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Typically developing (TD) individuals can readily orient attention according to others’ eye-gaze direction, 
an ability known as social attention, which involves both innate and acquired components. To distinguish 
between these two components, we used a critical flicker fusion technique to render gaze cues invisible 
to participants, thereby largely reducing influences from consciously acquired strategies. Results revealed 
that both visible and invisible gaze cues could trigger attentional orienting in TD adults (aged 20 
to 30 years) and children (aged 6 to 12 years). Intriguingly, only the ability to involuntarily respond to 
invisible gaze cues was negatively correlated with autistic traits among all TD participants. This ability was 
substantially impaired in adults with autism spectrum disorder (ASD) and in children with high autistic traits. 
No such association or reduction was observed with visible gaze cues. These findings provide compelling 
evidence for the functional demarcation of conscious and unconscious gaze-triggered attentional orienting 
that emerges early in life and develops into adulthood, shedding new light on the differentiation of the innate 
and acquired aspects of social attention. Moreover, they contribute to a comprehensive understanding of 
social endophenotypes of ASD.

Introduction

In social interaction, eye gaze provides a wealth of information 
about an individual’s focus of attention, mental state, implicit 
intention, etc. [1,2]. Extensive evidence suggests that observing 
a directional eye gaze can trigger a shift of attention toward the 
gazed-at location [3–6]. This ability, also known as social atten-
tion [7] or joint attention [8], emerges early in life and is fun-
damental to the development of more complex social abilities 
[9], including language [4,5] and theory of mind [10,11].

Despite the theoretical and practical importance of gaze-
triggered social attention, its nature remains elusive. It has been 
proposed that there might exist a quick eye direction detector 
[3] or an innate social module [12] that detects eye-like stimuli 
in the environment and orients attention accordingly. Evidence 
supporting this view has found that gaze-triggered social attention 

is reflexive [13,14], independent of consciousness [15,16], and 
heritable [17]. Moreover, various nonhuman animals, such as 
apes [18], monkeys [19], wolves (and dogs) [20,21], and birds 
[22,23], exhibit a similar social attention ability. The accumulat-
ing evidence suggests that this ability may be “hard-wired” in 
the vertebrate brain, similar to the predisposition to attend to 
face and biological motion [24].

On the other hand, social attention can also be shaped by 
learned social strategies developed through repeated exposure 
to gaze direction and its association with “interesting sights” 
[25]. In line with this, some studies show that responding to 
eye gaze in infancy is influenced by social experience [26,27]. 
Furthermore, social attention in adulthood resembles endog-
enous attention as it persists over a relatively long interval [28] 
and can be modulated by multiple social factors [29]. It has 
therefore been proposed that the emergence and development 
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of the gaze-triggered social attention might arise from the 
mutual contributions of the innate social module [3,12] and 
the reinforcement learning through social experience [30,31] 
or perceptual association [32]. Indeed, recent studies have 
demonstrated that social attention triggered by gaze cues not 
only is supported by innate and genetically inherited mecha-
nisms tuned to social processing [17,33] but also heavily relies 
on learned and general attentional mechanisms shared by non-
social processing (e.g., arrow cues). However, it is difficult 
to dissociate the respective contributions of the innate and 
acquired components to gaze-triggered attentional orienting 
using a gaze-cueing paradigm.

This difficulty also poses an obstacle to understanding the 
impairments of social attention skills in autism spectrum dis-
order (ASD), a heritable disorder characterized by qualitative 
deficits in social interaction [34]. Despite evident clinical find-
ings of impaired social attention skills in people diagnosed with 
ASD [8,35], studies adopting the typical gaze-cueing paradigm 
often observed undistinguished attentional orienting effects or 
gaze-following behaviors between autistic individuals and typi-
cally developing (TD) individuals [36–38]. It has been postulated 
that people with ASD may achieve comparable performance in 
traditional social attention tasks through nonsocial strategies 
[39], such as by responding to the physical features of the stimuli 
(e.g., eye movement) or by treating gaze as a learned nonsocial 
symbol (e.g., an arrow). These observations lead to the conjec-
ture that the gaze-cueing paradigm might not be sensitive 
enough to precisely pinpoint the locus of the impaired social 
attention ability in ASD [40,41].

To address these issues, the present study aims to isolate the 
innate and involuntary component of gaze-triggered social atten-
tion through an unconscious paradigm. Accumulating evidence 
suggests that face and gaze stimuli rendered invisible through 
unconscious paradigms either are insufficient to evoke cortical 
responses or evoke weaker responses than visible stimuli, while 
they can evoke equal or even stronger responses in subcortical 
structures [9,42,43]. These subcortical structures involve evolu-
tionarily conserved nuclei, such as the amygdala, superior col-
liculus, and pulvinar, which also contribute to innate attentional 
bias about biologically important social information [44,45]. In 
contrast, cortical structures supporting social attention generally 
contribute more to the experience-based processing of face infor-
mation [46,47] and top-down regulation of attention [48–50]. 
Therefore, unconscious paradigms were proposed as an effective 
way to minimize the information transmission through cortical 
pathways while retaining the subcortical contribution [51,52].

We adopted a technique referred to as “critical flicker fusion” 
(CFF) to render the gaze direction “invisible” (or unperceivable 
to consciousness) and minimize the influence of consciously 
acquired strategies. In this technique, two oppositely colored 
stimuli were alternately presented at a temporal frequency above 
the flicker fusion threshold (~25 Hz) [53–55] so that they would 
fuse into one uniform color. Despite the perceptual sensation of 
color fusion, color opponent cells at early stages of the visual 
pathway from retinal to visual cortices can still respond to flicker 
exceeding the perceptual fusion threshold [56–58]. Functional 
magnetic resonance imaging studies on humans and macaques 
found that CFF stimuli elicit stronger responses than stable col-
ors in the visual cortex [59,60] but not in frontoparietal cortical 
areas [61], due to the limited temporal resolution of higher corti-
cal areas [62]. This technique was widely used in previous 
research on unconscious visual processing [59,63–65].

Moreover, the CFF technique provides several advantages 
over the traditional masking method in manipulating partici-
pants’ conscious awareness of the stimuli. First, it allows the 
visible and invisible stimuli to be presented to both eyes for 
exactly the same duration. More importantly, it does not involve 
any additional mask or noise stimulus that might substantially 
distract the attention of individuals with ASD or high autistic 
traits [66,67]. Hence, it offers a suitable means to explore the 
attentional orienting in both TD and ASD participants.

In the current study, we combined the CFF technique with 
a gaze-cueing paradigm, where subjects were required to detect 
a target that appeared randomly on either side of a schematic 
face (Fig. 1). The pupils of the schematic face, which presented 
in positions shifted to the left or right to constitute gaze direc-
tions, were rendered invisible through the CFF method. The 
gaze-cueing effect (GCE), with faster responses to targets that 
were congruent with the gaze direction compared to incongru-
ent targets, was adopted as a behavioral index of whether sub-
jects followed the gaze cues.

First, we investigated whether such invisible gaze cues could 
trigger substantial attentional orienting in TD adults (experi-
ment 1a) and whether a similar effect could be observed 
with invisible nonsocial arrow cues (experiment 1b). Then, 
we explored whether the unconscious gaze-triggered social 
attention ability was impaired in adults diagnosed with ASD 
(experiment 2). Furthermore, we generalized the effects in chil-
dren aged between 6 and 12 years (experiment 3) and further 
verified the association between the unconscious gaze-triggered 
attentional orienting and autistic traits. Last, we examined and 
compared the social attention effect induced by visible gaze cues 
with that induced by invisible gaze cues in TD and ASD adults 
and children (experiments 4, 5, and 6). Based on these empirical 
findings, we can extend previous findings and more compre-
hensively delineate the nature of the unconscious and conscious 
gaze-triggered social attention as well as their respective rela-
tionship with autistic traits and ASD.

Results
We first verified that the participants were completely unaware 
of the invisible cues. During the unconscious sessions, all the 
included participants reported that they saw nothing within the 
eye areas in the context of the schematic face during the main 
task. Moreover, the participant’s performance in localizing the 
invisible cues in the forced-choice task did not significantly 
deviate from chance level at both individual (binomial test, Ps > 
0.05) and group levels [experiment 1a: mean = 49.75%, SD = 
4.82%, t(34) = −0.31, P = 0.761, Cohen’s d = −0.05; experi-
ment 1b: mean = 50.67%, SD = 5.11%, t(29) = 0.71, P = 0.481, 
Cohen’s d = 0.13; experiment 2: mean = 51.92%, SD = 4.91%, 
t(12) = 1.41, P = 0.183, Cohen’s d = 0.39; experiment 3: mean = 
51.25%, SD = 6.28%, t(33) = 1.16, P = 0.254, Cohen’s d = 0.20]. 
The results of both subjective and objective awareness check 
tasks indicated that the participants could not detect the exis-
tence of the invisible cues and were therefore unaware of the 
cue direction.

Unconscious gaze-triggered social attention in  
TD adults
In experiment 1a, we probed the attentional effect induced by 
invisible gaze cues and manipulated the orientation of the con-
textual schematic face (upright versus inverted) to examine 
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whether the observed cueing effect is indeed induced by the 
perceived gaze direction rather than the low-level visual prop-
erties, such as the physical position of the cues. Based on previ-
ous findings, the inverted face preserved the low-level visual 
properties of the upright face but with its integrated social 
processing disrupted [68]. To determine the time course of the 
unconscious social attention, we set 4 different time intervals 
(100, 300, 600, and 1,000 ms) used in previous studies [14] as 
stimulus onset asynchrony (SOA) conditions. The GCE induced 
by visible gaze cues emerged as early as 200 ms and could 
extend up to 800 ms, a time course considered one of the special 
characteristics of social attention [69]. A three-way analysis of 
variance (ANOVA) (face orientation × cue congruency × SOA) on 
mean reaction time (RT) revealed no significant main effect of 
face orientation [F(1,34) = 1.45, P = 0.237, η2

p = 0.04] or cue 
congruency [F(1,34) = 0.37, P = 0.550, η2

p = 0.01], but a sig-
nificant two-way interaction of face orientation × cue congruency 
[F(1,34) = 4.63, P = 0.039*, η2

p = 0.12] and a three-way interaction 
[F(3,102) = 2.84, P = 0.042*, η2

p = 0.08]. No other interactions 
reached significance (all Fs < 2.0, Ps > 0.100).

To clarify how the face orientation affected the unconscious 
gaze-induced attentional effects across different SOAs, we further 
conducted the two-way ANOVAs for the upright and inverted 
face conditions, respectively. As shown in Fig. 2A, we found a 

significant interaction of cue congruency × SOA in the upright 
face condition [F(3,102) = 3.03, P = 0.033*, η2

p = 0.08]. Simple 
effect analysis revealed that the cueing effect was present at 600 ms 
[474 ms versus 486 ms; F(1,34) = 11.89, PSidak = 0.002*, η2

p = 
0.26], suggesting that this attentional orienting emerged at a 
relatively longer SOA. In contrast, there was no significant main 
effect or interaction in the inverted face condition (all Fs < 2.3, 
Ps > 0.100). Consistent with previous findings [15], these results 
demonstrated that invisible gaze cues could trigger unconscious 
attentional orienting. The modulation effect of the face orienta-
tion further suggests that this involuntary attentional orienting 
essentially relies on the biosocial context of the gaze cues rather 
than the mere positional shifts of the invisible eyes that were 
present in both the upright and inverted face conditions.

In experiment 1b, we investigated the potential attentional 
effects of arrow cues rendered invisible through the CFF tech-
nique within a similar schematic face (see Fig. S1). Previous 
research has demonstrated a similarity between the atten-
tional effects induced by gaze cues and arrow cues [70–72]. 
Particularly, when presented as schematic faces, gaze cues pro-
duce behavioral effects that are nearly indistinguishable from 
those generated by arrow cues in TD individuals [29]. This 
similarity has led many studies to utilize arrow cues as control 
stimuli to examine the biological specificity of gaze-triggered 
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Fig. 1. Illustration of stimuli and procedure for all experiments. During the experiments, participants were presented with an upright or inverted schematic face on the screen 
for a duration that varied across trials. They were instructed to maintain their gaze on the central cross positioned between the eyes of the face. Subsequently, the pupils within 
the eyes appeared, indicating a gaze direction either toward the left or right. In the invisible condition (experiments 1, 2, and 3), the pupils were represented by two anti-phased 
red-and-green sinusoidal grating discs that alternated at frequencies of 30 Hz. In the visible condition (experiments 4, 5, and 6), the pupils were depicted as two constant 
gray patches. Following a variable interval, a target stimulus (a tilted line or colored ball) randomly appeared on either the left or right side of the face. Participants were given 
instructions to respond as quickly and accurately as possible by pressing corresponding keys to indicate the tilted direction (for adults) or the location (for children) of the target. 
Please note that the color and size of the stimuli depicted in the figure are for demonstration purposes only and may differ from the actual stimuli used in the experiments.
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attentional orienting (e.g., [73–76]). However, different from 
the invisible gaze cues, the invisible arrow cues did not reveal 
any significant attentional effects (see Supplementary Results). 
These findings suggest that the attentional effect induced by 
the unconscious gaze cue may be specific to the biosocial con-
text and contingent upon the distinctive morphology of the 
eyes [77].

In addition, all the experiments showed a significant main 
effect of SOA (Fs > 4.00, Ps < 0.050) on RT, reflecting a poten-
tial preparation effect [78] that was not related to the focus of 
the present study.

No evidence of unconscious gaze-triggered social 
attention in adults with ASD
Experiment 1 demonstrated that the invisible schematic gaze 
cues could induce a prominent social attention effect in TD 
adults at the SOA of 600 ms. To determine if the ability to 
involuntarily respond to invisible gaze cues is intact in ASD, 

we recruited autistic adults and analyzed the group differences 
in the unconscious GCE. Since the GCE was only found under 
the upright condition in experiment 1, we only conducted the 
upright condition in the ASD group to improve the efficiency. 
A two-way ANOVA (cue congruency × SOA) found that neither 
the main effect of cue congruency nor its interaction with SOA 
was significant (Fs < 2.3, Ps > 0.100), suggesting that invisible 
gaze cues failed to trigger an attentional shift in the ASD group 
(Fig. 2B).

Considering that the unconscious GCE in TD adults was 
only evident at the SOA of 600 ms, we focused our analysis 
specifically on the group difference at this SOA. First, we found 
that this unconscious GCE was significantly stronger in the TD 
group compared to that in the ASD group (Mann–Whitny test, 
U = 118, P = 0.010*, effect size = 0.48). Given the extensive 
evidence supporting the notion that ASD exists on a spectrum, 
we subsequently divided the TD group into 2 subgroups based 
on high and low levels of autistic traits. Our objective was to 
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Fig. 2. Unconscious GCE and its relationship with autistic traits and ASD. (A) When the schematic face was upright (left plane), the invisible gaze cues effectively induced a 
cueing effect at the 600-ms SOA level (~12 ms). However, this effect disappeared when the schematic face was presented upside-down (right plane). (B) The unconscious 
GCE did not emerge in autistic adults. (C) The children with low autistic traits (LAQ) exhibited a significant cueing effect at the SOA of 600 ms, while the children with high 
autistic traits (HAQ) did not show this effect. (D) The bars show the unconscious GCEs of different groups at the SOA of 600 ms in both adults and children. (E) The scatterplots 
demonstrate the correlations of the unconscious GCE at the SOA of 600 ms with AQ scores in TD children (represented by dark diamond) and TD adults (represented by light 
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Error bars represent SEM. *P < 0.05, corrected for multiple comparisons.
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investigate whether the effect of unconscious social attention 
varies across the spectrum, encompassing different levels of 
autistic traits ranging from the general population to clinical 
patients. The interaction of cue congruency and participant 
group was significant [F(2,45) = 3.90, P = 0.027*, η2

p = 0.15], 
with the cueing effect only present in the low AQ group [F(1,45) 
= 8.39, PSidak = 0.006*, η2

p = 0.16]. As shown in Fig. 2D (left 
panel), the unconscious GCE of the low AQ group was signifi-
cantly stronger than that of the ASD group (PSidak = 0.028*), 
while there was no significant difference between the high AQ 
and ASD groups (PSidak = 0.135). Similar results were obtained 
when we selected an equal number of TD participants, matched 
for gender and age with the ASD participants, and performed 
the same analysis (see the Supplementary Materials for details). 
Consistent with previous studies [40,41], these results confirm 
that autistic people exhibit diminished unconscious gaze-
triggered social attention, even when the gaze cues were pre-
sented without any salient mask to interrupt their attention. 
Additionally, although not statistically significant, there was a 
tendency for the unconscious GCEs to decrease in the high AQ 
group relative to the low AQ group in general TD adults.

No evidence of unconscious gaze-triggered social 
attention in TD children with high autistic traits
The existing literature has consistently emphasized the explora-
tion of how ASD impacts social cognitive development during 
critical periods, wherein experience exerts a strong influence 
on brain development [79,80]. To gain deeper insights into the 
origins of unconscious gaze-triggered social attention, experi-
ment 3 examined its correlation with autistic traits in children 
who are currently in the critical period of developing social 
skills through experiential learning [81]. It is worth noting that 
childhood is also a period with a higher incidence of various 
neurological disorders [82]. In order to make the task more 
suitable for children, we replaced the discrimination task with 
a localization task and utilized only two SOAs of 200 and 600 ms. 
Additionally, all child participants were divided into two groups 
based on their levels of autistic traits.

A mixed-design ANOVA (cue congruency × SOA × partici-
pant group) found a significant three-way interaction [F(1,32) = 
5.29, P = 0.028*, η2

p = 0.14], indicating that the gaze-triggered 
attentional effect in children varied across participant group 
and SOA (Fig. 2C). Separate ANOVAs conducted for each SOA 
condition found that the interaction of cue congruency × group 
was present at the SOA of 600 ms [F(1,32) = 8.72, P = 0.006*, 
η2

p = 0.21], but not at 200 ms [F(1,32) = 1.59, P = 0.216, η2
p = 

0.05]. Further simple effect analysis on the 600-ms SOA condi-
tion revealed a significant attentional effect in the low AQ group 
[F(1,32) = 5.21, PSidak = 0.029*, η2

p = 0.14], but not in the high 
AQ group [F(1,32) = 3.58, PSidak = 0.067, η2

p = 0.10]. The uni-
variate ANOVA on normalized GCE yielded the same pattern 
of results (Fig. 2D, right panel). These findings suggest that TD 
children with low autistic traits possess the unconscious gaze-
triggered social attention ability, but this ability is diminished 
in children with high autistic traits. Furthermore, the uncon-
scious GCE in children with low AQ emerged after 600 ms 
following the presentation of gaze cues, consistent with the 
findings in TD adults.

We then merged the data from TD child and adult partici-
pants regarding the unconscious gaze-triggered social attention 
at the SOA of 600 ms to further examine the relationship 
between such attentional effect and autistic traits. Results 

revealed a significant negative correlation [r(69) = −0.28, P = 
0.018*]. These findings suggest that TD individuals with higher 
autistic traits exhibit weaker unconscious gaze-triggered social 
attention, which aligns with the theory of the continuum dis-
tribution of the autism spectrum [83]. Moreover, the cor-
relation coefficients in the children and adults did not differ 
significantly from each other (Fig. 2E; −0.55 versus −0.27; z = 
−1.39, P = 0.165), indicating that the impact of autistic traits 
on unconscious social attention ability is relatively stable from 
the childhood to the adulthood.

Conscious gaze-triggered social attention in 
children and adults with high autistic traits or ASD
We further examined whether the associations between the 
unconscious GCE and autistic traits were preserved when the 
gaze cues were consciously perceived by the participants. As 
shown in Fig. 3A, the main effect of cue congruency was 
significant in the TD adults [479 ms versus 485 ms, F(1,33) = 
8.45, P = 0.006**, η2

p = 0.20], and no interaction reached 
significance (all Fs < 2.3, Ps > 0.050). These results suggest 
that the visible gaze cues induced an attentional shift as 
observed in previous studies [69], and this effect is less sus-
ceptible to face inversion and SOA. In the ASD group, the 
main effect of cue congruency did not reach statistical signifi-
cance. However, the P value suggests a marginal effect, indi-
cating potential evidence of a GCE [Fig. 3B; 525 ms versus 
532 ms, F(1,11) = 4.57, P = 0.056, η2

p = 0.29]. Furthermore, 
there were no significant differences in conscious GCE across 
the groups (Fs < 2.0, Ps > 0.100; Fig. 3D, left panel, illustrates 
that the GCE collapsed across the SOAs of 300 and 600 ms).

For TD children (Fig. 3C), visible gaze cues triggered a sig-
nificant attentional orienting effect at the SOA of 200 ms 
[F(1,30) = 33.85, P < 0.000***, η2

p = 0.53] but not at 600 ms 
[cue congruency × SOA: F(1,30) = 20.63, P < 0.000***, η2

p = 
0.41], and there were no differences on all the GCEs between 
the low AQ and high AQ groups (Fs < 2.0, Ps > 0.100; Fig. 3D, 
right panel, illustrates the GCE at the SOA of 200 ms). Consistent 
with previous studies [84], these results suggest that visible gaze 
cues can trigger attentional orienting. In contrast to observa-
tions of the unconscious GCE, the conscious gaze-triggered 
social attention ability remains relatively intact in both children 
and adults with high autistic traits or ASD.

Finally, the correlation analysis found no significant correla-
tions between the conscious GCE and AQ scores in TD par-
ticipants (Ps > 0.100). The difference between the correlation 
coefficients in the invisible and visible gaze conditions was 
significant at the SOA of 600 ms (Fig. 3E; z = 2.61, P = 0.009**). 
Taken together, this pattern of results suggests that the uncon-
scious and the conscious gaze-triggered social attention abilities 
appear to be functionally dissociated, highlighting the critical 
role of unconscious processing in distinguishing the innate, 
involuntary component and the acquired, voluntary compo-
nent of social attention.

Discussion
Previous studies suggest that social attention contains both the 
innate, involuntary component and the acquired, voluntary 
component [47,85], with the former more closely associated 
with autistic traits [17]. In the current study, we combined the 
CFF technique with the classical gaze-cueing paradigm to 
probe the unconscious gaze-triggered social attention. This 
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approach could largely isolate the automatic processing of gaze 
cues from the influence of consciously acquired strategies. 
Indeed, the results revealed that both the unconsciously and 
consciously perceived gaze cues elicited significant attentional 
effects in TD participants. However, it was only the uncon-
scious gaze-triggered attentional effect that was substantially 
impaired in children with high autistic traits and adults with 
ASD and significantly associated with individual autistic traits 
among TD adults and children. These findings suggest that the 
unconscious and conscious gaze-triggered attentional orienting 
can distinguish the innate, involuntary component and the 
acquired, voluntary component of social attention.

Three key factors have been proposed to contribute to the 
observed attentional effect triggered by gaze, including innate 
social modules, postnatal learning through social experience, 
and physical properties of gaze cues. First, substantial evidence 
supports the existence of an innate gaze-triggered social atten-
tion module in the brain. This module detects the presence of 
eyes and subsequently orients attention accordingly, without 

voluntary control [3]. Studies across various animal species 
have demonstrated their ability to follow gaze directions, a 
behavior considered a fundamental social attention skill [86], 
which appears to have emerged early in evolutionary history 
and remains conserved across species [87]. In humans, research 
on newborns and infants has revealed their capacity to dis-
criminate [12,88] and respond to eye gaze [89], even when 
the eyes were presented unconsciously [90]. Furthermore, 
the impairment of these innate modules has been suggested to 
contribute to ASD [10]. Specifically, individuals diagnosed with 
ASD, who inherently exhibit reduced sensitivity to eye gaze 
[91], may encounter difficulties in extracting the intentions of 
others from gaze cues. However, providing direct evidence to 
support this assumption is challenging due to the susceptibility 
of innate modules to the influence of the other two factors.

Growing evidence supports the idea that social experiences 
and learning strategies can shape gaze-triggered attention per-
formance. For instance, children raised by blind parents exhibit 
poorer gaze-following abilities due to their limited exposure to 
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the association between the gaze direction and social intention 
[27]. Conversely, gaze-triggered attentional orienting can be 
acquired or improved through extensive training for both TD 
children [92] and children with ASD [93]. Moreover, the con-
trast between the iris and the sclera of the averted gaze is par-
ticularly salient in human gaze cues. This lower-level physical 
feature can also elicit attention shifts, even when the facial 
context is disrupted [94].

Based on comprehensive evidence, we propose a theoretical 
hypothesis to elucidate the respective contributions of these fac-
tors to the unconscious and conscious gaze-triggered social 
attention found in our study. We speculate that unconscious 
GCE is mainly supported by innate social modules. First, it oper-
ates automatically and unconsciously, but is contingent upon the 
biosocial context of the schematic face (upright versus inverted), 
effectively ruling out alternative explanations for its occurrence, 
such as motor preparation [95,96] or low-level physical shifts 
[97]. Second, it becomes evident approximately 600 ms after the 
cue onset. This temporal pattern aligns with the time course of 
social attention [69,98], suggesting that it may be driven by the 
distinct social significance conveyed through the eyes [1]. Most 
importantly, our findings reveal that this effect is impaired in 
individuals with ASD and shows significantly negative associa-
tions with autistic traits in both TD adults and children. 
Considering the high heritability of ASD [99,100] and autistic 
traits [101–103], the stable association between this effect and 
autistic severity at different ages suggests that it is more likely to 
be supported by the innate abilities. The characteristics of the 
unconscious gaze-triggered attentional effect imply a high 
degree of social specificity, meeting most of the criteria for the 
modularity of cognitive processing [104].

In contrast, the conscious gaze-triggered attentional effect 
found in the present and previous studies exhibits more com-
plex properties. It occurs earlier (e.g., it is reliably observed at 
the SOA of 200 ms) and extends over the SOA of 600 ms in 
adults [69]. Consistent with previous studies, it is not consis-
tently found diminished in adults with ASD [36–38], nor does 
it demonstrate a clear association with individual autistic traits 
[105,106]. We speculate that this may be attributed to the influ-
ences of other two factors in social attention. On the one hand, 
the contrast between the iris and the sclera of the averted gaze 
is more salient in conscious gaze cues than in unconscious gaze 
cues. On the other hand, according to previous studies, con-
scious gaze direction can activate broader attention neural 
network in the ASD group [40], and its degree is positively 
correlated with AQ scores in TD individuals [107]. These find-
ings indicated that conscious processing of gaze cues could 
partially relieve and even compensate for the impairment of 
the innate modules observed in autistic people.

Previous neuroimaging studies have demonstrated that gaze-
triggered social attention involves a widely distributed brain 
network, including the temporal, frontoparietal areas, and brain 
regions encoding emotional and socio-cognitive information 
[108]. The dual pathway model posits that the brain network 
can be divided into two distinct pathways: one fast, ancestral, 
subcortical pathway, and one slow, developmental, and cortical 
pathway [109]. Consistent with this model, our results also sug-
gest that the conscious and unconscious parts of this social 
attention are to some extent dissociable from each other. This 
dissociation can shed light on the discrepancies in empirical 
findings and contribute to a comprehensive understanding of 
the neural underpinnings of ASD.

The literature on consciousness generally agrees that uncon-
scious processes are primarily localized within the local or sub-
cortical neural modules [110]. Based on this consensus, it is 
reasonable to speculate that the unconscious gaze-triggered 
attention predominantly relies on the ancestral, subcortical 
pathway. Indeed, one study has found that the unconscious 
gaze-triggered attention involves subcortical areas such as the 
amygdala [111]. However, the activation of these areas appears 
to be diminished in individuals with ASD [40,112]. These find-
ings suggest that the subcortical module underpinning the 
unconscious gaze processing may play a crucial role in reveal-
ing the social deficits observed in ASD. However, further sup-
port from brain imaging research is needed to confirm this 
inference. It is important to note that the present study only 
explored the unconscious social attention ability in two age 
groups, which limits our comprehensive understanding of its 
developmental trajectory throughout life. Therefore, systematic 
longitudinal studies are encouraged in the future to provide a 
complete and precise picture.

In conclusion, the present study reveals a clear distinction 
between the unconscious and conscious gaze-triggered atten-
tional effects. The unconscious effect, associated with autistic 
severity, aligns more closely with the functioning of innate 
social modules. The conscious effect, on the other side, can be 
influenced by factors such as physical salience and postnatal 
learning. This differentiation of social attention within the realm 
of consciousness offers a fresh perspective and approach to 
discerning between the innate and acquired aspects of social 
attention. Moreover, we propose that incorporating the uncon-
scious technique with social cognitive paradigms can provide 
an effective research approach for investigating the social endo-
phenotypes of ASD. This approach has the potential to unveil 
biomarkers, improve the clinical diagnosis of ASD, and ulti-
mately advance our comprehensive understanding of the socio-
cognitive disorders.

Methods
The research protocols for all experiments were approved by 
the institutional review board of the Institute of Psychology, 
Chinese Academy of Sciences. We determined the sample size 
of each experiment before data collection. All the adult par-
ticipants and the parents of the child participants provided 
written informed consent before the experiments and received 
payment according to the duration of the tasks (50 yuan per 
hour for adults and 100 yuan per hour for children). The par-
ticipants (and their parents) were naïve to the purpose of the 
experiments and were debriefed after the completion of all 
the experiments and questionnaires. All participants had a 
normal or corrected-to-normal vision and were not red-green 
color blind.

We adopted the Chinese version of the Autism Spectrum 
Quotient (AQ) to estimate the autistic-like traits in TD partici-
pants. The AQ contains 50 items and consists of 5 domains, 
including social skills, communication, imagination, attention 
to detail, and attention switching. Individuals with higher AQ 
scores generally possess more autistic traits, which has been 
demonstrated to be reliable and consistent among Chinese 
samples at different ages [113,114]. Adult participants and the 
parents of child participants completed the AQ through an 
online questionnaire platform. We scored their responses using 
a binary system, where a mild or strong endorsement of autistic 
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traits is scored as 1 and the opposite response is scored as 0, 
leading to a maximum score of 50.

Experiment 1
Participants
A priori analysis using G-Power [115] based on a within- 
subject ANOVA design (r = 0.5) suggested that n = 36 partici-
pants would afford a power of 0.95 for the main effect of cue 
congruency (congruent versus incongruent) with a medium 
effect size (η2

p = 0.09 [40]). Experiment 1a initially recruited 
40 college students. Five of them were excluded, either for not 
completing the questionnaire or for failing to pass the aware-
ness check task (for detailed information, please refer to the 
awareness check section). Thus, 35 participants (mean age = 
23.03, SD = 2.70, 19 female) with mean AQ scores of 20.31 (SD = 
8.86, range = 6 to 41) remained for statistical analysis. For 
experiment 1b, we recruited another 30 participants with com-
parable age, gender, and AQ scores (mean age = 23.60, SD = 
3.11, 18 females; mean AQ score = 20.30, SD = 6.92, range = 
10 to 38). None of them was diagnosed with ASD or other 
neurodevelopmental disorders.

Experimental design
Experiments 1a and 1b adopted a within-subject design, with cue 
congruency (congruent versus incongruent), face orientation 
(upright versus inverted), and SOA (100, 300, 600, or 1,000 ms) 
being the three independent variables. The cue congruency con-
cerned whether the target appeared on the same (congruent) or 
the opposite (incongruent) side as indicated by the cue.

Apparatus and stimuli
Stimuli were presented on a 23.8-inch (1,980 × 1,080 at 60 Hz) 
LCD monitor using Psychtoolbox extensions [116] for MATLAB 
(MathWorks Inc., Natick, MA). Participants performed the 
experimental tasks in a dim-lit room with their heads held in 
place by a chin rest positioned 57 cm away from the screen. 
The screen background was yellow (RGB [134, 151, 0]) at a 
luminance of 34.14 cd/m2. A white central cross (0.5° × 0.5°) 
served as the fixation.

As shown in Fig. 1, the schematic faces (8.6° × 8.6°) were 
gray (RGB [180, 180, 180]) and consisted of two circular eyes 
(2° × 2°), a square nose (0.4° × 0.4°), and a straight-line mouth 
(0.18° × 2.5°). In the upright condition, the geometric center 
of the face, the nose, and the mouth was placed downward from 
the screen center by 1°, 1.2°, and 2.8°, respectively. The inverted 
schematic faces were obtained by mirror-flipping the stimuli 
vertically with the fixation as the center. In both the upright 
and inverted conditions, the eyes were positioned horizontally 
to the left and right sides of the central fixation cross, each at 
an eccentricity of 2.27°, with the pupils rendered invisible using 
the CFF technique. Specifically, two anti-phased red-and-green 
sinusoidal grating discs (1° × 1°, spatial frequency = 4 c/°, mean 
intensity = 134 for the red channel and = 151 for the green 
channel) were alternately presented at a frequency of 30 Hz. 
Because this frequency is beyond the critical chromatic flicker 
fusion frequency, the two discs were no longer perceived as red-
green flickers but as one fused yellow color indistinguishable 
from the background. The CFF pupil placed corresponding to 
the morphological structure of averted gaze, namely, apart from 
the center of the eyes toward left or right by 0.3°. The targets 
were two white lines (0.8° × 0.15°) tilted either +45° or −45° 
from the vertical direction.

In experiment 1b, we disrupted the facial morphology by 
removing the orbit of the eyes and the nose. Two schematic 
arrow cues, composed of 9 anti-phased red-and-green sinusoi-
dal grating discs (0.3°× 0.3°, spatial frequency = 5 c/°), were 
positioned in the region of the eyes (see Fig. S1).

Procedure
In experiment 1a, each trial began with a central fixation cross. 
After a random duration (600 to 1,000 ms), a schematic face 
was presented for a random duration of 500 to 800 ms. The 
invisible, averted pupils then appeared for 100 ms and disap-
peared, constituting a gaze toward the left or right direction. 
The face was presented before the gaze cues to reduce possible 
attention capture by the central face when it appeared [14]. After 
a variable interval following the onset of the gaze cue, the target 
appeared to the left or right side of the face (with an eccentricity 
of 6°) for 30 ms. The central cross and schematic face remained 
on the screen until participants responded. Participants were 
instructed to maintain fixation throughout the entire trial and 
attend to either side of the face covertly. Upon the target’s 
appearance, they were instructed to discriminate the orientation 
of the target (tilted +45° or −45°) and respond as quickly and 
accurately as possible by pressing the corresponding key (the 
left key for −45° and the right key for +45°).

The gaze cue was randomly directed toward the left or right 
with equal likelihood. Meanwhile, the target was presented at 
either the congruent or incongruent side of the gaze direction, 
corresponding to 50% validity. To avoid any top-down influ-
ence, we instructed the participants that the central face was 
irrelevant to the task and the target would appear at left or right 
side with equal likelihood. The upright and inverted face condi-
tions were separated into two sessions with equal trials and pre-
sented in a counterbalanced order across participants. In each 
session, participants completed a minimum of 160 trials, with 
each combination of cue congruency and SOA randomly and 
equally distributed across trials. To reduce the experimental 
duration during the COVID-19 pandemic, 15 participants com-
pleted 160 trials, while the other 25 participants completed 
192 trials. A short break was provided every 32 trials to avoid 
fatigue effect.

Before each session, about 30 practice trials were given to 
familiarize the participants with the task and strengthen their 
fixation. Additionally, we visually monitored the participants’ 
eye movements throughout the task and provided reminders 
if they did not consistently fixate on the cross. During the actual 
main tasks, all participants fixated on the cross very well and 
none required reminders. The procedure of experiment 1b 
closely mirrored that of experiment 1a.

Awareness check
Before the experiment, we measured the isoluminance of red 
and green for the CFF stimuli with the minimal flicker proce-
dure [61]. To further confirm that the flickering of the two chro-
matic gratings was truly invisible to the participants, both 
subjective and objective awareness checks were adopted. The 
participants reported whether they saw anything apart from 
the schematic face and the target after the experimental task. 
Additionally, the two-alternative forced-choice task was con-
ducted as an awareness check session. Specifically, the sche-
matic face appeared for a random duration of 500 to 800 ms, 
and a CFF cue randomly appeared in the left or right eye posi-
tion of the schematic face with equal chance. The participants 
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were informed that a stimulus would appear in one of the eye 
positions and that they had to press the left or right key to 
indicate which eye position contained the stimulus. This task 
consisted of 2 blocks comprising 40 trials in each of the upright 
and the inverted conditions and was completed both before 
and after the main experiment. Participants who reported per-
ceiving CFF stimuli or achieved accuracy levels higher than 
chance level (50%, binomial test) on the forced-choice task were 
considered to have failed to pass the awareness test.

Experiment 2
Participants
Experiment 2 focused on group differences in the unconscious 
gaze-triggered social attention. Therefore, we primarily con-
sidered the interaction of cue congruency × participant groups 
for the sample size estimation. Based on power analysis, we 
determined that a sample size of n = 12 participants in each 
group would provide a power of 0.95 for a 2 ×3 interaction with 
a medium effect size (η2 = 0.11, as reported in [40]). Thirteen 
adults diagnosed with ASD (10 female, mean age = 22.15 years; 
SD = 3.72) were recruited through partner hospitals or online 
forums. All participants provided written diagnostic materials 
from a qualified clinical facility and had normal IQ scores. We 
also ruled out other psychiatric disorders through a semistruc-
tured interview.

Experimental design
Expanding on the findings of experiment 1, experiment 2 exam-
ined the unconscious GCE in individuals with ASD, with cue 
congruency and SOA as the two independent variables. To inves-
tigate group differences in the unconscious GCE, we used a 
mixed-model design with cue congruency as a within-subject 
factor and participant group as a between-subjects factor. We 
combined the data from experiments 1 and 2 and divided the 
participants into three groups (ASD from experiment 2, low AQ 
and high AQ determined based on the median split of total AQ 
scores from experiment 1 with the median AQ score = 18.00).

Apparatus and stimuli
We used the same apparatus and stimuli as in experiment 1.

Procedure
The experimental procedure in experiment 2 was similar to 
that in experiment 1, except that the ASD group only completed 
the upright session of the gaze-cueing task and the forced-
choice awareness check.

Experiment 3
Participants
We recruited 36 TD children based on the effect size observed 
in our previous experiments. Two were excluded as they failed 
to pass the awareness check, leaving 34 participants for further 
analysis (20 female, mean age = 8.38, SD = 1.83, range = 6 to 
12; mean AQ score = 17.79, median AQ score = 17.50, SD = 
4.62, range = 3 to 26). They were divided into two groups with 
high and low autistic traits (median split, n = 17 for each 
group), respectively, and there were no significant differences 
in age and gender (nonparametric test, Ps > 0.1) between the 
two groups. According to the semistructured interview, all the 
children had not been diagnosed with psychiatric disorders 
and did not use any medications before the experiment.

Experimental design
Experiment 3 used a mixed-model design, with cue congruency 
and SOA as within-subject factors and participant group as a 
between-subject factor.

Apparatus and stimuli
We used the same apparatus and stimuli as in experiment 1 
except that the keyboard was replaced by two large buttons to 
make the children more comfortable to press. The target stimu-
lus was also replaced by a colored ball (2° × 2°) presented for 
300 ms (Fig. 1).

Procedure
Children completed a task of striking balls, in which they 
needed to stare at the central fixation and hit a ball as quickly 
and accurately as possible when it appeared by pressing the 
corresponding button (left button if on the left side and right 
button if on the right side). At the end of each trial, we pre-
sented a golden star in the center of the screen as feedback 
to motivate the children when they pressed the button cor-
rectly within 1 s. All children performed 96 trials and took a 
short break every 16 trials. About 10 practice trials were given 
to familiarize the children with the task. After the main exper-
iment, they completed a forced-choice awareness check with 
40 trials.

Experiments 4, 5, and 6
Participants
These experiments investigated the conscious and voluntary 
aspects of social attention with sample sizes comparable to the 
previous three experiments. We recruited 34 TD adults (17 female, 
mean age = 23.24, SD = 3.24; mean AQ score = 20.82, median 
AQ score = 21.50, SD = 8.11, range = 9 to 39), 12 ASD adults 
(8 female, mean age = 24.00, SD = 3.77), and 32 TD children 
(17 female, mean age = 8.47, SD = 1.76; mean AQ score = 
17.94, median AQ score = 18.00, SD = 4.91, range = 3 to 26). 
Among them, 6 TD adults, 11 autistic adults, and all the TD 
children participated in the unconscious experiments. They 
rest for at least 10 min between the two tasks to avoid fatigue 
effects. There was no significant difference in AQ scores 
between the TD adults in experiments 1 and 4 [t(67) = −0.25, 
P = 0.80, Cohen’s d = −0.06].

Experimental design
Experiments 4, 5, and 6 had the same experimental design as 
experiments 1a, 2, and 3, respectively.

Apparatus and stimuli
The apparatus and stimuli were almost the same as in experi-
ments 1a, 2, and 3, respectively. The only difference was that 
the invisible gaze cues were replaced with visible gaze cues 
(static gray discs with 1° × 1° and RGB [180, 180, 180]) as 
shown in Fig. 1.

Procedure
These experiments had the same procedure as previous experi-
ments, except that there were no awareness check sessions.

Data analysis
RT was measured from the onset of the target. Only the RT of 
a correct response within 3 SDs of the mean was considered 
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for further analysis, resulting in the removal of 3.45% of the 
trials (experiment 1a: 3.24%; experiment 1b: 3.40%; experiment 
2: 5.33%; experiment 3: 3.13%; experiment 4: 2.47%; experi-
ment 5: 4.56%; experiment 6: 3.94%). The overall error rate was 
1.56% (experiment 1a: 1.63%; experiment 1b: 2.00%; experi-
ment 2: 3.21%; experiment 3: 1.11%; experiment 4: 1.10%; 
experiment 5: 2.60%; experiment 6: 0.98%), and there was no 
evidence of a speed–accuracy trade-off. Since there was no 
significant difference in the error rates between the experimen-
tal conditions and participant groups in experiments 1 to 6 
(nonparametric test, Ps > 0.05), we focused on the RTs.

We conducted ANOVA analysis on mean RTs of each par-
ticipant according to the experimental design using SPSS 
(version 26). Follow-up simple effect analyses and separate 
ANOVAs were conducted for significant interaction effects. 
Furthermore, to clarify the relationship between gaze-triggered 
attentional orienting and autistic traits, we conducted ANOVA 
and correlation analysis on the normalized GCE. The nor-
malized GCE was calculated using the difference in the mean 
RT obtained under the incongruent condition versus that 
under the congruent condition, then divided by their sum 

(GCE =
RTincong−RTcong

RTincong+RTcong
 ). We used the Fisher r-to-z transformation 

to compare the difference between the correlation coefficients.
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