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Abstract

One of the most notable limitations of laboratory-based health research is its inability to 

continuously monitor health-relevant physiological processes as individuals go about their daily 

lives. As a result, we have generated large amounts of data with unknown generalizability 

to real-world situations and also created a schism between where data are collected (i.e., in 

the lab) and where we need to intervene to prevent disease (i.e., in the field). Devices using 

noninvasive wearable technology are changing all of this, however, with their ability to provide 

high-frequency assessments of peoples’ ever-changing physiological states in daily life in a 

manner that is relatively noninvasive, affordable, and scalable. Here, we discuss critical points that 

every researcher should keep in mind when using these wearables in research, spanning device and 

metric decisions, hardware and software selection, and data quality and sampling rate issues, using 

research on stress and health as an example throughout. We also address usability and participant 

acceptability issues, and how wearable “digital biomarker” and behavioral data can be integrated 

to enhance basic science and intervention studies. Finally, we summarize 10 key questions that 

should be addressed to make every wearable study as strong as possible. Collectively, keeping 

these points in mind can improve our ability to study the psychobiology of human health, and to 

intervene, precisely where it matters most: in peoples’ daily lives.
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One of the greatest challenges of health research is the relatively high cost and burden 

of assessing biological processes repeatedly, especially in naturalistic settings. Although 

less accurate than gold-standard systems such as Biopac ECG that are often preferred 

in laboratories, wearable technologies—or wearables for short—allow for the long-term, 

scalable, high-frequency quantification of individuals’ ever-changing physiological states, as 

well as the unobtrusive monitoring of health behaviors in participants’ natural environments 

(Huhn et al., 2022). In doing so, wearables have increased opportunities for researchers 
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to track and intervene on physiological and behavioral mechanisms central to the field of 

psychoneuroimmunology (PNI). They have also opened the door to ecological momentary 

assessment (EMA) of physiological processes (Zapata-Lamana et al., 2020), providing a 

promising avenue for advancing PNI research.

As wearables have increased significantly in their availability, utility, and accuracy in recent 

years (Jia et al., 2018; Zhang et al., 2020), so, too, has their use among both among 

consumers and researchers. Indeed, about 30% of US adults regularly used wearables in 

2020—a number that continues to increase exponentially with an expected growth of 24.7% 

annually through 2026 (Chandrasekaran et al., 2020). In addition, a recent scoping review 

found that the number of published studies that included noninvasive, consumer-grade 

wearables increased by 400% from 2016 to 2020 (Huhn et al., 2022). Such work is 

being enabled in part by an increasing willingness of academic and industry partners to 

collaborate, which can be mutually beneficial: whereas investigators gain access to the best 

products and technological support available, companies get higher-quality, academically 

anchored validation studies that help test the devices and establish their clinical utility.

Wearables are useful in mental and physical health research for many purposes, and one 

particularly notable purpose is to measure physiological and behavioral processes related 

to stress. Chronic stress is one of the strongest determinants of lifespan health (Slavich, 

2016) and is considered a major modifiable risk factor for noncommunicable diseases 

associated with poor cardiovascular, metabolic, and immune system health (Fricchione, 

2018; Poplawski et al., 2020). Chronic stress is also strongly associated with anxiety and 

depression (Cohen et al., 2015; McLoughlin et al., 2021; Slavich and Irwin, 2014), making 

it highly relevant across research topics related to mental and physical health. Stress tracking 

features in wearables have gained in popularity in recent years, partly due to a greater 

focus on mental well-being during the COVID-19 pandemic. And although few of these 

stress-tracking features have been validated in third-party studies as of yet, the use of metrics 

obtained from wearables to complement more subjective indicators of mental health, which 

can in turn be used to develop valid machine learning algorithms, has great potential for 

advancing health research. As such, we use examples related to stress throughout this paper 

to highlight the utility of wearables in this context.

Despite the growing popularity of using wearables in studies and their potential for 

advancing PNI and health research more broadly, there are few guidelines for using 

wearable technology in research studies and little shared understanding of the key 

considerations for choosing a wearable for research use. In addition, there are several 

limitations of wearables that must be taken into account when choosing whether to use 

wearables in a study and which product is the best match for the goals of the study. For 

example, validity differs across devices and metrics, depending on the hardware, software 

(including algorithms), and data quality choices, such as sampling rate. In addition, the 

ways in which the participant and the researcher will interact with the data must also be 

considered in light of the study goals and the need for a positive participant experience. 

The first aim of this article, therefore, is to provide researchers with an overview of typical 

physiological metrics that can be derived from wearables (i.e., “digital biomarkers”) as well 

as behavioral indices that can be used in PNI research. The second goal is to describe the 
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potential uses and benefits of wearable technology in PNI research and health research more 

broadly, as well as the limitations and potential pitfalls, including key considerations for 

choosing a wearable device for research use.

1. Metrics obtained from wearables

As the number of sensor types and features offered by wearables continues to grow, so 

does the amount of data researchers can collect unobtrusively and relatively continuously. Of 

note, several other types of portable devices and tools exist that can be integrated into daily 

life and used for research. These include smartphone and web apps for clinical monitoring 

(e.g., Sverdlov et al., 2021); facial and vocal recordings for assessing stress and clinical 

disease processes, including the use of artificial intelligence and machine learning in feature 

detection (e.g., Chandrabhatla et al., 2022; Kappen et al., 2023; Lim et al., 2022); and 

pollution-monitoring devices for assessing particulate matter (PM) 2.5 exposure (e.g., Gao 

et al., 2022; Jiang et al., 2018). In this article, we focus on the most commonly used types 

of wearable devices that are available to both consumers and researchers. In doing so, 

we describe the most prevalent technologies commonly used among consumers and health-

focused researchers (e.g., smartwatches/bands, rings), as well as examples of health-relevant 

metrics that can be obtained from them. A summary of these metrics is provided in Table 1.

1.1. Accelerometers and gyroscopes

Accelerometers and gyroscopes were among the first sensors used in both research- 

and consumer-grade wearable technology to measure motion data. Accelerometers detect 

acceleration to provide data on whether—and how fast—an individual is moving, and 

gyroscopes measure angular velocity to determine the orientation of the wearable in space. 

These sensors remain widely used today, as their combination allows for the assessment of 

whether physical activity is occurring, what type of activity is happening, and whether a 

person is upright or lying down. Information obtained from the accelerometer and gyroscope 

also aid in the removal of motion artifacts that may be present in data derived from other 

sensors.

1.2. Photoplethysmography

Photoplethysmography (PPG) uses optical sensors that index changes in blood volume 

underneath the skin’s surface by emitting a light-emitting diode (LED) into the skin and 

then measuring the amount of light absorbed using a photodetector. These LEDs are often 

green, but may be red, infrared, or white spectral light (see below for considerations related 

to LED color). Several biomarkers can be estimated using PPG signals, including heart 

rate and heart rate variability (HRV), blood pressure, respiration rate, and blood oxygen 

saturation (SpO2). In addition to examining physiological processes, wearables can be used 

to investigate health behaviors that act as both precursors to—and consequences of—stress 

responses and changes in mental and physical health. For example, physical activity and 

sleep behaviors can be estimated using a combination of accelerometer, gyroscope, and PPG 

sensing.
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1.3. Electrodermal activity

Electrodermal activity (EDA) sensors measure small changes in the electrical conductance 

of the skin due to variation in sweat production, which is then used to estimate sympathetic 

nervous system activity that is predictive of health (Dedoncker et al., 2022; Slavich et al., 

2023). Newer to the consumer-grade wearable market, EDA has yet to be widely validated in 

wrist-worn wearables. Some wearable rings also measure EDA, which boast more similarity 

to gold-standard Biopac EDA measurement—typically conducted using the fingertips or 

palm where there are more sweat glands—but also have yet to be validated to the extent 

that we can be relatively certain of their accuracy compared to research-grade EDA sensing 

devices.

1.4. Thermometers

A more recent development in wearables is built-in thermometers for temperature tracking. 

Although they are not a replacement for core temperature thermometers, they can be used 

for monitoring changes in peripheral skin temperature (Smarr et al., 2020). Some wearables 

now use peripheral temperature to gauge when a user may be sick (assessed by significant 

increases in temperature above the user’s typical range) and to estimate processes related 

to reproductive health, such as ovulation. In the future, temperature monitoring may also 

be useful for detecting stress (Herborn et al., 2015), as acute stress is known to trigger 

peripheral vasoconstriction and cause rapid, transient drops in skin temperature.

1.5. Global positioning systems

Outside of the direct measurement of physiological processes, wearables with built-in global 

positioning systems (GPS) or with the ability to connect to a paired phone’s GPS can 

measure changes in location. For example, location variance has been associated with 

depression (Moshe et al., 2021), partly because lack of variability in locations traveled may 

serve as an objective indicator of social isolation. In addition, researchers examining an 

individual’s environment as part of a study can use GPS to understand, for example, whether 

participants spend most of their time in urban or rural areas, socioeconomically advantaged 

or disadvantaged areas, if they typically reside in a food desert, and potential toxin exposure, 

all of which are relevant for monitoring health risks.

1.6. Surveys collected via connected apps and externally-linked software

Finally, wearable-connected apps and externally-linked surveys can also request users to 

enter information on health behaviors on a daily basis to gain self-report data on behaviors 

that cannot be measured directly, such as alcohol use or time spent working or socializing. 

Similarly, physical symptoms that are unable to be measured using current technology (e.g., 

fatigue, pain) and psychological states (e.g., depressed mood) can be obtained using a daily 

survey in the wearable’s app. Capturing these data alongside physiological metrics allows 

for EMA and daily diary studies to be conducted with more ease than requesting surveys 

using a separate platform, and enables the aggregation of data over time for a snapshot of an 

individual’s day-to-day physiology, functioning, behavior, and experiences more accurately 

than laboratory-based studies that rely on participant recall. Often, researchers collect data 

on these topics using surveys administered on a separate software or app. However, some 
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wearable apps provide the option for daily “journal” entries that collect data on health 

behaviors, perceived stress, and mood (e.g., WHOOP), whereas others enable researchers to 

customize the variables on which participants can report (e.g., Biostrap).

2. Uses and benefits of wearables in research

There are several benefits to using wearables in PNI research in general, and especially 

in studies of stress and health. At the most basic level, researchers can use wearables to 

compare basal physiological functioning and behaviors between populations. For example, 

investigators can examine how resting HR (e.g., computed as the average heart rate when 

relatively still over the span of a couple of weeks) differs depending on exposure to major 

stressors over the lifetime, which has been found to predict health (Slavich, 2016), or 

between a sample of healthy adults and those with posttraumatic stress disorder, depression, 

or diabetes (Koch et al., 2019; Sadeghi et al., 2022).

Further, because wearables can track intra-individual changes in biomarkers over time, 

researchers can monitor and investigate both between- and within-person changes minute-

to-minute, hour-to-hour, day-to-day, week-to-week, or month-to-month. In doing so, 

wearables can provide real-time feedback to researchers on chronic disease management 

and progression, as well as early disease detection (Vijayan et al., 2021). For example, 

the COVID-19 pandemic saw a new use for wearables in early detection of infectious 

disease even before users realize they had an illness, often using “donated” wearable data 

from participants who already owned a wearable to develop algorithms (e.g., Alavi et al., 

2022; Mishra et al., 2020). Others have used wearables to help develop machine learning 

algorithms that can identify the presence of mental health disorders (e.g., depression) and 

monitor clinical treatment response (Griffiths et al., 2022; Hickey et al., 2021; Lui et 

al., 2022; Sheikh et al., 2021). Of note, although the uses thus far have shown promise 

for the ability of wearable devices to detect and monitor diseases (Dunn et al., 2018), 

the level of accuracy in wearable devices—especially consumer-grade devices—and the 

variation in algorithms that have been tested thus far do not yet yield sufficient support for 

using wearables to inform clinical decisions and monitor diseases on their own. Until more 

research validation is completed, a strong evidence base of safety and effectiveness exists, 

and data security can be guaranteed, appropriate caution is needed to ensure that patients are 

not harmed by using wearable devices in health care (Mattison et al., 2022).

Outside of disease detection and monitoring, researchers may, for example, wish to 

understand how metrics related to stress, psychological well-being, or emotions (e.g., 

heart rate, HRV, blood pressure, EDA) change in response to an acute natural stressor 

or an intervention (e.g., Hickey et al., 2021). Conversely, aggregating averages of digital 

biomarkers over multiple weeks or months enables researchers to estimate shifts in chronic 

states that are not necessarily related to a clinical disorder.

Importantly, data derived from wearables and their apps enable researchers to observe day-

to-day differences within people to better how psychological, behavioral, and physiological 

factors are interlinked in naturalistic settings over time. For example, investigators can 

examine how psychological factors captured using measures within the app, like feeling 
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anxious—or health behaviors, like the amount of sleep and quality of sleep—affects 

physiological indicators of stress and health, like heart rate variability, both over the 

short- and long-term. Similarly, researchers can investigate how changes in physiological 

indicators of stress affect participants’ likelihood of engaging in certain health behaviors, as 

well as self-reported affect and cognitions. For instance, researchers may ask questions like: 

How do fluctuations in HRV and resting heart rate affect the likelihood of drinking alcohol?

Moreover, a newer use of wearable technology is using digital biomarkers to develop 

machine learning algorithms that can identify when a participant experiences a distinct 

physiological state, such as when a stress response is occurring, to understand how 

psychosocial and physiological processes unfold in the real world. For example, several 

research groups have created algorithms to detect acute stress responses in laboratory and 

naturalistic settings (e.g., Anusha et al., 2018; Arza et al., 2019; Chalmers et al., 2021; Nath 

et al., 2022; Sandulescu et al., 2015). Using such algorithms, researchers can test hypotheses 

related to stress processes in real time to understand how situational and individual factors 

affect stress responses and rates of recovery. Further, by using these data to develop machine 

learning algorithms, we have the potential to conduct real-time stress monitoring and guide 

just-in-time interventions that can enhance adaptive recovery.

Finally, wearables enable researchers to collect physiological and behavioral data remotely. 

Remote data collection continues to become more common as researchers develop 

new processes to improve participant recruitment, reduce the likelihood of “white coat 

phenomenon” affecting data, and expand participant reach. Remote data collection became 

even more popular when the COVID-19 pandemic required many laboratories to shut down 

in-person recruitment. In fact, a survey of 245 researchers found that the proportion of 

interactions with participants conducted remotely changed from 9% in January 2020 to 57% 

in May 2020 (McDermott and Newman, 2021). For many studies examining physiological 

processes, wearables made this shift to remote research possible.

3. Limitations and pitfalls of using wearables in research

Wearable devices have many potential uses and possible benefits for research. However, 

several limitations also exist, of which researchers should be aware. Despite physiological 

and behavioral indices derived from wearable data often being called “objective”, for 

example, the reality is that there are many relatively subjective decisions made throughout 

the process of wearable technology and algorithm development that affect how data are 

collected, managed, and analyzed prior to the researcher receiving the data that influence the 

final numbers and ways in which the data can be accurately interpreted. We describe several 

of these points below.

3.1. Measurement-related limitations

First, wearable companies must balance data quality with other needs, such as battery 

life, item size, and other hardware and software features. Because most consumers are 

primarily concerned with a device’s features, battery life, and screen quality, data quality 

is not often the top priority. In addition, companies are pressured to produce new features 

before competitors, many times prior to the technology being externally validated and 
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sometimes even before they have been internally validated. This validation work is perhaps 

even more important in cases where the hardware differs significantly from what is used in 

research. For example, multiple wrist-worn wearables now measure EDA—despite research 

suggesting that EDA derived from the wrist is less valid than EDA derived from the 

fingertips or palms (Hossain et al., 2022; van der Mee et al., 2021)—with no published 

studies validating their specific product’s EDA feature.

Second, few consumer-focused companies provide researchers access to raw, unfiltered data. 

Researchers must thus use computations derived from companies’ proprietary algorithms, 

the details of which are not always made available to the public. For example, some 

wearable products track HRV overnight. However, whereas some average all HRV data 

from the entire night, others use different methods for producing the final HRV reading 

for the night. For example, they may calculate HRV by compiling HRV data from multiple 

sleep stages or calculate the average from the last 5 min of every “deep sleep” state, which 

means the interpretation of the nightly HRV reading is dependent upon the accuracy of 

the sleep staging algorithm. These differences in algorithms are perhaps not as important 

in a single research study—for example, when assessing change within-person over time

—but the variability in methods for obtaining HRV during sleep become very important 

when attempting to aggregate or compare results across studies. Further, it is important that 

researchers are aware of the ways in which the technology and algorithms are employed to 

ensure that the data produced by the wearables fit the needs of the study.

An issue central to diversity and racial equity, and one that is common to many wearables, 

is the use of optical sensors that are less accurate in darker skin, and in those with freckles 

and tattoos (Koerber et al., 2022). Most wearables use green LED lights because they reduce 

signal distortion and “noise” in the data, and typically cost less; however, green light is 

easily absorbed by melanin the skin. In darker skin tones, therefore, it may not penetrate 

the skin enough to pick up an adequate signal. Some wearables have moved to adding 

red and infrared LED lights as well, which are not as easily absorbed and thus allow for 

more accurate PPG signaling (Nelson et al., 2020). Nonetheless, even red LED lights are 

not as accurate in darker skin—an issue that garnered more attention since the COVID-19 

pandemic shone a spotlight on healthcare inequities related to pulse oximeters in medical 

settings, which use red LED lights (Cabanas et al., 2022). In fact, prior research has found 

that these lights can be up to 15% less accurate in persons with darker skin (Bent et al., 

2020).

To increase PPG accuracy in darker skin tones, some devices such as Fitbit and Apple 

Watch, have a feature that boosts the intensity of the green light when the device is having 

trouble acquiring an adequate PPG signal. A small portion of devices have started using 

white spectral light in addition to red and green LEDs for a multi-wavelength solution that 

can provide more accurate PPG signals across a wide range of skin tones.

Although some companies have begun to develop solutions for ensuring wearable accuracy 

in varied skin colors, much less attention is granted to diversity in body size. Excess body fat 

increases skin thickness and alters blood flow and oxygen saturation, which affects optical 

properties of the skin and the extent to which light can travel through the skin and may affect 
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the amplitude and accuracy of PPG signaling (Fine et al., 2021). For example, a Monte 

Carlo simulation predicted a 40% loss of PPG signal amplitude in obese individuals due to 

increased skin thickness on the wrist with a simulated radial artery increase from 2.5 to 3.5 

mm (Hirt et al., 2019). However, trans-epidermal water loss is also common in people with 

higher body mass indexes, which may increase PPG signal intensity (Rodrigues et al., 2017). 

However, research on the topic of body fat and wearable accuracy in real participants is 

limited. Research that has been conducted on body fat and PPG accuracy has used samples 

from particular populations (e.g., only women with diabetes) and focused on wrist-worn 

wearables. Therefore, whether differences in accuracy exist across populations and at other 

body sites (e.g., the finger) is unknown (Fine et al., 2021).

Further, excess body fat may contribute to differences in electrodermal activity. For 

example, a study that compared obese and non-obese cis-men and women found that 

skin conductance responses differed significantly depending on obesity status across sex 

(Aldosky, 2019), possibly due to subcutaneous fat eliciting greater sweat production 

(Shipman and Millington, 2011; Yosipovitch et al., 2007). However, more studies are needed 

to understand this association more fully. In light of these potential sources of inaccuracy 

across diverse populations, researchers must seek validation data on wearables they are 

considering using in their studies and ensure that the wearable is validated in the population 

of interest, or at the very least uses technology that is likely to provide more accurate PPG 

and electrical signaling in the target population.

Researchers must also be aware of—and account for—the use of certain medications that 

may disrupt inferences that can be made with the data. For example, common medications 

for attention-deficit/hyperactivity disorder (ADHD) increase sympathetic nervous system 

activity. If a participant only uses the medication on some days, it may make it more 

difficult for researchers to detect differences in physiological processes that are due to 

stress responses or behaviors unless medication use is accounted for in data analysis. 

These medications can also create ceiling effects, such that if the nervous system is 

highly activated when the participant uses stimulants, such as medications commonly 

prescribed for ADHD, it may be more difficult to detect increases due to stress. Conversely, 

some medications (e.g., blood pressure-lowering medications, anti-depressants) that reduce 

sympathetic nervous system activity may dampen stress responses.

Finally, wearable devices vary in their accuracy. For example, research suggests that some 

wearables may underestimate heart rate and inaccurately estimate activity, such as steps 

(e.g., Benedetto et al., 2018; Tedesco et al., 2019). Different sensors on wearable devices 

and the fact that companies typically use different timing and algorithms to estimate the 

same metric (e.g., resting heart rate) largely prohibits direct comparison of information 

across wearable devices, especially when examining between-person effects. As such, in 

addition to verifying the validity of the metric of interest with the device that will be used 

by participants (discussed below, under “Key Considerations When Choosing a Wearable for 

Research Use”), it behooves researchers to use a single type of device across all participants 

when they will be comparing effects between participants and restrict participants to a single 

device type over the course of the study if they will be examining within-person effects over 

time.
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3.2. Stress-related limitations

Several consumer-grade wearables claim to monitor psychological stress, and many 

studies have differentiated experimental stress conditions in research participants using 

physiological signals (e.g., Anusha et al., 2018; Arza et al., 2019; Chalmers et al., 2021; 

Herborn et al., 2015; Mozos et al., 2017; Nath et al., 2022; Sandulescu et al., 2015). 

However, little external validity has been shown, and wearables are not yet at the point 

of being able to reliably detect when a person is having a stress response. Nonetheless, 

researchers are honing in on procedures for bridging stress detection in laboratory-based 

experiments with digital phenotyping in naturalistic environments (Egger et al., 2020). With 

continued research, we may be able to identify stress responses with relative accuracy. This 

section applies to researchers who are attempting to develop and validate processes and 

algorithms for identifying stress responses, as well as researchers who expect to use these 

processes in their own once validated.

Regardless of the device’s accuracy for estimating physiological processes, it is important 

to note that not all physiological data limitations and potential sources of error derive from 

the device itself; an additional hurdle arises with the ability to interpret the data accurately. 

Researchers using wearables to assess stress responses must ask questions such as: Is the 
device detecting a psychological stress response (e.g., as opposed to a stress response 
during exercise)? Oftentimes, the focal physiological signals themselves do not provide this 

information, and it is necessary to use additional metrics provided via the wearable. For 

example, broadly speaking, we can use an accelerometer and gyroscope—features common 

to most wearables—to determine when a person is moving and, therefore, when a stress 

response is occurring in response to exercise (i.e., a physiological stressor). Many wearables 

now also have the capability to track temperature changes, enabling researchers to evaluate 

if heightened autonomic activity (e.g., higher heart rate, lower HRV, more EDA responses) 

may be due to illness.

If we can be reasonably certain that the stress response is not a result of experiencing a 

physiological stressor, we must then consider the type of psychological stress response. 

Observational stress research is limited in differentiating types of psychological stress 

responses. Stressors, and the responses humans have, occur on a spectrum of affectively 

positive (exciting) and negative (dangerous); challenging, with positive outcomes, and 

threatening, with potentially harmful outcomes; adaptive (necessary, acute) and maladaptive 

(unnecessary, chronic). Although distinct in their psychological and behavioral processes 

and outcomes, as well as chronic health implications, acute physiological responses 

observed via current wearable technology may appear indistinguishable. Researchers must 

therefore establish processes for asking questions such as: Is it a positive or negative 
stress response? Is the stress response acute, with a relatively fast return to baseline (i.e., 
recovery)? Because of these limitations in terms of what we can interpret from physiological 

data alone, it is preferable to use behavioral and survey data captured within an app 

alongside the physiological data for a fuller picture.

As mentioned above, some apps connected to wearables include the option for a daily 

journal entry or survey that has the capacity to ask questions about perceived stress, 

anxiety, depressive mood, and other cognitive and affective responses. These surveys can 
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also capture additional behavioral data like potential coping behaviors (e.g., alcohol use), 

which can provide insight into the effects of the stress response on physiology and potential 

longer-term health and well-being via behavior, in addition to health behaviors discerned by 

the wearable automatically, such as sleep quality. In many cases, apps that accompany the 

wearable do not have the capability or flexibility to add customized survey items; in those 

cases, many researchers opt for linking surveys using separate software or apps.

If the goal is to detect and understand stress responses in the moment, wearables and their 

associated apps can prompt participants to answer a few short questions following a detected 

stress response to confirm the validity of the physiological signal, ascertain the type of 

stressor, and gather information about emotions and cognitions. Importantly, the prompt 

should be generated shortly after the stress response (e.g., within five minutes) to get the 

most accurate data (Weber et al., 2022). It is also helpful if the user has the ability to log 

exposure to stressors or stress response via the wearable or its related app. For example, 

WHOOP can ask users to log “High Stress Work” as an activity with a start and end time. 

However, this is not a common feature among wearables, and it may behoove researchers 

to examine whether a particular wearable offers this feature or a potential workaround (e.g., 

logging an exercise as “Other”) that will enable researchers to collect these data if it would 

be beneficial for the study.

Finally, it is important to keep in mind that stress responses are highly variable, and that not 

all stress responses can be estimated using the same parameters. Prior research has found 

that variability in stress response patterns—including the extent to which the autonomic 

nervous system and hypothalamic–pituitary–adrenal (HPA) axis is activated, which then 

affect immune system response and recovery—is attributable in part to situational 

characteristics of the stressor as well as individual appraisal of those characteristics (Schlotz, 

2013). For example, some research has found that whereas stressors requiring cognitive 

and physical effort often elicit autonomic responses, stressors involving social evaluative 

threat frequently trigger increased HPA-axis activity (Dickerson and Kemeny, 2004). As 

several sweat-based cortisol monitoring prototypes are being developed, it is also becoming 

apparent that noninvasive, wearable-based cortisol sensing may also soon be possible 

(Samson and Koh, 2020; Torrente-Rodríguez et al., 2020; Wang et al., 2022). For now, 

though, researchers might consider combining wearable data with salivary cortisol to better 

understand and contextualize stress responses.

Indeed, a study examining within-person differences in stress system reactivity across four 

physical, cognitive, and social-evaluative tasks found evidence for distinct stress response 

patterns depending on the type of stressor (Skoluda et al., 2015). Heightened autonomic 

activity was found across all stressors compared to rest, although the response intensity 

differed; for example, heart rate increased the most in response to the exercise task 

(Ergometer), followed by responses to the social evaluative (Trier Social Stress Test) and 

cognitive (Stroop) tasks, which were similar to one another, and no significant response 

to the temperature stressor (Cold Pressor Task). However, HPA axis activity measured via 

cortisol showed distinctly higher responses to social evaluation than to the exercise and 

temperature stressors, and no significant response to the cognitive stressor (Skoluda et al., 

2015).
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Further, studies have found differences in the extent to which individuals exhibit autonomic 

versus cortisol responses to stress. For example, heart rate and cortisol responses to stressors 

are not always correlated (e.g., Bönke et al., 2019), and studies have found that although 

a stressor may elicit similar autonomic responses across participants, only a portion of the 

participants (e.g., 60%) experience a cortisol response (Schwabe et al., 2008). In fact, a 

great deal of variability in cortisol stress responding exists, with a significant proportion of 

individuals being classified as “cortisol non-responders” (Miller et al., 2013). We see these 

differences in cortisol reactivity even when exposed to the Trier Social Stress Test, widely 

known as the most reliable way to induce cortisol responses in study participants (Allen 

et al., 2017). Although it is often not possible to assess all potential stress responses, it is 

important to remain cognizant of the potential for differences across physiological stress 

systems and refrain from assuming that responses in one system reflect activation of all 

stress systems and processes.

4. Key considerations when choosing a wearable for research use

Wearable devices differ in their features, accuracy, data types, sampling rate, user 

experience, pricing model, and cost. Below, we provide 10 key considerations to keep in 

mind when choosing a wearable device to measure digital biomarkers. (Also shown in Table 

2.) They are:

1. The first question to consider is: Is the metric of interest validated? For example, 

you may ask the question: Is HRV a reliable indicator of psychological stress? 

This may require conducting literature reviews and weighing the evidence of 

various metrics in the particular context and population of interest. Although 

outside of the scope of this paper, in-depth reviews on these topics would be very 

helpful, and we recommend conducting future studies and reviews that focus on 

verifying the validity of wearable-derived metrics for various constructs.

2. Second, is the device validated for that metric? For example, if you are interested 

in working with the Oura ring, has HRV assessed via the Oura ring been 

validated against the gold standard (e.g., ECG)? When appropriate, (e.g., for 

SpO2 measurement,) you may even ask whether the device’s metric has been 

FDA-approved. If the device has not been validated for that metric, are features 

of the device at least similar to other products that have been validated? For 

example, you may consider that EDA devices used in laboratory studies use 

finger- and palm-based monitoring systems because they are better able to 

detect sweat than on the wrist. Logically, then, it would follow that finger-worn 

wearables such as rings may provide more reliable data devices than wrist-worn 

wearables.

3. Third, how equitable is the device, especially for your metric and population 

of interest? Has the device been validated across diverse samples? Has your 

metric of interest been validated in a sample that is representative of your target 

population using this device? If data are scarce, consider how the accuracy of 

wearables with similar technology have fared in those populations. In addition, 
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be sure to consider the accuracy of the technology (e.g., the lights used for PPG) 

as well as any algorithms the company uses to improve accuracy.

4. Fourth, does the metric sampling interval match what is needed for the research 

question? For example, although Apple Watch provides a relatively accurate 

heart rate, its heart rate and HRV sampling rate differs depending on the activity; 

it samples heart rate every 5 or 6 s and its accuracy outperforms many other 

wearables in terms of accurate heart rate measurement during exercise, especially 

for activities like resistance training (Støve and Hansen, 2022). As such, the 

Apple Watch may be a fitting option for assessing heart rate during exercise or 

other activities that can be assessed with the exercise function. However, it would 

be a poor choice for a study aimed at estimating HRV during sleep, as it only 

measures HRV once every hour. As such, it may collect the data during relatively 

random sleep stages which result in wildly different HRV scores and impractical 

information when averaged for a nightly HRV score. Conversely, the Oura ring 

assesses HRV every five minutes throughout the night. A similar consideration is 

the extent to which companies are willing to publicize information on aspects of 

their wearables, such as about details and algorithms they deem proprietary, and 

especially if the information has the potential to be harmful to sales (e.g., study 

results that do not support the wearable’s validity).

5. Fifth, how will participants interact with data? Consider questions like: Do you 

want participants to be able to see their data, or might seeing their data change 

their behavior in ways that could alter the results of the study? If you do not 

wish participants to see their data throughout the study, are you able to collect 

and store the data outside of an app with which the participant must interact? 

If you would like to use a separate app to collect the data, does the company 

have an open API that will allow you to sync the data with the other app? 

Does the app have the capability to request survey responses—for example, 

using modified journal entries—from participants on topics that are central to the 

researcher’s aims (e.g., about affective responses and cognitions throughout the 

day, behaviors engaged in)?

6. Sixth, what data will you receive and how will you receive the data, particularly 

if you are using the company’s app? What indices will you receive? Do you need 

raw, unfiltered data (e.g., every HRV data point throughout each night)? If so, 

will the company provide that to you, and do you have the analytic capabilities 

to work with unfiltered data? Or will you receive summaries (e.g., average 

HRV score for each night)? If receiving summarized data, how are the summary 

scores calculated and are they adequate for answering your research question? 

Similarly, missing data and identifying non-wear time as well as erroneous 

data points will be important considerations, along with whether the company 

will clean data or if you, the researcher, will be responsible for data cleaning. 

As a general rule, whenever possible, authors’ rationale for making decisions, 

and the code and/or tools used to calculate scores, should be included in the 

supplementary materials of relevant publications to enable reproducibility and 

help promote open science.
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7. Seventh, what is the participant’s experience of the device and app? Is the device 

comfortable? How long is the battery life? Can it be charged while worn? Is the 

device waterproof or at least water resistant? Is the platform intuitive, engaging, 

and easy to use? Are the built-in surveys short and easy to answer? These 

considerations are essential for understanding participant burden and can affect 

the likelihood that your participants will wear the device often enough for data 

to be useful and provide additional survey responses via the app. Along with 

the participant’s overall experience of the device and app, digital health literacy 

and connectivity are important considerations, particularly if participants must 

own a smartphone capable of syncing wearable device data to ensure equitable 

participation opportunity and ease of use. When needed, researchers should be 

prepared to provide smartphones (e.g., on loan) with data plans included to 

participants and provide ample education about how to use the wearable and 

smartphone devices.

8. Eighth, does the wearable and app protect confidentiality and privacy to the 

extent possible? Investigators must prioritize participant confidentiality and 

privacy as with any product or tool used in research. In the United States, HIPAA 

protection does not extend to health- and location-related data collected using 

wearable technology and connected devices, and the terms and conditions of 

use by private companies are often not transparent or protective of consumers. 

Researchers must thus take steps to ensure that data derived from wearables and 

any accompanying apps are secure and HIPAA-compliant by identifying how

—and to what extent—companies safeguard their data. Relatedly, researchers 

should ensure that data collection and storage procedures comply with all 

applicable laws and regulations. They must also be aware of potential privacy 

concerns, given the vast information about health, behaviors, and potentially 

location, obtained by wearables, particularly if connected with sensitive personal 

information from survey data. Wearable devices—as with most other advanced 

technologies—can be hacked, and personal information stolen. (For in-depth 

reviews of privacy and security concerns, see Datta et al., 2018; Kapoor et al., 

2020.) Finally, researchers should ask to whom the data belong: the participant, 

the researcher, or the wearable company? Might the company share data with 

third parties or use it internally for any reason?

9. Ninth, do you have the research staff needed to train all participants in how to 

use the device and to provide technical support when needed? Research staff are 

also needed to remotely monitor data quality to ensure that participants are both 

wearing and syncing their devices, and that the wearable data are successfully 

being uploaded to the cloud, if applicable. These participant compliance checks 

are critical, especially when studying older or chronically ill participants, or 

those with many demands or limited technological knowledge. Even with 

adequate support, it is not uncommon for participants to have missing data due to 

device failures, problems with syncing, and other technical issues. Missing data 

should therefore be expected when using these tools, and researchers should be 

prepared to use appropriate statistical methods for handling missing data.
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10. Finally, the tenth consideration is the pricing model and overall cost to the 

researcher. How much does the wearable cost and does the pricing model (e.g., 

one-time price vs. monthly) match your needs and budget? Many wearable 

device companies have a one-time price that vary widely (e.g., $200-$700), 

although some companies have moved toward an alternative pricing model 

wherein the researcher leases the wearable and accompanying app on a monthly 

basis (e.g., $30/month). Further, some companies require both an upfront and 

monthly payment. Depending on the length of the study, differences in price over 

time may become a relevant factor in deciding on a wearable device. Although 

the monthly leasing model may be the best option for a single study in which 

participants wear the device for one month, purchasing the device outright may 

be appropriate for researchers who will need the devices for long periods of 

time or who expect to use the same devices for multiple studies. In addition, 

some companies that lease on a monthly basis require agreement to a minimum 

contract (e.g., a year). Central to the idea of cost is also the ability of the device 

and platform to “deploy and forget”. That is, if you have rolling participation, 

can you use the same device for multiple participants in succession? If so, how 

many sampling days are required before you have reliable data and can then 

transfer the device to a new participant?

Some information frequently needed by researchers can be found on company websites 

(e.g., cost). As wearables have become more commonly used in academic research, 

however, vendors have begun providing information about using their devices and apps 

in academically focused webinars and publicly available documents. Once researchers have 

narrowed down their options, the next step is to contact a company representative—for 

example, a sales representative or academic partnerships liaison—to describe the goals of 

the project or lab, ask any remaining questions, and, if needed, set up processes unique to the 

study, such as incorporating study-specific measures or items into the devices’ app.

5. Conclusion

In conclusion, one of the greatest strengths of PNI research—namely, its focus on the 

high-quality characterization of health-relevant biological processes—has paradoxically also 

been one of its greatest limitations, since the technologies needed to obtain high-quality 

physiological data historically required in-person study visits. As a result, PNI researchers 

have not been able to continuously monitor health-relevant processes as people go about 

their daily lives and experience positive and negative life events. Wearables have the 

potential to change that. If combined with remote psychological and blood microsampling 

techniques, for example, wearables can provide PNI researchers with extremely rich, multi-

level data that elucidate how psychological, physiological, immunological processes change 

in response to daily naturalistic experiences. Such continuous monitoring can also supply 

the empirical data needed to guide just-in-time adaptive interventions aimed at intervening 

before pre-clinical and clinical disease processes take hold or to aid treatment. If calls for 

proper data collection and processing standards are heeded (Nelson et al., 2020), wearables 

have the potential to revolutionize what is possible in PNI and health research.
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Table 2

10 key considerations when choosing a wearable for research use.

1. Is the metric of interest validated?

2. Is the device validated for that metric?

3. How equitable is the device, especially for your metric and population of interest?

4. Does the metric sampling interval match what is needed for the research question?

5. How will participants interact with the data?

6. What data will you receive and how?

7. What is the participant’s experience of the device and app?

8. Does the wearable and app protect confidentiality and privacy to the extent possible?

9. Do you have the research staff needed for training participants and providing technical support?

10. Does the cost and pricing model of the wearable match your needs and budget?
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