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1  |  INTRODUC TION

Triple-negative breast cancer (TNBC) constitutes 15%–20% of 
breast cancer incidence, predominantly presenting as invasive 
ductal carcinoma and frequently associated with a dismal progno-
sis.1 Due to the lack of expression of oestrogen receptors, proges-
terone receptors and human epidermal growth factor receptor 2 

(HER2) in TNBC cells, they are insensitive to endocrine therapy and 
HER2-targeted treatment. Currently, the standard treatment for 
the majority of TNBC patients involves neoadjuvant chemother-
apy, including agents such as paclitaxel.2 Although neoadjuvant 
chemotherapy is effective for some TNBC patients, approximately 
50% of them develop drug resistance, resulting in reduced survival 
rates.3 This resistance may stem from various factors, including 
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Abstract
Triple-negative breast cancer (TNBC) is often considered one of the most aggressive 
subtypes of breast cancer, characterized by a high recurrence rate and low overall 
survival (OS). It is notorious for posing challenges related to drug resistance. While 
there has been progress in TNBC research, the mechanisms underlying chemother-
apy resistance in TNBC remain largely elusive. We collect single-cell RNA sequencing 
(scRNA-seq) data from five TNBC patients susceptible to chemotherapy and five re-
sistant cases. Comprehensive analyses involving copy number variation (CNV), pseu-
dotime trajectory, cell–cell interactions, pseudospace analysis, as well as transcription 
factor and functional enrichment are conducted specifically on macrophages and ma-
lignant cells. Furthermore, we performed validation experiments on clinical samples 
using multiplex immunofluorescence. We identified a subset of SPP1+ macrophages 
that secrete SPP1 signals interacting with CD44 on malignant cell surfaces, poten-
tially activating the PDE3B pathway within malignant cells via the integrin pathway, 
leading to chemotherapy resistance. The abnormally enhanced SPP1 signal between 
macrophages and malignant cells may serve as a factor promoting chemotherapy re-
sistance in TNBC patients. Therefore, SPP1+ macrophages could potentially serve as 
a therapeutic target to reduce chemotherapy resistance.

K E Y W O R D S
cell communication, chemotherapy resistance, signalling pathway, single-cell RNA sequencing, 
triple-negative breast cancer

https://doi.org/10.1111/jcmm.18525
www.wileyonlinelibrary.com/journal/jcmm
https://orcid.org/0009-0007-7166-9157
mailto:
http://creativecommons.org/licenses/by/4.0/
mailto:wenjiaguo@xjmu.edu.cn


2 of 13  |     LIU et al.

tumour cell heterogeneity, alterations in DNA repair mechanisms, 
the presence of tumour stem cells and the influence of the tumour 
microenvironment.4

Presently, the study of drug resistance often encompasses var-
ious aspects, including Bulk-RNA, metabolomics and proteomics, 
such as YTHDF1 facilitates S-phase entry, DNA replication and 
DNA damage repair,5 senescent neutrophils-derived exosomal 
piRNA-17560 enhances the expression of fat mass and obesity-
associated protein (FTO),6 expression of a SUMOylation-deficient 
mutant MORC2 or administration of SUMO inhibitor,7 reduc-
tion of miR-1275,8 GATA3 promotes cell viability by decreasing 
ferroptosis-related gene CYB5R2 expression.9 However, these 
conventional methods fail to accurately capture individual differ-
ences between cells and struggle to effectively detect and analyse 
crucial cellular subpopulations. scRNA-seq technology enables 
the presentation of the expression profile of all genes in the en-
tire genome at the single-cell level. This assists in identifying and 
characterizing specific cell subgroups with distinct biological ef-
fects and supports the inference of intercellular communication.10 
Therefore, we will conduct an in-depth analysis based on scRNA-
seq data.

The tumour microenvironment (TME) is comprised of tumour 
cells, tumour stromal cells, endothelial cells, immune cells and the 
non-cellular components of the extracellular matrix.11 Tumour 
cells, as the central component of the TME, intricately regulate the 
functions of both cellular and non-cellular components through 
complex signalling networks, manipulating non-malignant cells for 
their benefit. The repercussions of this crosstalk are reflected in the 
insufficient response of tumours to treatment, potentially leading 
to multidrug resistance (MDR).12 The source of intercellular com-
munication includes a complex network composed of cytokines, 
chemokines, growth factors, inflammatory mediators and matrix re-
modelling enzymes. However, other intriguing mechanisms of inter-
action are emerging.13 Research has shown that features associated 
with ferroptosis and pyroptosis are closely linked to chemotherapy 
efficacy.14 Mediating the interaction between macrophages and tu-
mour cells can induce chemotherapy resistance in TNBC,15 disrupt-
ing or interfering with malignant signal transduction in intercellular 
communication is a strategy to address chemotherapy resistance.16 
Considering the current state of research and the crucial role of in-
tercellular communication signals in tumours, our study focuses on 
the role of cell signalling pathways in chemotherapy resistance in 
triple-negative breast cancer.

In this study, we analysed scRNA-seq data from 5 TNBC 
chemotherapy-susceptible samples and 5 TNBC chemotherapy-
resistant samples. Intercellular communication analysis revealed an 
aberrantly active SPP1 signal in the resistant group, and transcrip-
tion factor analysis identified CEBPB as the upstream regulator of 
SPP1. Additionally, we identified CD44+ malignant cell clusters, 
which, upon receiving the SPP1 signal, may activate the intracellular 
PDE3B pathway through FYN-mediated integrin signalling, leading 
to chemotherapy resistance. The flowchart and graphical abstract of 
the research in this paper are shown in Figures S1 and S2.

2  |  MATERIAL S AND METHODS

2.1  |  Data acquisition

The scRNA-seq data utilized in this study were sourced from the 
GEO database (GSE169246). We obtained scRNA-seq data from 10 
patients diagnosed with TNBC who underwent paclitaxel chemo-
therapy. Among these 10 patients, we classified patients who ex-
hibited a partial response (PR) according to RECIST 1.1 criteria as 
sensitive, while those showing stable disease (SD) and progressive 
disease (PD) were defined as the resistant group.17 The outcome re-
vealed five patients in the sensitive group and five patients in the 
resistant group. Detailed clinical information for all 10 patients can 
be found in Table S1.

The TNBC samples from both chemosensitive and chemore-
sistant cases were obtained from the Affiliated Tumor Hospital of 
Xinjiang Medical University. All six enrolled patients underwent neo-
adjuvant chemotherapy followed by surgical treatment. This study 
was approved by the Ethics Committee of the Affiliated Tumor 
Hospital of Xinjiang Medical University, and informed consent was 
obtained from all patients. Clinical information of the TNBC patients 
used in this study is provided in Table S2.

2.2  |  Clustering dimensionality reduction of 
scRNA-seq data

We utilized the “Seurat” R package to process the single-cell data.18 
For quality control, we excluded cells expressing fewer than 50 
genes or with fewer than 300 expressed genes. Subsequently, 
cells with 200–2500 RNA features were retained. We employed 
the NormalizeData function in Seurat to obtain normalised counts. 
Specifically, the global scaling normalisation method “LogNormalize” 
normalized the gene expression measurements of each cell by multi-
plying the total expression by a scaling factor (default is 10,000). We 
then used the FindVariableFeatures function to identify the major-
ity of variable genes by setting nfeatures to 2000. The ScaleData 
function was applied to transform all genes, ensuring that the mean 
expression of each gene across all cells was 0 and the variance was 
1. Next, principal component analysis (PCA) was performed using 
the first 20 principal components (PCs), and clustering was executed 
using the FindClusters function with a resolution of 0.8. Finally, the 
RunUMAP function was employed to perform uniform manifold ap-
proximation and projection (UMAP) analysis, followed by annotation 
using classical marker genes for different cell types.

2.3  |  Cell–Cell communication analysis

We utilized the R software package CellChat (version 1.6.1) (https://​
github.​com/​sqjin/​​CellChat) to investigate intercellular communication 
and identify signalling molecules involved in cell-to-cell interactions 
at the single-cell level.19 Initially, the identifyOverExpressedGenes 
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function was employed to detect overexpressed ligands or recep-
tors, followed by the computeCommunProbPathway function to 
infer communication probabilities. Finally, the netAnalysis_compute-
Centrality function was utilized to aggregate the communication 
network. Furthermore, to identify key contributors in the cell–cell 
communication network, we calculated the centrality scores for each 
component and presented the results in a heatmap format.

2.4  |  Pseudospatial analysis

We utilized the CSOmap algorithms (https://​github.​com/​lijxug/​
CSOmapR) to investigate the three-dimensional pseudospace of 
distinct cell types.20 Initially, the runExactTSNE_R function was 
employed to compute spatial information for each cell, followed by 
density value calculations using the getDensity3D function. Finally, 
we utilized the plot3D function to visualize the spatial distribution of 
macrophages and malignant cells.

2.5  |  Single-cell copy number variation analysis

To identify malignant cells within the epithelial population, we as-
sessed copy number variations (CNVs) in each cell across different 
chromosomal regions using the R package InferCNV.21 Using B and 
T cells as immune cell references, we calculated CNV levels within 
the epithelial cell clusters. We employed the CreateInfercnvObject 
function with a cutoff parameter set to 0.1, followed by calculation 
of CNV values for each cell using the infercnv::run function. Finally, 
we compared the differences in CNV values between different clus-
ters using boxplots.

2.6  |  Single-cell trajectory analysis

In this study, we utilized the R package Monocle (version 2.28.0) 
(http://​cole-​trapn​ell-​lab.​github.​io/​monoc​le-​relea​se/​docs/​) for 
trajectory analysis of cell states to uncover the evolution of cell 
states.22 Initially, the newCellDataSet function in Monocle was 
employed to convert the Seurat object into a Monocle object. 
Subsequently, setOrderingFilter and estimateSizeFactors func-
tions were used to construct the developmental trajectory of 
cells, alongside the reduceDimension function for dimensional-
ity reduction. Finally, the orderCells function was employed to 
arrange cells along the trajectory. All functionalities were set to 
default settings.

2.7  |  CytoTRACE analysis

We employed the R package CytoTRACE (version 0.3.3) to pre-
dict the relative differentiation status of cells.23 Initially, the Idents 

function was utilized to obtain labels for each cell, followed by 
the CytoTRACE function to assess the differentiation potential of 
distinct single-cell subpopulations. Finally, we utilized the plotCy-
toTRACE function to visualize the differentiation status of distinct 
cell clusters.

2.8  |  Pathway analysis

We performed functional enrichment analysis on the identified cen-
tral cell types using the R package ReactomeGSA (version 1.14.0) 
(https://​github.​com/​react​ome/​React​omeGSA).24 We performed 
enrichment analysis using the “analyse_sc_clusters” function and 
extracted pathway scores in different cell clusters using the “path-
ways” function. Finally, we visualized the results using the plot_
gsva_heatmap function.

2.9  |  Single-cell transcription factor analysis

We employed the R package SCENIC (version 1.3.1) (https://​github.​
com/​aerts​lab/​SCENIC) to infer the transcription factor regulatory 
network.25 Initially, the “scenicOptions” variable was constructed 
using the “initializeScenic” function, followed by computing the 
co-expression network using the “runSCENIC” function. Finally, 
the transcription factors' area under the curve (AUC) values across 
various cells were obtained using the “getAUC” function. We utilized 
Cytoscape to depict the regulatory network connecting transcrip-
tion factors and their target genes.

2.10  |  Immunofluorescence staining

The levels of SPP1 and CD44 proteins were detected through mIF. 
Sections were deparaffinized, underwent antigen retrieval and 
were blocked with serum to prevent non-specific binding. Primary 
antibodies targeting the genes of interest were applied overnight 
at 4°C, followed by washing and incubation with fluorescently la-
belled secondary antibodies for 1–2 h at room temperature. Nuclear 
staining was performed with appropriate dyes if necessary. Sections 
were then mounted and visualized using a fluorescence/confocal 
microscope.

2.11  |  Statistical analysis

This study conducted all statistical analyses using R (version 4.3.1). 
Gene expression differences were assessed using t-tests and 
Wilcoxon rank-sum tests. The Pearson correlation coefficient is em-
ployed to assess the relationship between two variables. Statistical 
significance was represented by two-tailed p-values, where p < 0.05 
indicated a statistically significant difference.

https://github.com/lijxug/CSOmapR
https://github.com/lijxug/CSOmapR
http://cole-trapnell-lab.github.io/monocle-release/docs/
https://github.com/reactome/ReactomeGSA
https://github.com/aertslab/SCENIC
https://github.com/aertslab/SCENIC
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3  |  RESULTS

3.1  |  Establishment of the single-cell landscape in 
TNBC

To construct the single-cell landscape of TNBC, we performed a com-
prehensive analysis of the scRNA-seq data from 5 chemotherapy-
susceptible and 5 chemotherapy-resistant patients retrieved from 
the GEO database (GSE169246). Following stringent quality control 

(QC), we identified 7585 high-quality cells and 18,089 genes. Cell 
type annotation using marker genes26 confirmed six distinct cell 
types: macrophage, endothelial, NK cell, B cell, T cell and epithe-
lial (Figure 1A). Subsequently, cells were segregated into suscepti-
ble (n = 3863) and resistant (n = 3722) groups, with roughly equal 
cell numbers in both groups (Figure 1B). Bubble plots illustrated the 
expression profiles of marker genes across different cell clusters: 
macrophage (CD68, CD163 and CD14), endothelial (PECAM1), NK 
cell (NCR1, GNLY and NKG7), B cell (CD19, CD79A), T cell (CD8A, 

F I G U R E  1 UMAP dimensionality reduction and annotation. (A) UMAP plots delineating six cell types. (B) UMAP plots indicating 
Susceptible and Resistance. (C) Bubble chart annotating cell types. (D) Quantity proportions of distinct cell types. (E) Heatmap showcasing 
the expression of marker genes across the six cell types.
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TNFRSF9) and epithelial (LEF1, CAMK4, DGK4) (Figure 1C). A rose 
plot intuitively depicted the relative proportions of different cell 
types, with B cells being the most abundant (n = 2876), followed by T 
cells (n = 2317), epithelial cells (n = 1058), NK cells (n = 733), endothe-
lial cells (n = 370) and macrophages (n = 231) (Figure 1D). Following 
this, we identified marker genes for each cell type and represented 
their expression levels using heatmaps (Figure 1E).

3.2  |  Identification of malignant cell clusters

After extracting 1058 epithelial cells, we performed UMP dimen-
sionality reduction analysis and reclustered the epithelial cells into 
8 clusters (Figure 2A). Breast cancer cells originate from epithe-
lial cells, and to investigate which clusters represent malignant 
cells, we conducted CNV analysis on these 8 clusters. High levels 
of CNVs are closely associated with cancer development, allow-
ing the identification of potentially malignant cells based on their 
CNV.27 Utilizing a reference set comprising 5193 cells, including 
T cells and B cells, we noted a substantial increase in CNV lev-
els in clusters 0, 2 and 4 compared to other clusters. Therefore, 
clusters 0, 2 and 4 were annotated as clusters of malignant cells 
(Figure  2B,C). Subsequently, we constructed the differentiation 
trajectory of epithelial cell clusters composed of cellfate1 and 
cellfate2. Notably, cellfate1 reflected the process of cells transi-
tioning from sensitivity to resistance, while cellfate2 represented 
the ongoing sensitivity of cells (Figure 2D). Continuing, we investi-
gated the positioning of identified malignant cell clusters along the 
differentiation trajectory and found a significant enrichment of 
clusters 0, 2 and 4 at the endpoint of cell fate 1. (Figure 2E). Using 
the CytoTRACE algorithm, each cell obtained a score ranging 
from 0 to 1.28 After conducting CytoTRACE analysis on the eight 
clusters of epithelial cells, the results demonstrated that clusters 
0,2 and 4 were at the ends of the trajectory (Figure  2F). These 
findings suggest that clusters 0, 2 and 4 represent malignant cells 
associated with breast cancer, exhibiting distinct resistance char-
acteristics during cellular differentiation, with cluster 2 potentially 
representing the subset of malignant cells with the highest degree 
of differentiation.

3.3  |  Identifying transcription factors in SPP1+ 
macrophage clusters

We performed UMP dimensionality reduction analysis on extracted 
macrophages, clustering them into 5 distinct clusters (Figure 3A). 
Research indicates that SPP1 influences the polarisation state 
of macrophages,29 and the interaction between SPP1 and mac-
rophages may play a crucial role in the chemotherapy response of 
tumours.30 Hence, we proceeded with the comparative analysis of 
SPP1 expression across the five clusters. The results revealed a sig-
nificantly higher expression level of SPP1 in cluster 0 compared to 
the other clusters (Figure 3B). Based on this, we defined cluster 0 

as SPP1+ macrophage cluster, while the remaining clusters were de-
fined as SPP1− macrophage clusters. To investigate the regulatory 
mechanisms of SPP1, we employed the SCENIC R package (v1.3.1) 
for transcription factors (TFs) identification in macrophages.31 We 
identified a total of 142 transcription factors, with particular focus 
on 17 highly transcriptionally active factors significantly enriched 
in the SPP1+ macrophage cluster (Figure  3D). Further analysis of 
the gene regulatory network revealed CEBPB as a key regulatory 
factor for SPP1 (Figure 3E). Subsequently, we quantified the activ-
ity of the transcription factor CEBPB using AUCell and found that 
the area under the curve (AUC) of CEBPB was significantly higher in 
SPP1+ macrophage clusters compared to SPP1− macrophage clus-
ters (Figure  3F–I). Furthermore, compared to SPP1− macrophage 
clusters, the expression level of CEBPB was higher in SPP1+ mac-
rophages (Figure 3J). Finally, correlation analysis demonstrated a 
moderate correlation between CEBPB and SPP1 expression levels 
(r = 0.3, p < 0.001) (Figure  3K). After trajectory analysis of mac-
rophages, we observed distinct distribution patterns between two 
clusters formed by cellfate1 and cellfate2. SPP1+ macrophages were 
predominantly enriched in cellfate2, whereas SPP1− macrophages 
were mainly enriched in cellfate1 (Figure 3L,M). KEGG analysis of 
marker genes of SPP1+ macrophages revealed enrichment of path-
ways such as HIF-132 and IL-17,33 which have been associated with 
chemoresistance, according to relevant studies (Figure 3N). In sum-
mary, these analyses emphasize the crucial role of SPP1 in mac-
rophages, particularly through regulation by CEBPB.

3.4  |  Characterization of SPP1-CD44 by the 
ligand receptor

To identify active signals in the resistant group, we employed the 
CellChat R package to build a cell–cell communication network in-
volving eight cell types, including SPP1+ macrophages and malignant 
cell clusters (Figure 4A). The results indicate that the intensities of 
the SPP1 and TGF-β signals are higher in the resistant group com-
pared to the sensitive group, with SPP1 showing a significantly 
higher signal intensity than TGF-β. Therefore, we chose to con-
duct further analysis on the SPP1 signal (Figure 4B). Furthermore, 
through the calculation of network centrality measures for each 
cell group, we determined that SPP1+ macrophages serve as the 
principal signal senders, while malignant cells act as the receivers 
in this cell communication network (Figure 4C). Using the CSOmap 
algorithm based on the cellular expression profiles of SPP1+ mac-
rophages and malignant cells, we explored the three-dimensional 
pseudospace, indicating a close primary connection structure and 
mutual closure between SPP1+ macrophages and malignant cells in 
pseudospace (Figure 4D). Additionally, the cell communication net-
work in the SPP1 signalling pathway revealed a high level of signal 
intensity between SPP1+ macrophage clusters and malignant cell 
clusters (Figure 4E). In summary, these findings suggest a crucial role 
for the SPP1 signalling pathway in the resistance mechanism, poten-
tially influencing the chemotherapeutic resistance of tumour cells 
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F I G U R E  2 Identification of malignant cell clusters. (A) UMAP plots depicting Epithelial cells. (B) Heatmap displaying CNV analysis results. 
Red denotes chromosomal CNV amplifications, blue indicates CNV deletions and the intensity of colour reflects the magnitude of CNV 
variation. (C) Boxplot showing differences in CNV values among different cell subgroups. (D) Distribution of sensitive and resistant cells 
along the trajectory. (E) Pseudotime analysis showcasing cell progression, where lighter colours indicate proximity to the final cell trajectory 
stage. (F) Analysis of epithelial cell differentiation status using CytoTRACE.
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F I G U R E  3 Transcription factor analysis of macrophages. (A) UMAP plots of Macrophage. (B) Mountain plot displaying the differential 
expression of SPP1 in macrophage subtypes. (C) Expression disparity of SPP1 in SPP1+ and SPP1− clusters. (D) Heatmap showing the enrichment 
of transcription factor activity among distinct cell clusters. (E) Regulatory network of transcription factors identifying the pivotal transcription 
factor CEBPB. (F–H) Assessment of CEBPB activity using AUCell. (I) Boxplot depicting the divergence in AUC values of CEBPB between the two 
clusters. (J) Violin plot showcasing the expression variance of CEBPB across the two clusters. (K) Correlation analysis between CEBPB and SPP1. 
(L) Potential trajectory of macrophages identified two distinct cell fates. (M) Distribution of different macrophage clusters along the trajectory. 
(N) KEGG enrichment analysis of the marker genes of SPP1+ macrophages. p-Values are denoted as: *p < 0.05; **p < 0.01; ***p < 0.001.
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F I G U R E  4 Analysis of cellular communication for 8 cell types. (A) Circular plot depicting interactions among eight cell types. (B) Bar graph 
displaying differences in information flow, where dark red represents enrichment of signals containing susceptible, and cyan represents 
signals enriched in resistance. (C) Heatmap illustrating the network centrality scores of the SPP1 signalling pathway. (D) Virtual spatial 
positioning and density between SPP1+macrophage and CD44+ Malignancy. (E) Network plot illustrating cell–cell interactions within the 
SPP1 signalling pathway. (F) Bar chart depicting the ligand-receptor pairs mediating SPP1 signal transduction. (G) Bubble plot displaying the 
strength of intercellular signalling for different ligand-receptor pairs. (H) Multiplex immunofluorescence was used to detect the expression of 
CD68, SPP1, CK14 and CD44 in chemoresistant and chemosensitive samples. Scale bars: 100 μm.
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through cell–cell communication between SPP1+ macrophages and 
malignant cells.

Within the SPP1 signalling pathway, three crucial ligand–receptor 
pairs were identified: SPP1-CD44, SPP1-(ITGA4 + ITGB1) and SPP1-
(ITGA5 + ITGB1) (Figure 4F). To investigate which ligand-receptor pair 
plays a role in mediating the resistant SPP1 signal, we separately cal-
culated the communication probabilities of different ligand-receptor 
pairs between susceptible and resistant groups. The results indicated 
a markedly higher communication probability for the ligand-receptor 
pair SPP1-CD44 compared to the other two pairs (Figure 4G). As this 
ligand-receptor pair is within the SPP1 signalling pathway, its signal 
sender and receiver align with the SPP1 signalling pathway, repre-
sented by SPP1+ macrophages and malignant cells, respectively. Finally, 
in clinical samples of TNBC, we observed that the fluorescence inten-
sity of SPP1 and CD44 in chemoresistant samples was significantly 
higher than in chemosensitive samples. Moreover, SPP1-expressing 
macrophages (CD68+) and CD44-expressing malignant cells (CK14+) 
were closer together in chemotherapy-resistant samples, suggesting 
a potential interaction between these two cells (Figure  4H). These 
findings suggest that the secretion of SPP1 by SPP1+ macrophages, 

when bound to CD44 on the surface of malignant cells, influences the 
chemotherapeutic resistance of tumour cells.

3.5  |  Recognition of CD44+ malignant cell cluster 
transcription factors

In response to the previously identified CD44 receptor in cell com-
munication analysis, we further investigated its expression in ma-
lignant cells. The results revealed that in cellfate1, the transition 
from susceptible to resistant cells, the expression of CD44 gradu-
ally increased (Figure 5A). Moreover, the expression of CD44 in ma-
lignant cells was significantly higher than in normal epithelial cells 
(Figure 5B). Therefore, we defined clusters 0, 2 and 4 of malignant 
cells as CD44+ malignant cell clusters. Interestingly, in epithelial 
cells, the expression of CD44 in the resistant group was also signifi-
cantly higher than in the susceptible group (Figure 5C). Comparison 
of associations between different phenotypes using a stream plot 
indicated that the majority of CD44+ malignant cell clusters be-
longed to the resistant cells, with only a small fraction showing 

F I G U R E  5 Transcription factor analysis of malignant cell. (A) Pseudotime trajectory exhibits the dynamic expression changes of CD44. 
(B) A violin plot was employed to compare the expression difference of CD44 between CD44+malignant cells and normal epithelial cells. (C) 
A violin plot was used to compare the expression difference of CD44 between susceptible and resistant groups within epithelial cells. (D) 
Sankey diagram displays the association between the two categorized groups. (E) Heatmap illustrates the enrichment of transcription factor 
activity in the CD44+malignant. (F) Transcription factor regulatory network identifies the key transcription factor RELA. p Values were 
denoted as: *p < 0.05; **p < 0.01; ***p < 0.001.
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sensitivity (Figure 5D). These findings suggest that CD44 may influ-
ence the chemotherapeutic resistance of tumours. To gain a deeper 
understanding of the regulatory mechanisms of the CD44 signalling 
pathway, we utilized SCENIC clustering technology for the identifi-
cation of transcription factors. Among them, 21 transcription fac-
tors, including FOXO1 and ATF6, exhibited significant differences 
in the AUC values between CD44+ malignant cell clusters and nor-
mal epithelial cell clusters (Figure 5E).34 Further regulatory network 
analysis revealed that RELA's target genes included the key receptor 
CD44 of the SPP1 pathway (Figure 5F). These findings suggest that 
the transcription factor RELA influences the drug resistance of ma-
lignant cells by regulating CD44.

3.6  |  SPP1 signalling pathway triggers intracellular 
signalling in target cells

To investigate how the SPP1 signal transduces to malignant cells, lead-
ing to chemotherapy resistance, we conducted further analysis on the 
CD44+ malignant cell cluster. Integrins are membrane proteins that 
interact with extracellular matrix molecules, participating in the con-
nection between cells and the external environment.35 When integ-
rins interact with specific extracellular activating factors (such as FAK, 
SRC family kinases and ILK), they can aggregate and trigger down-
stream signalling pathways, modulating various cellular functions like 
migration, proliferation and apoptosis.36 We observed that FYN,37 a 
member of the SRC kinase family, was significantly overexpressed in 
the CD44+ malignant cell cluster compared to normal epithelial cells 
(Figure 6A–C). Subsequently, we utilized the R package ReactomeGSA 
to analyse downstream signals activated by integrin, unveiling a nota-
ble activation of the PDE3B signalling pathway was observed in the 
CD44+malignant cell cluster (Figure 6E). Consistent with CD44 and 
FYN, a key member of the PDE3B signalling pathway, PDE3B, exhib-
ited significantly higher expression in the CD44+ malignant cell cluster 
than in normal epithelial cells (Figure 6F,G). We subsequently explored 
marker genes linked to the biological behaviour of cancer cells, iden-
tifying the enrichment of eight marker genes in CD44+ malignant cell 
clusters (Figure 6H,I). These marker genes play diverse roles in can-
cer, such as promoting growth and proliferation (MYC, HIF1A, ATM), 
inhibiting apoptosis (MCL1, BIRC3, BCL2) and facilitating invasion 
(CXCR4, CD55). These results suggest that the SPP1 signal secreted 
by macrophages, upon binding to the CD44 receptor on the surface of 
CD44+ malignant cells, may induce chemotherapy resistance by acti-
vating intracellular signals such as FYN and PDE3B.

4  |  DISCUSSION

In our study, analysis of scRNA-seq data from both susceptible and 
resistant groups of breast cancer chemotherapy revealed an ab-
normally active signal, SPP1, secreted by macrophages. This signal 
forms a complex with the receptor CD44 on cancer cell surfaces, ac-
tivating the PDE3B signalling pathway through the integrin enzyme 

pathway, consequently leading to the resistance of cancer cells to 
chemotherapy drugs.

Studies have demonstrated CEBPB's involvement in chemother-
apy resistance among TNBC patients, where LINC00160 modulates 
chemoresistance by recruiting CEBPB to the TFF3 promoter, aug-
menting TFF3 expression.38 Consistent with our findings, we reveal 
CEBPB's impact on breast cancer chemoresistance through the 
SPP1 signalling pathway. In the realm of immunity, inhibiting glycol-
ysis in breast cancer patients via the CEBPB pathway impedes G-
CSF and GM-CSF production, reducing myeloid-derived suppressor 
cells (MDSCs) and enhancing anti-tumour immunity.39 Additionally, 
CEBPB regulates breast cancer cell migration and invasion through 
diverse pathways, including THBS2 suppression, the PAK4–CEBPB–
CLDN4 axis and the cAMP/AMPK/CEBPB axis.40 PDPN-positive 
CAFs could represent a novel therapeutic target for overcoming re-
sistance in HER2-positive breast cancer.41

Identifying potential therapeutic targets for triple-negative breast 
cancer is of paramount importance.42 Through cell communication 
analysis, we identified the SPP1 signal, known to predict breast cancer 
recurrence post-tamoxifen treatment. Elevated SPP1 levels correlate 
with adverse breast cancer prognosis, aligning with our prognostic 
research direction.43 Mechanistically, downregulation of miR-94444 
and miR-12745 promotes high SPP1 expression, fostering cancer pro-
gression via direct pathway induction and interaction with growth 
factor receptor pathways, activating genes conducive to cancer ad-
vancement.CD44, a non-kinase transmembrane glycoprotein, acts as 
a receptor for SPP1 in this study.46 This pairing has also been observed 
in pancreatic,47 liver cancers,48 and clear cell renal cell carcinoma.49 
Studies indicate CD44 as a shared marker for cancer stem cells in 
breast cancer, with high CD44 expression correlating with adverse 
BC prognosis,50 consistent with our findings. In doxorubicin resistance 
mechanisms, CD44 plays a role.51 Downstream, CD44 can activate 
Ras-ERKs and PI3K-AKT pathways,52 influencing cancer cell prolifer-
ation and motility. Additionally, recent studies have identified a highly 
potent small-molecule antagonist of exportin-1, which selectively 
eliminates CD44+CD24− enriched breast cancer stem-like cells.53 
FYN, a tyrosine kinase, participates in the intracellular signalling cas-
cade, facilitating the transportation of various cell surface receptors.54 
Studies indicate FYN's involvement in activating downstream path-
ways like RafERK/MAPK,55 PI3K/Akt, abnormal NF-κB signalling,56 
and JAK/STAT pathways. Moreover, FYN contributes to chemother-
apy resistance through adhesive-mediated mechanisms.

While our study results contribute new insights into the mech-
anisms of chemotherapy resistance in breast cancer, it is important 
to acknowledge certain potential limitations. Firstly, our analysis 
is based on data from public databases with a limited sample size, 
which may introduce some degree of selection bias. Furthermore, 
although we conducted preliminary validation of the functionality 
of CD44+ tumour cells, the roles of the key signal SPP1 and its 
upstream transcriptional regulatory mechanisms, as well as down-
stream signalling transduction mechanisms, lack validation through 
in vivo and in vitro experiments. Lastly, single-cell RNA sequenc-
ing data suffers from a lack of inherent cellular spatial information, 
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posing challenges in delivering comprehensive and representative 
spatial details.

In this study, we delineated the landscape of the entire tumour 
microenvironment in TNBC using scRNA-seq, identifying mac-
rophages as crucial mediators of communication with malignant 
cells. Macrophages constitute a major component of the TME, with 
distinct subsets exhibiting varied functionalities.57 MRC1+ macro-
phages facilitate tumour recurrence following chemotherapy, and 
tumour biopsy samples from cancer patients who received neoad-
juvant therapy had a much larger infiltrate of CD45+CD11b+CD14+ 

macrophages than those from patients who received only sur-
gery.58,59 Therefore, precise characterization of macrophage phe-
notypes and functions is crucial. We identified a novel subset of 
macrophages that, through secretion of SPP1, bind to CD44 on 
tumour cells, activating the PDE3B pathway via the integrin en-
zyme pathway, thereby inducing chemotherapy resistance in TNBC 
patients. Our study, akin to prior research, characterised distinct 
macrophage subpopulations, potentially aiding in the development 
of precise therapeutic strategies targeting SPP1+ macrophages to 
minimize chemotherapy resistance.

F I G U R E  6 The SPP1 signalling pathway triggers intracellular signal transduction in malignant cells. (A) UMAP plots demonstrate the 
expression of FYN across cell clusters. (B) Pseudotime trajectory exhibits the dynamic expression changes of FYN. (C) Violin plots compare the 
expression differences of FYN between CD44+malignant cells and normal epithelial cells. (D) UMAP plots display the expression of FYN across 
cell clusters. (E) Heatmaps illustrate the activated signalling pathways in different cell clusters. (F) Pseudotime trajectory depicts the dynamic 
expression changes of PDE3B. (G) Violin plots compare the expression differences of PDE3B between malignant cells and normal epithelial 
cells. (H) Heatmaps display the enrichment of marker genes associated with biological behaviours such as tumour occurrence, proliferation 
in CD44+malignant cells and normal epithelial cells. (I) Violin plots demonstrate the gene expression differences of markers associated with 
tumour biology in CD44+malignant cells and normal epithelial cells. p-Values are indicated as: *p < 0.05; **p < 0.01; ***p < 0.001.
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