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Abstract
Amyotrophic lateral sclerosis (ALS) is an untreatable and clinically heterogeneous condition primarily affecting motor 
neurons. The ongoing quest for reliable biomarkers that mirror the disease status and progression has led to investigations 
that extend beyond motor neurons’ pathology, encompassing broader systemic factors such as metabolism, immunity, and 
the microbiome. Our study contributes to this effort by examining the potential role of microbiome-related components, 
including viral elements, such as torque tenovirus (TTV), and various inflammatory factors, in ALS. In our analysis of serum 
samples from 100 ALS patients and 34 healthy controls (HC), we evaluated 14 cytokines, TTV DNA load, and 18 free fatty 
acids (FFA). We found that the evaluated variables are effective in differentiating ALS patients from healthy controls. In 
addition, our research identifies four unique patient clusters, each characterized by distinct biological profiles. Intriguingly, 
no correlations were found with site of onset, sex, progression rate, phenotype, or C9ORF72 expansion. A remarkable aspect 
of our findings is the discovery of a gender-specific relationship between levels of 2-ethylhexanoic acid and patient survival. 
In addition to contributing to the growing body of evidence suggesting altered peripheral immune responses in ALS, our 
exploratory research underscores metabolic diversity challenging conventional clinical classifications. If our exploratory 
findings are validated by further research, they could significantly impact disease understanding and patient care customiza-
tion. Identifying groups based on biological profiles might aid in clustering patients with varying responses to treatments.
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disease’s biological complexity and the not entirely under-
stood pathomechanisms behind its progression. ALS hetero-
geneity has implications for patient counseling, individual 
prognosis assessment, participant stratification in clinical 
trials, the development of new therapeutic strategies, and the 
timing of treatment interventions and care management [28]. 
A significant aspect of ALS’s complexity is the recognized 
contribution of non-cell autonomous toxicity, with growing 
evidence highlighting the role of systemic factors such as 
metabolism and immunity [1]. These factors are not only 
involved in the multistep process of ALS development, but 
also influence the pace of disease progression [48]. Their 
accessibility presents them as potential targets for research 
into diagnostic and prognostic biomarkers [47]. The underly-
ing causes behind metabolic dysfunction, immune regula-
tion failure, and sustained neuroinflammation in ALS remain 
mostly unknown.

The microbiome metabolites and components are 
essential for maintaining immune homeostasis [56]. It is 
acknowledged that the microbiome substantially affects 

Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative 
disease affecting motor neuron (MN), marked by significant 
genetic and clinical heterogeneity. This diversity mirrors the 
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brain physiological processes, altering host susceptibility 
to various disorders, including neurodegenerative diseases 
[68]. Specifically, the gut microbiota impacts the central 
nervous system (CNS), through a bidirectional interac-
tion, the gut–brain axis, influencing neuronal health via the 
production of neuroactive metabolites such as short chain 
fatty acids (SCFA) and toxins, and modulates the immune 
system [39], for instance, by affecting T cells’ activity and 
differentiation [13, 54]. In addition, the viral components 
of the microbiome, known as the “virome,” may have a sig-
nificant role in maintaining immune health [8]. The human 
virome comprises a variety of commensals and pathogenic 
viruses that elicit a broad range of immune responses from 
the host. While persistent viral immunomodulation is associ-
ated with several inflammatory disorders, beneficial effects, 
such as protection against diseases, have also been observed 
[51]. The most common element of the human virome is the 
torque teno virus (TTV), belonging to the Anellovirus fam-
ily, which causes persistent human infections [32, 66]. Lev-
els of TTV viremia, especially high in immunosuppressed 
patients [19, 21, 26, 57], have been closely associated with 
host immunity, suggesting their potential as biomarkers 
for assessing the immune system functionality [40, 55]. 
Given the significant inter-individual variations in immu-
nity and disease susceptibility influenced by the composi-
tion and function of the human microbiome, our study aims 
to enhance the understanding of ALS through microbiome, 
metabolism, and immune-derived molecules to characterize 
patients. Our findings unveil distinct patient clusters based 
on biological variables and identify a gender-specific asso-
ciation with patient survival, providing new insights into 
ALS pathogenesis and potential therapeutic approaches.

Materials and methods

Study population

We conducted a case–control cohort study at the ALS 
Center of Modena University Hospital in Italy, involving 
100 patients with newly diagnosed ALS between January 
2017 and January 2020, with follow-up extending to July 
2022. The ALS Center of Modena coordinates the Regis-
ter of ALS of Emilia Romagna region (ERRALS) [23, 44], 
which encompasses a population of 4.5 million inhabitants. 
The patients were diagnosed with possible, probable, or defi-
nite ALS, according to the Revised El Escorial criteria [7]. 
Thirty-four healthy individuals were also recruited among 
healthy unrelated spouses of patients. Both the patients 
and the healthy controls had to be aged between 18 and 
80 years, have a BMI of 18 or above, and possess the capac-
ity to understand and provide informed consent. The exclu-
sion criteria included dementia or any other condition that 

compromised the ability to consent; known organic gastro-
intestinal disease (including, but not limited to, malignancy, 
inflammatory bowel disease, gastric ulcer, chronic diarrhea, 
gastroesophageal reflux); celiac disease and/or documented 
food intolerances (e.g., lactose intolerance); autoimmune 
disorders; severe comorbidities (such as liver, heart, or kid-
ney failure, or chronic infections such as HIV, TBC, or hepa-
titis); history of complicated gastrointestinal surgery; and 
acute infections at the time of sampling. The study received 
approval from the Ethical Committee of Modena (Comitato 
Etico Provinciale di Modena, file n. 15/17), and informed 
consent was obtained from all participants. The reporting of 
clinical data complies with the STROBE guidelines.

Clinical data

Clinical data were obtained from ERRALS, which has 
been enrolling MND patients at the time of their diagno-
sis and prospectively collecting demographic and clinical 
information since 2009 [44]. For all participants in this 
study, we extracted details on sex, age, and site of symptom 
onset (bulbar, upper limb or lower limb, respiratory), date 
of diagnosis, phenotype (classic, bulbar, upper motor neu-
ron predominant ALS, flail arm, and flail leg, respiratory) 
[9, 58], genotype, and the ALS Functional Rating Scale-
Revised (ALSFRS-R) total score at the time of diagnosis, at 
sampling and at the last available observation [43]. Except 
for six patients, all were screened at least for mutation in 
C9ORF72, SOD1, FUS, and TARDBP as detailed elsewhere 
[45]. Participants were followed from diagnosis until death 
or the last observation, whichever occurred first. The dates 
of initiation for nutritional or respiratory support were also 
recorded. Survival was measured from disease onset to death 
or the commencement of invasive ventilation. The rate of 
disease progression at diagnosis was determined by sub-
tracting the ALSFRS-R score from 48 (the value used for 
symptom onset) and dividing by the number of months until 
diagnosis [33]. Disease progression rate was also calculated 
at the time of sampling and at the last observation, consider-
ing the monthly decline in the ALSFRS-R score from the 
symptom onset and diagnosis. Disease progression was clas-
sified as “slow” if ≤ 0.4 points per month, “fast” if ≥ 1 point 
per month, and “intermediate” for rates in between.

Sample collection and processing

Serum samples were obtained by venipuncture at the time 
of diagnosis or shortly thereafter, following an overnight 
fasting period, and processed following standard proce-
dures. After sample centrifugation for 10 min at 1300 × g, 
the supernatant was divided into aliquots and stored in 
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polypropylene tubes at –80 °C in Modena Neurobiobank, 
until shipping to University of Florence.

Evaluation of inflammatory molecules

We evaluated the serum levels of 14 cytokines by Milli-
plex MAP kits (Human Cytokine/Chemokine/Growth Fac-
tor Panel A, Magnetic Bead Panel) for Luminex MAGPIX 
detection system (Merck KGaA, Darmstadt, Germany) and 
following the manufacturers’ instructions. More specifically, 
we analyzed granulocyte colony-stimulating factor (G-CSF), 
interferon (IFN)-γ, interleukin (IL)-1β, IL-2, IL-4, IL-6, 
IL-8, IL-10, IL-15, IL-17A, monocyte chemotactic protein 
1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α), 
tumor necrosis factor-α (TNFα), and vascular endothelial 
growth factor (VEGF)-A. The levels of cytokines were 
estimated using a 5‐parameter polynomial curve (Bio-Plex 
Manager software), and the results were managed with Bio-
Plex DataPro Software (Bio-rad Laboratories Inc.).

Serum free fatty acid (FFA) quantification

The serum levels of short chain (SCFA: acetic, propionic, 
butyric, iso-butyric, iso-valeric, valeric, 2-methylbutyric, 
and hexanoic acids), medium chain (MCFA: heptanoic, 
nonanoic, 2-ethylhexanoic, octanoic, decanoic, benzoic, 
and dodecanoic acids), and long chain (LCFA: tetradeca-
noic, hexadecanoic, and octadecanoic acids) fatty acids were 
determined by gas chromatography coupled with mass spec-
trometry. The standard curves’ preparation was performed 
by an Agilent GC–MS 114 system composed of a 5971 sin-
gle-quadrupole mass spectrometer, 5890 gas chromato-115 
graph, and 7673 autosampler, as previously described [3].

Quantification of TTV‑DNA plasma levels

Viral DNA was extracted from 200  μl of serum using 
QIAamp DNA Mini kit (QIAGEN, Chatsworth, CA) and 
used to determine the presence and loads of TTV-DNA 
using a single-step universal TaqMan real-time PCR assay 
[41]. This assay uses primers (AMTS, 5′-GTG​CCG​IAGG​
TGA​GTTTA-3′; AMTAS, 5′-AGC​CCG​GCC​AGT​CC-3′) and 
probes (AMTPTU, 5′-TCA​AGG​GGC​AAT​TCG​GGC​T-3′) 
designed on a highly conserved segment of the untranslated 
region of the viral genome and has, therefore, the capacity to 
detect all the species in which TTV is classified. TTV loads 
were expressed as the number of viral DNA copies/mL of 
serum sample. The lower limit of detection was 10 copies of 
TTV-DNA/mL. The procedures used to quantitate the copy 
numbers and assess specificity, sensitivity, intra- and inter-
assay precision, and reproducibility have been previously 
described [41]. All the procedures to validate the ampli-
fication process and to exclude the presence of carryover 

contaminations were performed: serum handling, DNA 
extraction, PCR amplification, and electrophoresis analysis 
were carried out in independent rooms; appropriate nega-
tive controls were added during DNA extraction and PCR 
amplification; and positive and negative controls (i.e., no 
template control and/or no amplification control) were run 
in each PCR.

Statistical analysis

Categorical variables were presented as absolute frequencies 
and percentages and were compared between ALS patients 
and healthy controls using the χ2 test for unpaired data. Con-
tinuous variables were presented as median value and inter-
quartile range (calculated as difference between the 75th and 
25th percentiles of the data) and were compared by means 
of Mann–Whitney U-test (Bonferroni correction) in SPSS 
27.0. P values less than 0.05 were considered statistically 
significant.

High-throughput data are often subject to batch effects. 
We employed the ComBat method proposed by Johnson 
et al. [31] to remove known batch effects due to experiments 
conducted under different conditions. ComBat is robust to 
outliers even in small batch sizes. Batch effects adjustment 
was performed with R package “sva” [37].

We employed the permutational multivariate analysis of 
variance (PERMANOVA) to compare multivariate sample 
means across different groups. PERMANOVA is a statistical 
test that does not rely on distributional assumptions of the 
data (i.e., normality), making it better suited than traditional 
methods for analyzing complex data. In addition, we used 
non-metric multidimensional scaling (NMDS) to simplify 
multivariate data into a few relevant axes to facilitate rec-
ognition and interpretation of nonlinear patterns and differ-
ences among groups. These plots have been computed on 
Euclidean distance using R 4.2 with the help of the packages 
vegan 2.6.2 and ggplot2 3.3.6 to compare groups.

Cluster and survival analysis

A Gaussian Mixture Model (GMM) [4] was implemented 
to identify common biological profiles among the subjects. 
GMM is a model-based approach to clustering that asso-
ciates each component of a finite mixture with a cluster. 
To focus our analysis on features that presented a large 
informative power, we retained in the analysis only those 
features whose median absolute deviation (MAD) exceeded 
a significance threshold. In fact, a larger MAD corresponds 
to a higher discriminatory power. All the continuous vari-
ables have been standardized. This method produces clus-
ters of subjects that are homogeneous in terms of biological 
features, and each cluster is modeled with a multivariate 
Gaussian distribution. We select the number of clusters by 
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Bayesian Information Criterion (BIC). The method’s output 
is a list of clusters. The method allocates to each cluster 
similar subjects (in terms of biological features) and also 
estimates the parameters of the multivariate Gaussian den-
sity associated with the cluster. GMM analysis is performed 
with R package “Mclust” [59]. For the survival analysis, we 
adopted a two-stage analysis to estimate the associations 
between survival time and biological features. In the first 
step, we deployed a modified version of the sure independ-
ence screening (SIS) [16] procedure. SIS uses the notion 
of marginal correlation––in our case, the correlation of a 
single biological feature with the survival time––to rank 
the features. We selected for step 2 those features with the 
smallest p-value from an accelerated failure time (AFT) [67] 
model with that given feature as the only predictor. An AFT 
model is a parametric model that measures the impact of 
the predictors on the survival time (instead of hazard, as in 
the Cox model). In the AFT model, the effect of explana-
tory variables is to accelerate or decelerate the time to event 
by a constant factor. In this study, for each predictor, we 
estimated the p-value testing the model with the considered 
feature plus the intercept against a model with only the inter-
cept with a likelihood-ratio test. In the second step, we used 
the AFT model to determine the joint effect of the selected 
biological features and clinical factors on survivalIn par-
ticular, and the underlying assumption is that the log of the 
survival time is linearly affected by the biological features. 
All the statistical procedures for cluster and survival analysis 
were performed in R.

Results

Clinical and demographical characteristics 
of participants

We analyzed a cohort of 100 patients with newly diagnosed 
ALS and 34 sex-matched healthy controls as depicted in 
the study diagram (Supplementary Fig. 1). Patients’ features 
are detailed in Supplementary Table 1. The average age at 
the time of sampling was 67 years (ranging from 37 to 93) 
for patients and 70 years (range 51–81) for HC (P = 0.146). 
Among the patients, 28 presented bulbar symptoms, 69 had 
limb onset, and 3 exhibited early respiratory impairment. 
Forty-six patients developed a classic phenotype, 25 bulbar, 
18 flail arm/leg, 7 pyramidal, and 3 respiratory phenotypes. 
Disease progression, as indicated by the initial monthly 
decline in ALSFRS-R scores, was slow in 42 patients, fast 
in 31, and intermediate in 27. Genetic analysis revealed 
C9orf72 expansion in six patients and a FUS mutation in 
one. No other mutations were detected among the remain-
ing patients, excluding six cases that were not genetically 

analyzed. The average ALSFRS-R total score at the time of 
sampling was 41.18 (SD:5.78). During the follow-up, 73 out 
of the 100 ALS patients either died or underwent tracheos-
tomy with a mean survival time of 38.56 (SD:31.15) months 
from symptom onset.

Cytokine levels

Analysis revealed a distinct cytokine profile in ALS patients, 
with 10 out of 14 tested cytokines showing lower expres-
sion in ALS patients compared to healthy controls and IL-8 
(CXCL8) being more highly expressed in ALS patients rela-
tive to healthy controls (Table 1).

No significant differences in cytokine expression were 
observed across patients with different disease onset, pro-
gression rates, phenotypes, or genotypes (including the 
presence of C9ORF72 expansion or FUS mutation) (Sup-
plementary Table 2).

TTV‑DNA status

ALS patients displayed a significantly higher serum load 
of TTV-DNA compared to healthy controls: TTV-DNA 
was detected in 88 out of 100 (88%) ALS serum samples 
with a mean TTV load of 2,370 (range 180–15,930) copies/
mL, while in the control group, 24 out of 34 (71%) serum 
samples tested positive for TTV, with a mean load of 157 
(11–750) copies/mL (P < 0.0001).

The levels of TTV varied significantly among patients 
with different progression rate (P = 0.027), particularly when 
comparing fast progressors to slow progressors (Dunn’s 
multiple comparison test, P < 0.05) (Fig. 1). However, TTV 
load did not show significant differences among patients 
with varying disease onset types, phenotypes, or C9ORF72 
expansion (data not shown).

Profile of the free fatty acids

Compared to healthy controls, patients with ALS exhibited 
a higher total FFA level (P < 0.0001), while their SCFA 
level was generally lower. Among the evaluated MCFA and 
LCFA, only t2-ethylhexanoic acid, octanoic acid, and octa-
decanoic acid showed no significant difference between ALS 
patients and healthy controls (Table 2). Similarly, among 
SCFA, only butyric acid levels did not significantly dif-
fer. The distribution of FFA across different ALS progres-
sors groups and according to disease onset or phenotype 
displayed considerable variability within groups, without 
significant differences. Patients with a C9ORF72 expansion 
showed a non-significant trend toward lower FFA levels 
(Supplementary Table 3).
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Multivariate analysis with the entire dataset

The expression patterns of all examined biological variables 
are depicted in Fig. 2. To investigate the distinctions between 
ALS patients and healthy controls, as well as among ALS 
subtypes categorized by onset, phenotype, and the presence 
of C9ORF72 expansion, we conducted PERMANOVA tests 
using Euclidean distance. These tests included cytokines, 
fatty acids, and TTV-DNA values as independent variables. 
According to the PERMANOVA results, validated by the 
nonmetric multidimensional scaling (NMDS) analysis, 
there was a significant difference between ALS patients and 
healthy controls (Pr (> F) = 0.041) (Fig. 2B). However, it 
was not possible to differentiate among ALS patients based 
on their clinical characteristics (disease onset, phenotypes, 
and C9ORF72 expansion presence).

Cluster analysis

To analyze the biological profile of our study participants, 
we utilized a Gaussian Mixture Model (GMM), selecting 
eight specific features based on their mean absolute devia-
tion (MAD). These features included certain fatty acids 
(valeric, 2-ethylhexanoic, benzoic, hexadecanoic, and octa-
decanoic acids), the cytokines MCP-1 and MIP-1α, and TTV 
load. Our analysis identified five distinct clusters among the 
subjects, showing consistency in their biological features, 
with the number of subjects in each cluster ranging from 5 
to 46 (Fig. 3A). This clustering indicates a clear partitioning 
of the data into distinct groups. Nonetheless, we considered 
Cluster 2 as a residual cluster, comprising only five subjects 
(one healthy control and four ALS patients without muta-
tions), characterized by a large variance in the expression of 
biological variables, especially of benzoic acid and MIP-1α 
(Supplementary Fig. 2).

Table 1   Concentrations of 
cytokines in the serum of ALS 
patients and healthy controls

P-values were calculated with Mann–Whitney test; *p-value adj < 0.0035

Analyte
(pg/ml)

ALS patients (n = 100),
median (IQR)

Healthy controls (n = 34), median (IQR) P value (Mann–
Whitney test)

G-CSF 7.77 (2.03–14.03) 18.45 (11.33–18.45)  < 0.0001*
IFN-γ 1.36 (0.62–2.66) 3.69 (1.0975–3.69) 0.0120
IL-10 1.47 (0.61–3.45) 3.88 (3.29–3.88)  < 0.0001*
IL-15 0.88 (0.54–2.02) 0.32 (0.26–0.32)  < 0.0001*
IL-17A 1.69 (0.53–4.74) 0.695 (0.32–0.695) 0.011
IL-1β 0.36 (0.36–1.56) 5.27 (1.48–5.27)  < 0.0001*
IL-2 0.48 (0.48–1.57) 9.24 (6.915–9.24)  < 0.0001*
IL-4 2.51 (2.51–3.30) 5.57 (1.63–5.57) 0.7741
IL-6 0.40 (0.40–3.44) 5.53 (3.6425–5.53)  < 0.0001*
IL-8 10.85 (5.87–17.79) 1.38 (1.38–1.38)  < 0.0001*
MCP-1 340.80 (208.26–444.78) 679.73 (571.525–679.73)  < 0.0001*
MIP-1α 3.57 (1.61–5.90) 15.41 (9.67–15.41)  < 0.0001*
TNF-α 9.54 (3.29–14.68) 17.04 (8.685–17.04) 0.003*
VEGF-A 43.76 (4.12–97.95) 469.469 (206.245–469.469)  < 0.0001*

Fig. 1   Torque teno virus 
abundance (copies/ml) in A 
ALS patients compared to HC; 
B ALS patients with different 
progression rate. ***p-value < 0
.001*p-value < 0.05
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This suggests significant diversity within this cluster, 
indicating a lack of uniform biological patterns among its 
members.

Cluster 1 consists of healthy controls (91.18%), with no 
ALS patients, demonstrating the GMM’s efficacy in distin-
guishing between healthy individuals and those with ALS.

The relationship between cluster membership and ALS 
diagnosis was statistically significant, as shown by the �2 
test (P < 0.0001 ) (Fig. 3B,C). While ALS patients were 
distributed across four clusters, no significant correlation 
was found between cluster membership and various clini-
cal factors such as disease and progression rate ( �2 test 
with P = 0.6866 ), sex ( �2 test with P = 0.6797 ), site of 
onset ( �2 test with P = 0.8483 ), phenotype ( �2 test with 
P = 0.6721), or the presence of C9ORF72 expansion ( �2 
test with P = 0.0971) (Supplementary Fig. 3). This indi-
cates that while the clusters differentiate ALS patients from 
healthy controls, they do not align with specific ALS clinical 
characteristics.

Members of Cluster 1, primarily consisting of healthy 
controls, consistently exhibited lower levels of TTV, benzoic 
acid, and hexadecanoic acid, but higher levels of MIP-1α, 
compared to the overall population average (Fig. 3A, Sup-
plementary Fig. 2). When analyzing the ALS patients in 
Clusters 3, 4, and 5, we observed the following: (i) the levels 

of MIP-1α, TTV, and, to a lesser degree, benzoic acid, were 
similar across these clusters, all showing a markedly distinct 
pattern from that of Cluster 1; (ii) Cluster 3 stood out for 
the lower expression of valeric and 2-ethilhexanoic acids 
(iii) Cluster 4 exhibited higher levels of hexadecanoic and 
octadecanoic acids; (iv) Cluster 5 was characterized by 
increased levels of 2-ethylhexanoic acids and decreased 
levels of MCP-1 and, to a lesser extent, octadecanoic acid 
and MIP1-α.

To evaluate the statistical significance of our cluster-
based analysis in differentiating between healthy controls 
and ALS patients, we conducted several statistical tests 
focusing on the differential expression of specific biological 
markers. We focused our analysis on those features for which 
we could formulate precise one-sided hypotheses based on 
the clustering results (see Fig. 3). Namely, we tested the null 
hypothesis of no difference between healthy controls and 
ALS against the alternatives of overexpression of benzoic 
and hexadecanoic acids and TTV in ALS and underexpres-
sion of valeric acid, MCP1, and MIP1-α in ALS.

All tests yielded highly significant results, with p-val-
ues < 0.0001, providing strong confidence in our findings 
(Supplementary Table 4).

These results are consistent with those obtained from 
the univariate analysis reported in Sects. 1.2–1.5, which 

Table 2   Concentrations of free 
fatty acids (µmol/l) determined 
in the serum of ALS patients 
and healthy controls

P-values were calculated with Mann–Whitney test. *p-value adj < 0.0022

Analyte (µmol/l) ALS patients (n = 100), 
median (IQR)

Healthy controls (n = 34), 
median (IQR)

P value (Mann–
Whitney test)

FFA 951.36 (660.9–1286.7) 595.9 (415.4–736.1)  < 0.0001*
SCFA 110.8 (85.6–839.8) 263.2 (220.3–598.2) 0.019
MCFA 20.8 (14.6–26.7) 14.7 (9.4–18.7)  < 0.0001*
LCFA 711.2 (492.8–880.7) 330.0 (175.1–417.5)  < 0.0001*
Acetic acid 71.85 (71.85–336–673) 191.50 (141.71–227.71) 0.0270
Propionic acid 4.37 (4.27–6–55) 16.69 (12.5–21.45)  < 0.0001*
Butyric acid 6.60 (3.30–17.25) 5.51 (3.18–6.75) 0.014
Isobutyric acid 2.00 (1.67–3.34) 12.30 (8.42–18.18)  < 0.0001*
Isovaleric acid 1.65 (1.65–3.30) 15.78 (10.37–21.12)  < 0.0001*
2-Methylbutyric acid 1.88 (1.71–1.88) 8.92 (5.88–12.94)  < 0.0001*
Valeric acid 0.34 (0.17–0.59) 0.64 (0.34–0.85)  < 0.0001*
Hexanoic acid 0.43 (0.43–0.43) 1.90 (1.36–2.79)  < 0.0001*
Heptanoic acid 0.30 (0.15–0.45) 1.03 (0.45–3.04)  < 0.0001*
Nonanoic acid 0.33 (0.28–0.82) 0.24 (0.05–0.55)  < 0.0001*
2-Ethylhexanoic acid 3.44 (1.72–9.72) 3.56 (1.30–8.68) 0.081
Octanoic acid 1.43 (1.43–1.43) 0.77 (0.47–2.14) 0.092
Decanoic acid 1.18 (1.18–1.75) 0.41 (0.08–1.09)  < 0.0001*
Benzoic acid 8.02 (4.01–12.03) 1.65 (1.49–2.02)  < 0.0001*
Dodecanoic acid 1.29 (1.17–2.77) 2.45 (1.61–4.49)  < 0.0001*
Tetradecanoid acid 8.21 (5.20–13.12) 14.73 (8.28–24.18)  < 0.0001*
Hexadecanoic acid 541.04–399.20) 250.0 (116.25–317.22)  < 0.0001*
Octadecanoic acid 67.32 (47.36–228.49) 64.6 (38.96–91.19) 0.0310
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Fig. 2   A Heatmap visualization based on cytokines, free fatty acids, 
and TTV distribution. Rows: biological variables; columns: patients. 
Green: HC; yellow: ALS patients; pink = bulbar onset; gray = spi-
nal onset; orange = respiratory onset. Color key indicates metabolite 
expression value: blue: lowest; red: highest. B The sample distances 

among ALS patients and healthy controls have been represented 
through a NMDS plot with Euclidean distance on standardized val-
ues and the estimated 95% confidence interval of group centroids has 
been tracked as ellipses
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showed significant differences in the expression of these 
same features between healthy controls and ALS patients.

Survival analysis

Initially, we implemented a survival regression model to 
investigate the impact of cluster membership on tracheos-
tomy-free survival, which was log-transformed for analy-
sis. This model did not reveal any statistically significant 

association between the clustering and survival time, 
aligning with the observation that disease progression 
rates do not vary significantly across clusters (Supplemen-
tary Fig. 3). To evaluate the association between specific 
biological features and survival, we first utilized the sure 
independence screening (SIS) method (step 1), to identify 
the most informative features. The highest-ranking mark-
ers were valeric, 2-ethylhexanoic, and octadecanoic acids. 
Incorporating these acids, along with age, sex (coded as 

Fig. 3   Cluster analysis A Mean expression levels of biological mark-
ers within the five identified clusters, after normalization to ensure 
zero mean and unit variance across the dataset. This normaliza-
tion process allows for a straightforward comparison of biological 
marker expressions among clusters, using the (normalized) average 
expression level (represented by a horizontal black line) as a refer-
ence point. The colorful lines depict the unique “biological profile” of 
each cluster. B and C Contingency table and cluster membership with 
graphical representation of the �2 test. Panel B shows considerable 
differences in the proportion of patients and healthy subjects across 
clusters, with a strong prevalence of healthy patients in Cluster 1. 
The mosaic plot represents the statistical association between cluster 
membership and ALS prognosis. The horizontal axis displays the dis-

tribution of cluster membership, with each segment’s width indicat-
ing the relative frequency of clusters. Vertically, within each cluster, 
the distribution of ALS presence is shown. The areas of rectangles 
represent the relative frequency of ALS patients and healthy controls 
in each cluster. A dot over a segment signifies no subjects with that 
combination of prognosis and cluster membership. Rectangles with 
similar heights across clusters suggest independence between progno-
sis and cluster membership (i.e., no association), while significantly 
different heights indicate an association. Colored cases indicate the 
strength of association, with red indicating observed frequencies 
smaller than expected (under the null hypothesis of independence) 
and blue indicating larger frequencies
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a binary variable where 1 represents female patients), and 
an intercept, we ran an accelerated failure time (AFT) 
model assuming the error term followed a Weibull distri-
bution. To account for potential nonlinear relationships, 
we allowed the impact of 2-ethylhexanoic acid on survival 
to be modeled nonlinearly through natural cubic splines 
with 3 degrees of freedom. An interaction term between 
2-ethylhexanoic and sex was also included. The results 
are reported in Fig. 4. The AFT model demonstrated a 
good fit to the data (Fig. 4B) and identified significant 

associations: the nonlinear effects of 2-ethylhexanoic acid 
on survival were moderately significant (p-values 0.13, 
0.03, 0.07 for each degree of freedom), as was the interac-
tion between 2-ethylhexanoic acid and sex (p-values 0.13, 
0.08, 0.04 for each degree of freedom). In an AFT model, 
interpreting the coefficients is typically straightforward: a 
one-unit increase in a covariate leads to a multiplication 
of the failure time by the exponent of its coefficient. For 
example, a one-unit increase in the level of valeric acid is 
associated with a 16% increase in survival time, holding 

Fig. 4   A Summary of the fitted survival regression model. The table 
reports estimated values for each predictor variable in the model, 
including the intercept and the log of the scale parameter. “Std. 
Error” is the standard deviation of the sampling distribution of the 
coefficient estimates, indicating the precision of the estimates. “z” is 
the z-statistic for each coefficient, used to test the significance of each 
parameter. “p-value” is the p-value associated with the z-value, indi-
cating the significance of each predictor variable in the model; B The 
validity of the assumed Weibull distribution for the survival times can 
be assessed using residuals that account for censoring. This is done 
by computing the fitted model residuals and creating a Kaplan–Meier 
estimate. The estimated residuals and the assumed Weibull distribu-
tion are then plotted and compared to assess their fit. A good fit to 

the data indicates that the Weibull distribution is a suitable model for 
the survival times. The solid black line represents the Kaplan–Meier 
estimator of the residuals, with the black dotted lines representing the 
upper and lower 95%CI. The solid red line represents the survival 
probability estimated with the fitted AFT model. C Graphical repre-
sentation of the effect of 2-ethylhexanoic acid on log survival time, 
considering its interaction with sex. The left panel shows the effect of 
2-ethylhexanoic acid on log survival for male patients and the right 
panel for females. Since we modeled the effect of 2-ethylhexanoic 
using nonlinear terms (cubic splines), it is not constant for different 
expression levels. Since the biological features have been standard-
ized, the value “0” for 2-ethylhexanoic denotes the average expression 
of 2-ethylhexanoic acid



4320	 Journal of Neurology (2024) 271:4310–4325

other variables constant. Similarly, female patients are 
expected to have a 27% longer survival time compared to 
males, with other factors being equal.

However, the presence of interaction and nonlinear terms 
in our model complicates the interpretation of these coeffi-
cients. Therefore, we can graphically represent the effect of 
2-ethylhexanoic acid on log-transformed survival time for 
both male and female patients separately, providing a visual 
insight into its impact.

Discussion

In our study, we analyzed a broad spectrum of blood-based 
biological markers to delve into the increasingly recognized 
role of microbiome, metabolism, and immunity in ALS 
pathogenesis [47]. Our comprehensive assessment included 
14 inflammatory cytokines, 18 free fatty acids (end products 
of human and microbial metabolism), and TTV viremia, a 
virome-related potential marker linked to immune system 
function [40].

Initial univariate analysis revealed significant differences 
in 30 biological markers between newly diagnosed ALS 
patients and controls. Specifically, we found alterations in 
TTV viremia, 11 of the 14 tested cytokines and 16 over 18 
free fatty acids.

Most cytokines exhibited reduced levels in ALS patients 
compared to healthy controls, with the exception of IL-8, 
which was elevated. Such reductions in cytokine levels and 
changes in immune cell profiles are consistent with find-
ings in ALS [5, 15, 48, 52] and similar peripheral immune 
dysregulations reported in other neurodegenerative diseases 
such as Alzheimer’s, suggesting potential commonalities in 
immune alteration mechanisms across different neurological 
disorders [35].

The observed decrease in both proinflammatory and 
anti-inflammatory cytokines might result from peripheral 
immune cell anergy or an auto-regulatory feedback aimed 
at mitigating neuroinflammation. Factors such as changes 
in blood–brain barrier (BBB) permeability, allowing the 
infiltration of peripheral immune cells into the central 
nervous system, could contribute to this immune dysregu-
lation [35, 53]. However, the literature reports conflicting 
evidence, often indicating increased levels of cytokines, 
especially on soluble factors [60], including IL-8 [15, 25, 
30, 36, 50], a chemokine involved in microglia mobiliza-
tion and activation, which can exacerbate neuroinflamma-
tion and brain damage [14, 20, 49]. These discrepancies 
may stem from technical and methodological issues (i.e., 
small sample size of the analyzed cohort, selection bias, 
and the disease stage at which patients are studied [6]). 
Our previous studies, based on smaller cohorts, showed 
results that were not entirely consistent with the current 

findings [52]. In the present study, we enrolled patients 
shortly after diagnosis, excluding those with a history of 
acute infections or severe comorbidities that could inde-
pendently contribute to a chronic inflammation. This care-
ful patient selection and consideration of potential con-
founding factors lend additional weight to our findings, 
underscoring the complexity of immune dysregulation in 
ALS. Our study contributes to the expanding evidence on 
cytokine dysregulation in ALS, providing valuable insights 
into the intricate interplay of cytokines and immune cells 
in the context of ALS pathophysiology.

The observation of generally low levels of cytokines 
and chemokines alongside elevated TTV viremia in ALS 
patients, especially among those with fast and intermediate 
progression, points to a compromised peripheral immune 
response in ALS. The increased TTV load, which has been 
suggested as a marker of immune function, where higher 
levels indicate excessive immunosuppression and lower 
levels indicate insufficient immunosuppression in trans-
plant patients [64], may signify an ineffective immune 
response to the ongoing neuroinflammation characteris-
tic of ALS, especially in those who experience rapid dis-
ease progression. This pattern of higher TTV viremia was 
also found in patients with progressive multiple sclerosis 
compared to those with relapsing remitting forms [42], 
indicating a possible broader implication in neurological 
diseases.

Considering the noted microbiome alteration in ALS 
[52], a leaky gut barrier could allow the systemic spread 
of bacterial products and viruses. Viruses themselves may 
influence human health by shaping the microbiota or by 
direct interactions with the immune system [38], suggest-
ing that a comprehensive analysis of the gut virome and 
bacteriome in ALS could provide insightful information.

Furthermore, our investigation into FFA in ALS patients 
and healthy controls responds to emerging evidence linking 
alterations in the gut microbiome to changes in plasma lipid 
profiles in ALS, underscoring their potential as biomark-
ers for the disease [29]. FFA, which serve as regulators of 
immunity function and metabolism, can be categorized by 
their carbon chain length (short, medium, long, or very-
long) and saturation level. They are involved in inflamma-
tory processes and their structural variations are linked to 
different biological functions, connecting lipid peroxidation 
and metabolism to inflammation seen in disorders such as 
ALS and Alzheimer’s disease [24, 62]. Our findings support 
previous studies showing increased levels of total and very 
long chain fatty acids in the blood samples of ALS patients 
[2, 11, 17, 27], while in addition to this, we observed ele-
vated levels of MCFA, further highlighting the intricate 
interplay between lipid metabolism and disease pathogen-
esis in ALS. SCFA, the main microbiota-derived metabo-
lites, known for their neuro-immunoendocrine regulatory 
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and anti-inflammatory effects [22, 61], were found to be 
decreased, mirroring patterns observed in other neurologi-
cal disorders [15, 32, 66].

This reinforces the potential of serum lipid levels as bio-
markers and highlights the intricate relationships between 
metabolic changes, the microbiome, and immune responses 
in the context of ALS pathogenesis.

Our multivariate analysis, utilizing PERMANOVA with 
all the evaluated variables, successfully differentiated ALS 
patients from healthy controls. In addition, by applying a 
Gaussian Mixture Model, we identified shared biologi-
cal profiles among patients. The selection of variables for 
this model was guided by their statistical significance, 
determined through the mean absolute deviation method 
applied on the full range of biological features. This pro-
cess highlighted eight biological elements (valeric, 2-eth-
ylhexanoic, benzoic, hexadecanoic and octadecanoic 
acids, MCP-1 and MIP1-α cytokines, and TTV-DNA) as 
differentiators between ALS patients from healthy con-
trols. In addition, these eight biological variables organ-
ized patients into clusters with distinct characteristics. The 
clusters, characterized by unique metabolic signatures, did 
not correspond with traditional clinical ALS categories, 
such as onset type, phenotype, genotype, or disease pro-
gression rate. For instance, Cluster 3 exhibited low levels 
of valeric and 2-ethylhexanoic acids, Cluster 4 showed 
high levels of hexadecanoic and octadecanoic acids, and 
Cluster 5 had elevated 2-ethylhexanoic acid but reduced 
MCP-1α. This observation implies that the clusters may 
more accurately reflect metabolic variations in ALS rather 
than traditional clinical metrics [24, 34].

The distinction between these immune-metabolic clusters 
and classical clinical categorizations suggests the potential 
for identifying unique ALS biotypes, which could offer a 
more representation of the disease biological attributes. 
This perspective shift toward biological rather than clinical 
classification could enrich our understanding of ALS. Rec-
ognizing these groups could be instrumental in developing 
targeted therapeutic strategies for distinct segments within 
the ALS patient population. In our research, we delved into 
the prognostic potential of specific biological variables and 
uncovered a significant correlation between levels of 2-ethyl-
hexanoic acid and survival in ALS patients, revealing a nota-
ble gender-based difference in this association. This finding 
emphasizes sex differences in ALS [12, 46] and introduces 
an additional layer of complexity in utilizing these biomark-
ers for disease progression prediction.

The observed “protective” effect of 2-ethylhexanoic acids 
in females is unprecedented and could be explained by an 
interaction with estrogen hormones that were found neu-
roprotective in ALS [63, 65]. Another possibility is repre-
sented by a sex-specific genetic architecture [10]. However, 
our study’s limitations must be acknowledged. By focusing 

solely on blood-derived biomarkers, we missed the opportu-
nity to directly explore the gut–brain axis or to analyze gut 
microbiota composition differences between ALS patients 
and healthy controls or across the identified clusters. Con-
sequently, we could not provide direct evidence of an imbal-
anced gut microbiota composition in ALS, previously estab-
lished in our works [52].

Furthermore, while examining systemic immune dysregu-
lation provides a comprehensive perspective on the immune 
response in ALS, an ideal approach would include analyses 
at the single neuronal cell level. Future studies should aim to 
integrate single-cell analyses to enrich our findings, offering 
a finer-grained insight into the cellular dynamics at play. Our 
study’s scope was also limited by not including patients with 
other neurodegenerative diseases. This is a critical aspect, 
as these conditions are often considered in differential ALS 
diagnosis. Despite our rigorous selection criteria, we could 
not eliminate all potential confounding factors such as diet 
composition [18, 52]. Nonetheless, our study successfully 
identified distinct clusters within the ALS patient popula-
tion, characterized by unique biological profiles.

To further validate and expand our findings, future 
research should include a wider array of biomarkers, 
encompassing plasma, gut microbiome, and cellular immu-
nity aspects, such as regulatory T cells, in larger and more 
diverse cohorts. In addition, our methodology was tailored 
specifically for TTV detection and did not account for the 
discovery of other potentially relevant viruses. In conclu-
sion, our study marks a significant step forward in compre-
hensively analyzing serum cytokine profiles, FFA, and TTV 
in a substantial ALS patient cohort. We have highlighted 
peripheral immune deficiencies and facilitated the classifica-
tion of ALS patients into distinct groups based on a combi-
nation of host (cytokines) and microbiome-related variables 
(TTV and SCFA).

This novel approach holds promise for better identifying 
ALS subgroups that may exhibit differential responses to 
therapeutic interventions.
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