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1  |  INTRODUC TION

Triple- negative breast cancer (TNBC) constitutes 15%–20% of 
breast cancer incidence, predominantly presenting as invasive 
ductal carcinoma and frequently associated with a dismal progno-
sis.1 Due to the lack of expression of oestrogen receptors, proges-
terone receptors and human epidermal growth factor receptor 2 

(HER2) in TNBC cells, they are insensitive to endocrine therapy and 
HER2- targeted treatment. Currently, the standard treatment for 
the majority of TNBC patients involves neoadjuvant chemother-
apy, including agents such as paclitaxel.2 Although neoadjuvant 
chemotherapy is effective for some TNBC patients, approximately 
50% of them develop drug resistance, resulting in reduced survival 
rates.3 This resistance may stem from various factors, including 
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Abstract
Triple- negative breast cancer (TNBC) is often considered one of the most aggressive 
subtypes	of	breast	cancer,	 characterized	by	a	high	 recurrence	 rate	and	 low	overall	
survival	 (OS).	 It	 is	notorious	for	posing	challenges	related	to	drug	resistance.	While	
there has been progress in TNBC research, the mechanisms underlying chemother-
apy	resistance	in	TNBC	remain	largely	elusive.	We	collect	single-	cell	RNA	sequencing	
(scRNA- seq) data from five TNBC patients susceptible to chemotherapy and five re-
sistant cases. Comprehensive analyses involving copy number variation (CNV), pseu-
dotime trajectory, cell–cell interactions, pseudospace analysis, as well as transcription 
factor and functional enrichment are conducted specifically on macrophages and ma-
lignant cells. Furthermore, we performed validation experiments on clinical samples 
using	multiplex	immunofluorescence.	We	identified	a	subset	of	SPP1+ macrophages 
that	secrete	SPP1	signals	 interacting	with	CD44	on	malignant	cell	 surfaces,	poten-
tially activating the PDE3B pathway within malignant cells via the integrin pathway, 
leading	to	chemotherapy	resistance.	The	abnormally	enhanced	SPP1	signal	between	
macrophages and malignant cells may serve as a factor promoting chemotherapy re-
sistance	in	TNBC	patients.	Therefore,	SPP1+ macrophages could potentially serve as 
a therapeutic target to reduce chemotherapy resistance.
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tumour cell heterogeneity, alterations in DNA repair mechanisms, 
the presence of tumour stem cells and the influence of the tumour 
microenvironment.4

Presently, the study of drug resistance often encompasses var-
ious aspects, including Bulk- RNA, metabolomics and proteomics, 
such	 as	 YTHDF1	 facilitates	 S-	phase	 entry,	 DNA	 replication	 and	
DNA damage repair,5 senescent neutrophils- derived exosomal 
piRNA-	17560	 enhances	 the	 expression	 of	 fat	mass	 and	 obesity-	
associated protein (FTO),6	expression	of	a	SUMOylation-	deficient	
mutant	 MORC2	 or	 administration	 of	 SUMO	 inhibitor,7 reduc-
tion of miR- 1275,8	 GATA3	 promotes	 cell	 viability	 by	 decreasing	
ferroptosis-	related	 gene	 CYB5R2	 expression.9 However, these 
conventional methods fail to accurately capture individual differ-
ences between cells and struggle to effectively detect and analyse 
crucial cellular subpopulations. scRNA- seq technology enables 
the presentation of the expression profile of all genes in the en-
tire genome at the single- cell level. This assists in identifying and 
characterizing	 specific	 cell	 subgroups	with	distinct	 biological	 ef-
fects and supports the inference of intercellular communication.10 
Therefore, we will conduct an in- depth analysis based on scRNA- 
seq data.

The	 tumour	 microenvironment	 (TME)	 is	 comprised	 of	 tumour	
cells, tumour stromal cells, endothelial cells, immune cells and the 
non- cellular components of the extracellular matrix.11 Tumour 
cells,	as	the	central	component	of	the	TME,	intricately	regulate	the	
functions of both cellular and non- cellular components through 
complex signalling networks, manipulating non- malignant cells for 
their benefit. The repercussions of this crosstalk are reflected in the 
insufficient response of tumours to treatment, potentially leading 
to	multidrug	 resistance	 (MDR).12 The source of intercellular com-
munication includes a complex network composed of cytokines, 
chemokines, growth factors, inflammatory mediators and matrix re-
modelling	enzymes.	However,	other	intriguing	mechanisms	of	inter-
action are emerging.13 Research has shown that features associated 
with ferroptosis and pyroptosis are closely linked to chemotherapy 
efficacy.14	Mediating	the	interaction	between	macrophages	and	tu-
mour cells can induce chemotherapy resistance in TNBC,15 disrupt-
ing or interfering with malignant signal transduction in intercellular 
communication is a strategy to address chemotherapy resistance.16 
Considering the current state of research and the crucial role of in-
tercellular communication signals in tumours, our study focuses on 
the role of cell signalling pathways in chemotherapy resistance in 
triple- negative breast cancer.

In this study, we analysed scRNA- seq data from 5 TNBC 
chemotherapy- susceptible samples and 5 TNBC chemotherapy- 
resistant samples. Intercellular communication analysis revealed an 
aberrantly	active	SPP1	signal	 in	the	resistant	group,	and	transcrip-
tion factor analysis identified CEBPB as the upstream regulator of 
SPP1.	 Additionally,	 we	 identified	 CD44+ malignant cell clusters, 
which,	upon	receiving	the	SPP1	signal,	may	activate	the	intracellular	
PDE3B	pathway	through	FYN-	mediated	 integrin	signalling,	 leading	
to chemotherapy resistance. The flowchart and graphical abstract of 
the research in this paper are shown in Figures S1 and S2.

2  |  MATERIAL S AND METHODS

2.1  |  Data acquisition

The	 scRNA-	seq	 data	 utilized	 in	 this	 study	were	 sourced	 from	 the	
GEO	database	(GSE169246).	We	obtained	scRNA-	seq	data	from	10	
patients diagnosed with TNBC who underwent paclitaxel chemo-
therapy. Among these 10 patients, we classified patients who ex-
hibited	 a	partial	 response	 (PR)	 according	 to	RECIST	1.1	 criteria	 as	
sensitive,	while	those	showing	stable	disease	 (SD)	and	progressive	
disease (PD) were defined as the resistant group.17 The outcome re-
vealed five patients in the sensitive group and five patients in the 
resistant group. Detailed clinical information for all 10 patients can 
be found in Table S1.

The TNBC samples from both chemosensitive and chemore-
sistant cases were obtained from the Affiliated Tumor Hospital of 
Xinjiang	Medical	University.	All	six	enrolled	patients	underwent	neo-
adjuvant chemotherapy followed by surgical treatment. This study 
was approved by the Ethics Committee of the Affiliated Tumor 
Hospital	of	Xinjiang	Medical	University,	and	informed	consent	was	
obtained from all patients. Clinical information of the TNBC patients 
used in this study is provided in Table S2.

2.2  |  Clustering dimensionality reduction of 
scRNA- seq data

We	utilized	the	“Seurat”	R	package	to	process	the	single-	cell	data.18 
For quality control, we excluded cells expressing fewer than 50 
genes	 or	 with	 fewer	 than	 300	 expressed	 genes.	 Subsequently,	
cells	 with	 200–2500	 RNA	 features	 were	 retained.	 We	 employed	
the	NormalizeData	function	in	Seurat	to	obtain	normalised	counts.	
Specifically,	the	global	scaling	normalisation	method	“LogNormalize”	
normalized	the	gene	expression	measurements	of	each	cell	by	multi-
plying	the	total	expression	by	a	scaling	factor	(default	is	10,000).	We	
then used the FindVariableFeatures function to identify the major-
ity	of	variable	genes	by	 setting	nfeatures	 to	2000.	The	ScaleData	
function was applied to transform all genes, ensuring that the mean 
expression of each gene across all cells was 0 and the variance was 
1. Next, principal component analysis (PCA) was performed using 
the first 20 principal components (PCs), and clustering was executed 
using the FindClusters function with a resolution of 0.8. Finally, the 
RunUMAP	function	was	employed	to	perform	uniform	manifold	ap-
proximation	and	projection	(UMAP)	analysis,	followed	by	annotation	
using classical marker genes for different cell types.

2.3  |  Cell–Cell communication analysis

We	utilized	the	R	software	package	CellChat	(version	1.6.1)	(https:// 
github. com/ sqjin/  CellChat) to investigate intercellular communication 
and identify signalling molecules involved in cell- to- cell interactions 
at the single- cell level.19	 Initially,	 the	 identifyOverExpressedGenes	

https://github.com/sqjin/CellChat
https://github.com/sqjin/CellChat
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function was employed to detect overexpressed ligands or recep-
tors, followed by the computeCommunProbPathway function to 
infer communication probabilities. Finally, the netAnalysis_compute-
Centrality	 function	 was	 utilized	 to	 aggregate	 the	 communication	
network. Furthermore, to identify key contributors in the cell–cell 
communication network, we calculated the centrality scores for each 
component and presented the results in a heatmap format.

2.4  |  Pseudospatial analysis

We	 utilized	 the	 CSOmap	 algorithms	 (https:// github. com/ lijxug/ 
CSOmapR) to investigate the three- dimensional pseudospace of 
distinct cell types.20	 Initially,	 the	 runExactTSNE_R	 function	 was	
employed to compute spatial information for each cell, followed by 
density value calculations using the getDensity3D function. Finally, 
we	utilized	the	plot3D	function	to	visualize	the	spatial	distribution	of	
macrophages and malignant cells.

2.5  |  Single- cell copy number variation analysis

To identify malignant cells within the epithelial population, we as-
sessed copy number variations (CNVs) in each cell across different 
chromosomal regions using the R package InferCNV.21	Using	B	and	
T cells as immune cell references, we calculated CNV levels within 
the	epithelial	cell	clusters.	We	employed	the	CreateInfercnvObject	
function with a cutoff parameter set to 0.1, followed by calculation 
of CNV values for each cell using the infercnv::run function. Finally, 
we compared the differences in CNV values between different clus-
ters using boxplots.

2.6  |  Single- cell trajectory analysis

In	this	study,	we	utilized	the	R	package	Monocle	(version	2.28.0)	
(http:// cole-  trapn ell-  lab. github. io/ monoc le-  relea se/ docs/ ) for 
trajectory analysis of cell states to uncover the evolution of cell 
states.22	 Initially,	 the	 newCellDataSet	 function	 in	 Monocle	 was	
employed	 to	 convert	 the	 Seurat	 object	 into	 a	 Monocle	 object.	
Subsequently,	 setOrderingFilter	 and	 estimateSizeFactors	 func-
tions were used to construct the developmental trajectory of 
cells, alongside the reduceDimension function for dimensional-
ity reduction. Finally, the orderCells function was employed to 
arrange cells along the trajectory. All functionalities were set to 
default settings.

2.7  |  CytoTRACE analysis

We	 employed	 the	 R	 package	 CytoTRACE	 (version	 0.3.3)	 to	 pre-
dict the relative differentiation status of cells.23 Initially, the Idents 

function	 was	 utilized	 to	 obtain	 labels	 for	 each	 cell,	 followed	 by	
the CytoTRACE function to assess the differentiation potential of 
distinct	 single-	cell	 subpopulations.	 Finally,	 we	 utilized	 the	 plotCy-
toTRACE	function	to	visualize	the	differentiation	status	of	distinct	
cell clusters.

2.8  |  Pathway analysis

We	performed	functional	enrichment	analysis	on	the	identified	cen-
tral	 cell	 types	 using	 the	R	 package	ReactomeGSA	 (version	1.14.0)	
(https://	github.	com/	react	ome/	React	omeGSA).24	 We	 performed	
enrichment	 analysis	 using	 the	 “analyse_sc_clusters”	 function	 and	
extracted	pathway	scores	in	different	cell	clusters	using	the	“path-
ways”	 function.	 Finally,	 we	 visualized	 the	 results	 using	 the	 plot_
gsva_heatmap function.

2.9  |  Single- cell transcription factor analysis

We	employed	the	R	package	SCENIC	(version	1.3.1)	(https:// github. 
com/	aerts	lab/	SCENIC) to infer the transcription factor regulatory 
network.25	 Initially,	 the	 “scenicOptions”	 variable	 was	 constructed	
using	 the	 “initializeScenic”	 function,	 followed	 by	 computing	 the	
co-	expression	 network	 using	 the	 “runSCENIC”	 function.	 Finally,	
the	transcription	factors'	area	under	the	curve	(AUC)	values	across	
various	cells	were	obtained	using	the	“getAUC”	function.	We	utilized	
Cytoscape to depict the regulatory network connecting transcrip-
tion factors and their target genes.

2.10  |  Immunofluorescence staining

The	levels	of	SPP1	and	CD44	proteins	were	detected	through	mIF.	
Sections	 were	 deparaffinized,	 underwent	 antigen	 retrieval	 and	
were blocked with serum to prevent non- specific binding. Primary 
antibodies targeting the genes of interest were applied overnight 
at 4°C, followed by washing and incubation with fluorescently la-
belled	secondary	antibodies	for	1–2 h	at	room	temperature.	Nuclear	
staining	was	performed	with	appropriate	dyes	if	necessary.	Sections	
were	 then	 mounted	 and	 visualized	 using	 a	 fluorescence/confocal	
microscope.

2.11  |  Statistical analysis

This study conducted all statistical analyses using R (version 4.3.1). 
Gene	 expression	 differences	 were	 assessed	 using	 t- tests and 
Wilcoxon	rank-	sum	tests.	The	Pearson	correlation	coefficient	is	em-
ployed	to	assess	the	relationship	between	two	variables.	Statistical	
significance was represented by two- tailed p- values, where p < 0.05	
indicated a statistically significant difference.

https://github.com/lijxug/CSOmapR
https://github.com/lijxug/CSOmapR
http://cole-trapnell-lab.github.io/monocle-release/docs/
https://github.com/reactome/ReactomeGSA
https://github.com/aertslab/SCENIC
https://github.com/aertslab/SCENIC
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3  |  RESULTS

3.1  |  Establishment of the single- cell landscape in 
TNBC

To construct the single- cell landscape of TNBC, we performed a com-
prehensive analysis of the scRNA- seq data from 5 chemotherapy- 
susceptible and 5 chemotherapy- resistant patients retrieved from 
the	GEO	database	(GSE169246).	Following	stringent	quality	control	

(QC), we identified 7585 high- quality cells and 18,089 genes. Cell 
type annotation using marker genes26 confirmed six distinct cell 
types: macrophage, endothelial, NK cell, B cell, T cell and epithe-
lial (Figure 1A).	Subsequently,	cells	were	segregated	 into	suscepti-
ble (n = 3863)	 and	 resistant	 (n = 3722)	 groups,	 with	 roughly	 equal	
cell numbers in both groups (Figure 1B). Bubble plots illustrated the 
expression profiles of marker genes across different cell clusters: 
macrophage	 (CD68,	CD163	and	CD14),	endothelial	 (PECAM1),	NK	
cell	 (NCR1,	GNLY	and	NKG7),	B	cell	 (CD19,	CD79A),	T	cell	 (CD8A,	

F I G U R E  1 UMAP	dimensionality	reduction	and	annotation.	(A)	UMAP	plots	delineating	six	cell	types.	(B)	UMAP	plots	indicating	
Susceptible	and	Resistance.	(C)	Bubble	chart	annotating	cell	types.	(D)	Quantity	proportions	of	distinct	cell	types.	(E)	Heatmap	showcasing	
the expression of marker genes across the six cell types.
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TNFRSF9)	and	epithelial	(LEF1,	CAMK4,	DGK4)	(Figure 1C). A rose 
plot intuitively depicted the relative proportions of different cell 
types, with B cells being the most abundant (n = 2876),	followed	by	T	
cells (n = 2317),	epithelial	cells	(n = 1058),	NK	cells	(n = 733),	endothe-
lial cells (n = 370)	and	macrophages	(n = 231)	(Figure 1D). Following 
this, we identified marker genes for each cell type and represented 
their expression levels using heatmaps (Figure 1E).

3.2  |  Identification of malignant cell clusters

After	extracting	1058	epithelial	cells,	we	performed	UMP	dimen-
sionality reduction analysis and reclustered the epithelial cells into 
8 clusters (Figure 2A). Breast cancer cells originate from epithe-
lial cells, and to investigate which clusters represent malignant 
cells, we conducted CNV analysis on these 8 clusters. High levels 
of CNVs are closely associated with cancer development, allow-
ing the identification of potentially malignant cells based on their 
CNV.27	Utilizing	 a	 reference	 set	 comprising	5193	 cells,	 including	
T cells and B cells, we noted a substantial increase in CNV lev-
els in clusters 0, 2 and 4 compared to other clusters. Therefore, 
clusters 0, 2 and 4 were annotated as clusters of malignant cells 
(Figure 2B,C).	 Subsequently,	 we	 constructed	 the	 differentiation	
trajectory of epithelial cell clusters composed of cellfate1 and 
cellfate2. Notably, cellfate1 reflected the process of cells transi-
tioning from sensitivity to resistance, while cellfate2 represented 
the ongoing sensitivity of cells (Figure 2D). Continuing, we investi-
gated the positioning of identified malignant cell clusters along the 
differentiation trajectory and found a significant enrichment of 
clusters 0, 2 and 4 at the endpoint of cell fate 1. (Figure 2E).	Using	
the CytoTRACE algorithm, each cell obtained a score ranging 
from 0 to 1.28 After conducting CytoTRACE analysis on the eight 
clusters of epithelial cells, the results demonstrated that clusters 
0,2 and 4 were at the ends of the trajectory (Figure 2F). These 
findings suggest that clusters 0, 2 and 4 represent malignant cells 
associated with breast cancer, exhibiting distinct resistance char-
acteristics during cellular differentiation, with cluster 2 potentially 
representing the subset of malignant cells with the highest degree 
of differentiation.

3.3  |  Identifying transcription factors in SPP1+ 
macrophage clusters

We	performed	UMP	dimensionality	reduction	analysis	on	extracted	
macrophages, clustering them into 5 distinct clusters (Figure 3A). 
Research	 indicates	 that	 SPP1	 influences	 the	 polarisation	 state	
of macrophages,29	 and	 the	 interaction	 between	 SPP1	 and	 mac-
rophages may play a crucial role in the chemotherapy response of 
tumours.30 Hence, we proceeded with the comparative analysis of 
SPP1	expression	across	the	five	clusters.	The	results	revealed	a	sig-
nificantly	higher	expression	level	of	SPP1	in	cluster	0	compared	to	
the other clusters (Figure 3B). Based on this, we defined cluster 0 

as	SPP1+ macrophage cluster, while the remaining clusters were de-
fined	as	SPP1− macrophage clusters. To investigate the regulatory 
mechanisms	of	SPP1,	we	employed	the	SCENIC	R	package	(v1.3.1)	
for transcription factors (TFs) identification in macrophages.31	We	
identified a total of 142 transcription factors, with particular focus 
on 17 highly transcriptionally active factors significantly enriched 
in	 the	 SPP1+ macrophage cluster (Figure 3D). Further analysis of 
the gene regulatory network revealed CEBPB as a key regulatory 
factor	for	SPP1	(Figure 3E).	Subsequently,	we	quantified	the	activ-
ity	of	the	transcription	factor	CEBPB	using	AUCell	and	found	that	
the	area	under	the	curve	(AUC)	of	CEBPB	was	significantly	higher	in	
SPP1+	macrophage	clusters	compared	to	SPP1− macrophage clus-
ters (Figure 3F–I).	 Furthermore,	 compared	 to	 SPP1− macrophage 
clusters,	the	expression	level	of	CEBPB	was	higher	 in	SPP1+ mac-
rophages (Figure 3J). Finally, correlation analysis demonstrated a 
moderate	correlation	between	CEBPB	and	SPP1	expression	levels	
(r = 0.3,	 p < 0.001)	 (Figure 3K). After trajectory analysis of mac-
rophages, we observed distinct distribution patterns between two 
clusters	formed	by	cellfate1	and	cellfate2.	SPP1+ macrophages were 
predominantly	enriched	 in	cellfate2,	whereas	SPP1− macrophages 
were mainly enriched in cellfate1 (Figure 3L,M).	KEGG	analysis	of	
marker	genes	of	SPP1+ macrophages revealed enrichment of path-
ways such as HIF- 132 and IL- 17,33 which have been associated with 
chemoresistance, according to relevant studies (Figure 3N). In sum-
mary,	 these	 analyses	 emphasize	 the	 crucial	 role	 of	 SPP1	 in	mac-
rophages, particularly through regulation by CEBPB.

3.4  |  Characterization of SPP1- CD44 by the 
ligand receptor

To identify active signals in the resistant group, we employed the 
CellChat R package to build a cell–cell communication network in-
volving	eight	cell	types,	including	SPP1+ macrophages and malignant 
cell clusters (Figure 4A). The results indicate that the intensities of 
the	SPP1	and	TGF-	β signals are higher in the resistant group com-
pared	 to	 the	 sensitive	 group,	 with	 SPP1	 showing	 a	 significantly	
higher	 signal	 intensity	 than	 TGF-	β. Therefore, we chose to con-
duct	 further	analysis	on	the	SPP1	signal	 (Figure 4B). Furthermore, 
through the calculation of network centrality measures for each 
cell	 group,	 we	 determined	 that	 SPP1+ macrophages serve as the 
principal signal senders, while malignant cells act as the receivers 
in this cell communication network (Figure 4C).	Using	the	CSOmap	
algorithm	based	on	 the	 cellular	 expression	profiles	of	 SPP1+ mac-
rophages and malignant cells, we explored the three- dimensional 
pseudospace, indicating a close primary connection structure and 
mutual	closure	between	SPP1+ macrophages and malignant cells in 
pseudospace (Figure 4D). Additionally, the cell communication net-
work	in	the	SPP1	signalling	pathway	revealed	a	high	level	of	signal	
intensity	 between	 SPP1+ macrophage clusters and malignant cell 
clusters (Figure 4E). In summary, these findings suggest a crucial role 
for	the	SPP1	signalling	pathway	in	the	resistance	mechanism,	poten-
tially influencing the chemotherapeutic resistance of tumour cells 
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F I G U R E  2 Identification	of	malignant	cell	clusters.	(A)	UMAP	plots	depicting	Epithelial	cells.	(B)	Heatmap	displaying	CNV	analysis	results.	
Red denotes chromosomal CNV amplifications, blue indicates CNV deletions and the intensity of colour reflects the magnitude of CNV 
variation. (C) Boxplot showing differences in CNV values among different cell subgroups. (D) Distribution of sensitive and resistant cells 
along the trajectory. (E) Pseudotime analysis showcasing cell progression, where lighter colours indicate proximity to the final cell trajectory 
stage. (F) Analysis of epithelial cell differentiation status using CytoTRACE.
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F I G U R E  3 Transcription	factor	analysis	of	macrophages.	(A)	UMAP	plots	of	Macrophage.	(B)	Mountain	plot	displaying	the	differential	
expression	of	SPP1	in	macrophage	subtypes.	(C)	Expression	disparity	of	SPP1	in	SPP1+	and	SPP1− clusters. (D) Heatmap showing the enrichment 
of transcription factor activity among distinct cell clusters. (E) Regulatory network of transcription factors identifying the pivotal transcription 
factor	CEBPB.	(F–H)	Assessment	of	CEBPB	activity	using	AUCell.	(I)	Boxplot	depicting	the	divergence	in	AUC	values	of	CEBPB	between	the	two	
clusters.	(J)	Violin	plot	showcasing	the	expression	variance	of	CEBPB	across	the	two	clusters.	(K)	Correlation	analysis	between	CEBPB	and	SPP1.	
(L)	Potential	trajectory	of	macrophages	identified	two	distinct	cell	fates.	(M)	Distribution	of	different	macrophage	clusters	along	the	trajectory.	
(N)	KEGG	enrichment	analysis	of	the	marker	genes	of	SPP1+ macrophages. p- Values are denoted as: *p < 0.05;	**p < 0.01;	***p < 0.001.
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F I G U R E  4 Analysis	of	cellular	communication	for	8	cell	types.	(A)	Circular	plot	depicting	interactions	among	eight	cell	types.	(B)	Bar	graph	
displaying differences in information flow, where dark red represents enrichment of signals containing susceptible, and cyan represents 
signals	enriched	in	resistance.	(C)	Heatmap	illustrating	the	network	centrality	scores	of	the	SPP1	signalling	pathway.	(D)	Virtual	spatial	
positioning	and	density	between	SPP1+macrophage and CD44+	Malignancy.	(E)	Network	plot	illustrating	cell–cell	interactions	within	the	
SPP1	signalling	pathway.	(F)	Bar	chart	depicting	the	ligand-	receptor	pairs	mediating	SPP1	signal	transduction.	(G)	Bubble	plot	displaying	the	
strength	of	intercellular	signalling	for	different	ligand-	receptor	pairs.	(H)	Multiplex	immunofluorescence	was	used	to	detect	the	expression	of	
CD68,	SPP1,	CK14	and	CD44	in	chemoresistant	and	chemosensitive	samples.	Scale	bars:	100 μm.
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through	cell–cell	communication	between	SPP1+ macrophages and 
malignant cells.

Within	the	SPP1	signalling	pathway,	three	crucial	ligand–receptor	
pairs	were	 identified:	SPP1-	CD44,	SPP1-	(ITGA4 + ITGB1)	and	SPP1-	
(ITGA5 + ITGB1)	(Figure 4F). To investigate which ligand- receptor pair 
plays	a	role	in	mediating	the	resistant	SPP1	signal,	we	separately	cal-
culated the communication probabilities of different ligand- receptor 
pairs between susceptible and resistant groups. The results indicated 
a markedly higher communication probability for the ligand- receptor 
pair	SPP1-	CD44	compared	to	the	other	two	pairs	(Figure 4G). As this 
ligand-	receptor	pair	 is	within	 the	SPP1	signalling	pathway,	 its	 signal	
sender	 and	 receiver	 align	with	 the	 SPP1	 signalling	 pathway,	 repre-
sented	by	SPP1+ macrophages and malignant cells, respectively. Finally, 
in clinical samples of TNBC, we observed that the fluorescence inten-
sity	of	SPP1	and	CD44	 in	chemoresistant	samples	was	significantly	
higher	 than	 in	 chemosensitive	 samples.	Moreover,	 SPP1-	expressing	
macrophages	(CD68+) and CD44- expressing malignant cells (CK14+) 
were closer together in chemotherapy- resistant samples, suggesting 
a potential interaction between these two cells (Figure 4H). These 
findings	suggest	that	the	secretion	of	SPP1	by	SPP1+ macrophages, 

when bound to CD44 on the surface of malignant cells, influences the 
chemotherapeutic resistance of tumour cells.

3.5  |  Recognition of CD44+ malignant cell cluster 
transcription factors

In response to the previously identified CD44 receptor in cell com-
munication analysis, we further investigated its expression in ma-
lignant cells. The results revealed that in cellfate1, the transition 
from susceptible to resistant cells, the expression of CD44 gradu-
ally increased (Figure 5A).	Moreover,	the	expression	of	CD44	in	ma-
lignant cells was significantly higher than in normal epithelial cells 
(Figure 5B). Therefore, we defined clusters 0, 2 and 4 of malignant 
cells as CD44+ malignant cell clusters. Interestingly, in epithelial 
cells, the expression of CD44 in the resistant group was also signifi-
cantly higher than in the susceptible group (Figure 5C). Comparison 
of associations between different phenotypes using a stream plot 
indicated that the majority of CD44+ malignant cell clusters be-
longed to the resistant cells, with only a small fraction showing 

F I G U R E  5 Transcription	factor	analysis	of	malignant	cell.	(A)	Pseudotime	trajectory	exhibits	the	dynamic	expression	changes	of	CD44.	
(B) A violin plot was employed to compare the expression difference of CD44 between CD44+malignant cells and normal epithelial cells. (C) 
A violin plot was used to compare the expression difference of CD44 between susceptible and resistant groups within epithelial cells. (D) 
Sankey	diagram	displays	the	association	between	the	two	categorized	groups.	(E)	Heatmap	illustrates	the	enrichment	of	transcription	factor	
activity in the CD44+malignant. (F) Transcription factor regulatory network identifies the key transcription factor RELA. p Values were 
denoted as: *p < 0.05;	**p < 0.01;	***p < 0.001.
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sensitivity (Figure 5D). These findings suggest that CD44 may influ-
ence the chemotherapeutic resistance of tumours. To gain a deeper 
understanding of the regulatory mechanisms of the CD44 signalling 
pathway,	we	utilized	SCENIC	clustering	technology	for	the	identifi-
cation of transcription factors. Among them, 21 transcription fac-
tors,	 including	 FOXO1	 and	ATF6,	 exhibited	 significant	 differences	
in	the	AUC	values	between	CD44+ malignant cell clusters and nor-
mal epithelial cell clusters (Figure 5E).34 Further regulatory network 
analysis revealed that RELA's target genes included the key receptor 
CD44	of	the	SPP1	pathway	(Figure 5F). These findings suggest that 
the transcription factor RELA influences the drug resistance of ma-
lignant cells by regulating CD44.

3.6  |  SPP1 signalling pathway triggers intracellular 
signalling in target cells

To	investigate	how	the	SPP1	signal	transduces	to	malignant	cells,	lead-
ing to chemotherapy resistance, we conducted further analysis on the 
CD44+ malignant cell cluster. Integrins are membrane proteins that 
interact with extracellular matrix molecules, participating in the con-
nection between cells and the external environment.35	When	integ-
rins interact with specific extracellular activating factors (such as FAK, 
SRC	 family	 kinases	 and	 ILK),	 they	 can	 aggregate	 and	 trigger	 down-
stream signalling pathways, modulating various cellular functions like 
migration, proliferation and apoptosis.36	We	observed	that	FYN,37 a 
member	of	the	SRC	kinase	family,	was	significantly	overexpressed	in	
the CD44+ malignant cell cluster compared to normal epithelial cells 
(Figure 6A–C).	Subsequently,	we	utilized	the	R	package	ReactomeGSA	
to analyse downstream signals activated by integrin, unveiling a nota-
ble activation of the PDE3B signalling pathway was observed in the 
CD44+malignant cell cluster (Figure 6E). Consistent with CD44 and 
FYN,	a	key	member	of	the	PDE3B	signalling	pathway,	PDE3B,	exhib-
ited significantly higher expression in the CD44+ malignant cell cluster 
than in normal epithelial cells (Figure 6F,G).	We	subsequently	explored	
marker genes linked to the biological behaviour of cancer cells, iden-
tifying the enrichment of eight marker genes in CD44+ malignant cell 
clusters (Figure 6H,I). These marker genes play diverse roles in can-
cer,	such	as	promoting	growth	and	proliferation	(MYC,	HIF1A,	ATM),	
inhibiting	 apoptosis	 (MCL1,	 BIRC3,	 BCL2)	 and	 facilitating	 invasion	
(CXCR4,	CD55).	These	results	suggest	that	the	SPP1	signal	secreted	
by macrophages, upon binding to the CD44 receptor on the surface of 
CD44+ malignant cells, may induce chemotherapy resistance by acti-
vating	intracellular	signals	such	as	FYN	and	PDE3B.

4  |  DISCUSSION

In our study, analysis of scRNA- seq data from both susceptible and 
resistant groups of breast cancer chemotherapy revealed an ab-
normally	active	signal,	SPP1,	secreted	by	macrophages.	This	signal	
forms a complex with the receptor CD44 on cancer cell surfaces, ac-
tivating	the	PDE3B	signalling	pathway	through	the	integrin	enzyme	

pathway, consequently leading to the resistance of cancer cells to 
chemotherapy drugs.

Studies	have	demonstrated	CEBPB's	involvement	in	chemother-
apy	resistance	among	TNBC	patients,	where	LINC00160	modulates	
chemoresistance by recruiting CEBPB to the TFF3 promoter, aug-
menting TFF3 expression.38 Consistent with our findings, we reveal 
CEBPB's impact on breast cancer chemoresistance through the 
SPP1	signalling	pathway.	In	the	realm	of	immunity,	inhibiting	glycol-
ysis	 in	breast	 cancer	patients	via	 the	CEBPB	pathway	 impedes	G-	
CSF	and	GM-	CSF	production,	reducing	myeloid-	derived	suppressor	
cells	(MDSCs)	and	enhancing	anti-	tumour	immunity.39 Additionally, 
CEBPB regulates breast cancer cell migration and invasion through 
diverse	pathways,	including	THBS2	suppression,	the	PAK4–CEBPB–
CLDN4	 axis	 and	 the	 cAMP/AMPK/CEBPB	 axis.40 PDPN- positive 
CAFs could represent a novel therapeutic target for overcoming re-
sistance in HER2- positive breast cancer.41

Identifying potential therapeutic targets for triple- negative breast 
cancer is of paramount importance.42 Through cell communication 
analysis,	we	identified	the	SPP1	signal,	known	to	predict	breast	cancer	
recurrence	post-	tamoxifen	treatment.	Elevated	SPP1	levels	correlate	
with adverse breast cancer prognosis, aligning with our prognostic 
research direction.43	 Mechanistically,	 downregulation	 of	 miR-	94444 
and miR- 12745	promotes	high	SPP1	expression,	fostering	cancer	pro-
gression via direct pathway induction and interaction with growth 
factor receptor pathways, activating genes conducive to cancer ad-
vancement.CD44, a non- kinase transmembrane glycoprotein, acts as 
a	receptor	for	SPP1	in	this	study.46 This pairing has also been observed 
in pancreatic,47 liver cancers,48 and clear cell renal cell carcinoma.49 
Studies	 indicate	 CD44	 as	 a	 shared	marker	 for	 cancer	 stem	 cells	 in	
breast cancer, with high CD44 expression correlating with adverse 
BC prognosis,50 consistent with our findings. In doxorubicin resistance 
mechanisms, CD44 plays a role.51 Downstream, CD44 can activate 
Ras- ERKs and PI3K- AKT pathways,52 influencing cancer cell prolifer-
ation and motility. Additionally, recent studies have identified a highly 
potent small- molecule antagonist of exportin- 1, which selectively 
eliminates CD44+CD24− enriched breast cancer stem- like cells.53 
FYN,	a	tyrosine	kinase,	participates	in	the	intracellular	signalling	cas-
cade, facilitating the transportation of various cell surface receptors.54 
Studies	 indicate	FYN's	 involvement	 in	 activating	downstream	path-
ways	 like	 RafERK/MAPK,55 PI3K/Akt, abnormal NF- κB signalling,56 
and	JAK/STAT	pathways.	Moreover,	FYN	contributes	to	chemother-
apy resistance through adhesive- mediated mechanisms.

While	our	study	results	contribute	new	insights	into	the	mech-
anisms of chemotherapy resistance in breast cancer, it is important 
to acknowledge certain potential limitations. Firstly, our analysis 
is	based	on	data	from	public	databases	with	a	limited	sample	size,	
which may introduce some degree of selection bias. Furthermore, 
although we conducted preliminary validation of the functionality 
of CD44+	 tumour	 cells,	 the	 roles	 of	 the	 key	 signal	 SPP1	 and	 its	
upstream transcriptional regulatory mechanisms, as well as down-
stream signalling transduction mechanisms, lack validation through 
in vivo and in vitro experiments. Lastly, single- cell RNA sequenc-
ing data suffers from a lack of inherent cellular spatial information, 
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posing challenges in delivering comprehensive and representative 
spatial details.

In this study, we delineated the landscape of the entire tumour 
microenvironment in TNBC using scRNA- seq, identifying mac-
rophages as crucial mediators of communication with malignant 
cells.	Macrophages	constitute	a	major	component	of	the	TME,	with	
distinct subsets exhibiting varied functionalities.57	MRC1+ macro-
phages facilitate tumour recurrence following chemotherapy, and 
tumour biopsy samples from cancer patients who received neoad-
juvant therapy had a much larger infiltrate of CD45+CD11b+CD14+ 

macrophages than those from patients who received only sur-
gery.58,59	 Therefore,	 precise	 characterization	 of	 macrophage	 phe-
notypes	 and	 functions	 is	 crucial.	We	 identified	 a	 novel	 subset	 of	
macrophages	 that,	 through	 secretion	 of	 SPP1,	 bind	 to	 CD44	 on	
tumour cells, activating the PDE3B pathway via the integrin en-
zyme	pathway,	thereby	inducing	chemotherapy	resistance	in	TNBC	
patients. Our study, akin to prior research, characterised distinct 
macrophage subpopulations, potentially aiding in the development 
of	 precise	 therapeutic	 strategies	 targeting	 SPP1+ macrophages to 
minimize	chemotherapy	resistance.

F I G U R E  6 The	SPP1	signalling	pathway	triggers	intracellular	signal	transduction	in	malignant	cells.	(A)	UMAP	plots	demonstrate	the	
expression	of	FYN	across	cell	clusters.	(B)	Pseudotime	trajectory	exhibits	the	dynamic	expression	changes	of	FYN.	(C)	Violin	plots	compare	the	
expression	differences	of	FYN	between	CD44+malignant	cells	and	normal	epithelial	cells.	(D)	UMAP	plots	display	the	expression	of	FYN	across	
cell clusters. (E) Heatmaps illustrate the activated signalling pathways in different cell clusters. (F) Pseudotime trajectory depicts the dynamic 
expression	changes	of	PDE3B.	(G)	Violin	plots	compare	the	expression	differences	of	PDE3B	between	malignant	cells	and	normal	epithelial	
cells. (H) Heatmaps display the enrichment of marker genes associated with biological behaviours such as tumour occurrence, proliferation 
in CD44+malignant cells and normal epithelial cells. (I) Violin plots demonstrate the gene expression differences of markers associated with 
tumour biology in CD44+malignant cells and normal epithelial cells. p- Values are indicated as: *p < 0.05;	**p < 0.01;	***p < 0.001.
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