observed with both 

streamline count and path length. While an exponential decay function describes decreasing 

C1 peak amplitude with increased distance, the relationship between C1 and number of 

streamlines appeared less obvious. Overall, our findings are consistent with previous work 

and support that while structural connectivity measures can stably track with PEP features, 

effective connectivity, especially C1 amplitude, cannot be fully captured from tractography-

predicted connectivity. One possibility is that, given the limitations of structural connectivity 

as described above, C1 Peak Amplitude may more closely match underlying anatomical 

connectivity. This will need to be studied using tract-tracing in nonhuman animal models. 

Future studies are needed to continue expanding on the inter-relations across connectivity 

types.

A few limitations of the current work are notable. As previously mentioned, the proposed 

model calculates passive electrical signal propagation. Without explicitly considering both 

active and passive propagation, the proposed model cannot disentangle the physicochemical 

mechanisms underlying excitability and inhibitory tissue activations. Additionally, the 

input parameters used in model optimization are not identical to those used for the 
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SPES waveform. Since modulation of stimulation parameters influences evoked potential 

response morphology (Paulk et al., 2022), the generated conductivity map may only partially 

represent electrical conductivity from the stimulated seed locations. For simplicity, we 

implemented a spherical volume mesh rather than a mesh topology based on brain geometry. 

Future work will employ anatomical boundary constraints. As patient data was collected 

from sEEG electrodes, spatial sampling was limited to the surgical implant strategy. In 

the present paper, electrode coverage primarily targeted the right hemisphere, resulting in 

sparse sampling of the left hemisphere. As such, our model is limited in its ability to 

resolve neural signal pathways into the left hemisphere. Future studies will further exploit 

experimental data by considering the latency of the recorded signals at the electrodes with 

respect to SPES. While the introduction of the time domain may increase the computational 

complexity, it will also provide additional constrains to the optimization procedure, 

potentially increasing the accuracy of the resulting conductivity maps. In turn, this will 

enable the study of indirect inter-regional connections, which are likely best captured by 

delayed electrophysiological signal components with respect to the C1 component employed 

here. Lastly, input intracranial recording data was collected from a single patient. Thus, this 

model was constructed on individual patient data and has not been tested on other subjects. 

To promote further generalizability and increased spatial sampling, more patients with 

additional electrode coverage should be evaluated. Nonetheless, the topology optimization 

model presented provides a necessary introduction into using intracranial recording data 

for reconstructing conductivity paths in the human brain to advance our understanding of 

functional brain networks.
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Figure 1. Overview of anatomical locations and stimulation protocol.
A. All electrode contacts (144 electrodes represented as spheres) along each sEEG probe (14 

probes, color-coded) are displayed on the sagittal, axial, and coronal views of the cortical 

surface. The R-A-S axis (right, anterior, superior) are included for reference. Electrode 

shape and size are distorted and exaggerated for visualization purposes. The electrode used 

as the stimulation seed in Experiment 1 is represented by a black sphere with a green 

outline. B. Overview of the electrode anatomical locations color-coded by the number of 

electrodes in each anatomical parcellation (based on the HCPex modified atlas). C. Detailed 

view of the location of the stimulation seed in Experiment 1: the electrode is located in the 

white matter adjacent to the anterior insular cortex. D. Average pulse-evoked potential (PEP) 

across all electrodes in response to single-pulse electrical stimulation (SPES) delivered to 

the stimulation seed. The inset shows the schematic of the SPES waveform and parameters.
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Figure 2. Example of PEP features and their distribution across electrode locations.
A. On the top, a visualization of the relative position between the stimulation seed for 

Experiment 1 and an electrode on the same probe (elec #17). The middle panel displays the 

PEPs recorded from that electrode in response to each SPES delivered at the stimulation 

seed, showcasing the consistency of evoked potentials recorded from electrode #17. Below, 

the PEP features (C1 and C2 peaks, their amplitude, their area, and the peak boundaries) 

are represented on the average waveform. B. Same information as in A, recorded from a 

different electrode (elec #59). Note the opposite polarity of the PEP waveforms between the 

two recorded locations. C. The C1 Peak Amplitude is represented at each electrode location 

by inflating the size of the sphere by the C1 amplitude (i.e., larger spheres represent larger 

C1 amplitudes). The electrode locations are color-coded by the probe as in Figure 1. The 

stimulation seed electrode is marked by a black sphere (visible on the coronal and sagittal 

views). The R-A-S axis (right, anterior, superior) are included for reference.

Schmid et al. Page 26

J Neurosci Methods. Author manuscript; available in PMC 2024 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Diagram of 2D Finite Element Method (FEM) model of brain conductivity.
A. Geometry consists of a circular domain (radius 100 mm) of material with electrical 

conductivity given by the penalized density model θp from topology optimization scaled 

by a maximum conductivity σmax, and metallic electrodes (radius 0.65 mm) with electrical 

conductivity 6 × 107 S ∕ m. There are no electrical boundary conditions beyond the source 

potential V 0 on the boundaries of the stimulated electrode and electrical ground on the 

boundary of the domain. The electric potential is probed at each electrode (V pn) in addition 

to the reference potential (V ref), locations dictated by clinical probe locations, to compute the 

objective function at each optimization solver iteration. B. The objective function-the sum of 

differences between the referenced electrode potential measurements from the model and the 

C1 data (V n)–is iteratively minimized to find the density model θp that scales the conductivity 

map across an FEM mesh (green). C. Selected 2D model solution plots over increasing 

optimization iterations demonstrating how the conductivity map (top) and thus the electric 

potential (bottom) evolves as the objective is minimized. D. The modeling procedure is 

directly extended to 3D by using spherical domains. The additional ellipsoids are part of 

the topology optimization domain and are only to control the growth rate of the tetrahedral 

mesh. E. Example 3D conductivity map using C1 data from 143 clinical electrodes in the 

objective, filtered so that only mesh locations exceeding 40% of the maximum conductivity 

appear for visual clarity.
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Figure 4. Correlation within PEP features and their relationship with structural information and 
anatomy.
A. Correlation matrix for all PEP feature pairs (within the dashed square) and for structural 

metrics. B. Comparison of C1 Peak Amplitude values across the experiments, highlighting 

how C1 values from the same electrode locations (x axis, color-coded by probe) vary 

depending on the stimulation seed (location of each seed with respect to the other electrodes 

is depicted with a black arrow). Experiment 1 and 3 resulted in large C1 values at 

specific electrode locations (extending beyond the nearby electrodes). Experiment 2 did 

not elicit large or variable C1 responses beyond the electrodes nearby the stimulation seed. 

C. Correlation of C1 with streamlines metrics in Experiment 1. Left: Streamline Length 

(average white matter path-based distance between the stimulation seed and each electrode), 

showing an exponential decay of C1 values with increasing streamline length. Middle: 

Streamline count (in log10 scale) shows an overall positive relationship with C1 values. 

Right and bottom: the C1 Peak Amplitude is represented at each electrode location by 

inflating the size of the sphere by the C1 amplitude (i.e. larger spheres represent larger 

C1 amplitudes). The electrode locations are color-coded by the Streamline count between 

each electrode location and the stimulation seed to display the presence of large number of 

streamlines passing through the electrode locations in darker green colors. The R-A-S axis 

(right, anterior, superior) are included for reference.
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Figure 5. Visualization of model results and structural information.
A. The Model Error (% difference between C1 value and modeled potential) is plotted at 

each electrode location and color coded by a white to red scale. The C1 Peak Amplitude is 

represented at each electrode location by inflating the size of the sphere by the C1 amplitude 

(i.e., larger spheres represent larger C1 amplitudes). The R-A-S axis (right, anterior, 

superior) are shown as a reference. B. The conductivity map solution obtained by the model 

is represented by spheres at the model mesh locations, color coded by conductivity. The 

conductivity map solution achieved by the model is overlaid on the brain surface (same 

orientations as A) to facilitate a visual comparison of the conductivity map and the other 

panels. C. Streamlines between the stimulation seed and all electrode locations, color coded 

by the direction of the streamlines. The stimulation seed electrode is represented by an 

inflated green sphere. Figure generated using DSI Studio (https://dsi-studio.labsolver.org/) 

where deterministic fiber tracking (Yeh et al., 2013) was conducted using modeled diffusion 

data from our FSL processing pipeline.
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Figure 6. Model error dependency on anatomical features and conductivity map differences 
between different stimulation seeds.
A. A sagittal slice is extracted from the 3D conductivity map solution obtained by the 

model, color coded by conductivity. The slice is obtained by spatially interpolating the 

conductivity values: from the model’s discrete values (computed at each mesh location in 

the sphere, as in panel E) we render a volume of continuous values and extract the sagittal 

plane of interest. The map solution is overlaid on the brain surface (same orientations as 

panel B) to facilitate the visual comparison of the conductivity map and the streamlines. On 

the right, the streamlines between the stimulation seed and prefrontal electrode locations are 

shown, color coded by the direction of the streamlines. The stimulation seed electrode is 

represented by an inflated green sphere. B. Relationship between model error and distance 

from cortical surface. The model error is significantly larger at electrode locations closer to 

the pial surface versus farther away (closer to the white-gray boundary). Dashed line depicts 

the median distance value used to perform the split of the electrodes into subgroups. C. 
Relationship between model error and electrodes in gray matter (subset of 69 electrodes). 

Electrodes close to a sulcus (versus a gyrus, relative proportion) have higher model errors, 

indicative of the effect of folding patterns on the presence of large voltage gradients. D. 
Experiment 2 Model Error (% difference between input C1 value and modeled potential) 

is plotted at each electrode location and color coded by a white to red scale. The C1 
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Peak Amplitude is represented at each electrode location by inflating the size of the sphere 

by the amplitude values (i.e. larger spheres represent larger C1). The stimulation seed in 

Experiment 2 (posterior thalamus) did not elicit large or variable C1 Peaks across the 

electrodes and the model for Experiment 2 achieves lower errors with respect to Experiment 

1. Panel E. Comparison between the conductivity solutions for the two models (Experiment 

1 versus Experiment 2), highlighting spatial locations of disparate effective connectivity as a 

function of stimulation seed.
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