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Abstract
Individuals with neurodevelopmental disorders experience persistent sleep deficits, and there is increasing evidence that 
sleep dysregulation is an underlying cause, rather than merely an effect, of the synaptic and behavioral defects observed in 
these disorders. At the molecular level, dysregulation of the synaptic proteome is a common feature of neurodevelopmental 
disorders, though the mechanism connecting these molecular and behavioral phenotypes is an ongoing area of investigation. 
A role for eIF2α in shifting the local proteome in response to changes in the conditions at the synapse has emerged. Here, 
we discuss recent progress in characterizing the intersection of local synaptic translation and sleep and propose a reciprocal 
mechanism of dysregulation in the development of synaptic plasticity defects in neurodevelopmental disorders.
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Introduction

Sleep is an evolutionarily conserved state. Sleep has essen-
tial roles in the health of an organism at the system level 
and sits at the intersection between many key molecular 
and metabolic pathways throughout the body and lifetime. 
Specifically, sleep has a critical developmental function in 
the nervous system on synaptic connections and plastic-
ity. Sleep carries a major function in learning and memory 
consolidation (Benington and Frank 2003; Stickgold 2005; 
Diekelmann and Born 2010). Reactivation of neural circuits 
engaged during wake is part of the consolidation process 
during sleep, and this memory consolidation involves syn-
aptic modification (Llinas and Steriade 2006; Born and Feld 
2012). A net loss of synapses is found during sleep in the 
developing mouse cortex (Maret et al. 2011; Yang and Gan 
2011), the zebrafish brain (Appelbaum et al. 2010), and the 

fly nervous system (Donlea et al. 2009; Bushey et al. 2011), 
indicating that sleep is also important for the downscaling 
of synaptic connectivity potentiated during wakefulness 
(Tononi and Cirelli 2003; Diering et al. 2017). Translation 
plays a critical role in synaptic plasticity that gives rise to 
memory consolidation, and proteins required for synaptic 
plasticity increase during the early hours of sleep (Aton 
et al. 2009). Sleep deprivation attenuates the initiation of 
mTORC1-dependent protein synthesis and impairs memory, 
which can be rescued by 4EBP2 phosphorylation (Tudor 
et al. 2016). The ability to regulate translation in cellular 
compartments distant from the nucleus, such as synapses, 
presents an additional challenge, which is facilitated by the 
ability to transport transcripts in anticipation of need for 
local translation at the synapse. This compartmentalization 
highlights the importance of translation as a spatio-temporal 
regulator of gene expression in the brain. Modulation from 
the nucleus alone is insufficient to respond to changes in 
distal synaptic environments. Sleep prioritizes the transla-
tion of proteins necessary for the repair of activity- or stress-
induced damage that accumulates during wake (Cagnetta 
et al. 2019; Noya et al. 2019), thus persistent sleep deficits 
pose a significant threat to synaptic health and function.

Abnormal sleep is a common underlying feature of neu-
rodevelopmental disorders (NDD). NDD is a broad clas-
sification of a wide variety of disorders which affect the 
proper development of the brain and other systems whose 
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functions are intertwined with neuronal processes. Although 
these disorders stem from a broad spectrum of interacting 
genetic and environmental triggers, they converge on a set of 
core features, including cognitive impairment (Schwartz and 
Neri 2012), behavioral deficits (Bicks et al. 2015), abnormal 
sleep (Esbensen and Schwichtenberg 2016), and synaptic 
dysfunction (Ash et al. 2021; Golovin et al. 2021). Sleep 
abnormalities are prevalent amongst children with NDD, 
and 34% to 86% of children with intellectual disabilities 
experience sleep difficulties, which is thought to underlie 
the synaptic and behavioral deficits observed in these disor-
ders (Limoges et al. 2005; Malow et al. 2006; Kronk et al. 
2010; Sivertsen et al. 2012; Esbensen and Schwichtenberg 
2016). Impaired sleep manifests as a variety of deleterious 
stresses and dysfunction at the molecular, cellular, and syn-
aptic levels including altered DNA methylation and gene 
expression, redox metabolism, DNA damage repair, den-
dritic spine density, and synaptic plasticity (Vecsey et al. 
2009; Narwade et al. 2017; Trivedi et al. 2017; Cedernaes 
et al. 2018; Ämmälä et al. 2019; Cheung et al. 2019; Raven 
et al. 2019; Coulson et al. 2022; Vanrobaeys et al. 2023). 
Although the genetic etiologies of NDDs are complex and 
diverse, mutations in two clusters of genes, those involved in 
translational regulation and in synaptic functions, are com-
monly observed in monogenic forms of autism spectrum 
disorder (ASD) (reviewed by Santini and Klann 2014). Con-
cordance between the dysregulation in synaptic translation 
and sleep suggests sleep directly regulates synaptic plasticity 
and the development of behavioral and cognitive outcomes 
commonly observed in individuals with NDDs.

Translational rhythms are sleep‑dependent

The dichotomous regulation behind the seemingly synchro-
nous patterns of transcription and translation in the mouse 
forebrain is divided between inherent and activity-driven 
rhythms. This relationship was demonstrated in a study by 
Noya et al (2019), which showed that synaptic transcripts 
and proteins both peak at two specific phases: pre-dawn 
and pre-dusk, however, the dependency of these oscilla-
tions on circadian rhythms and sleep are distinct (Noya 
et al. 2019). Transcripts involved in functions relating to 
translation and metabolism specifically peak prior to dawn, 
preceding the transition to the resting sleep phase in noc-
turnal mice. This contrasts with the pre-dusk peak, preced-
ing the transition to the wake phase, which is enriched for 
synaptic signaling functions. Transcript oscillations per-
sist under constant darkness conditions and are ablated in 
clock-deficient Bmal1−/− mice; however, oscillations of 
many cycling transcripts are resistant to sleep deprivation, 
demonstrating strong circadian regulation at the level of 
transcription. Sleep supports macromolecule biosynthesis 

under conditions of stress in rodents, thus oscillations of 
the proteome are responsive to sleep state and conditions 
which promote sleep (Makletsova et al. 2006; Noya et al. 
2019). 11.7% of synaptic proteins and 17.2% of forebrain 
proteins are rhythmic, and sleep deprivation ablates nearly 
all (98%) oscillating proteins, highlighting the contrasting 
sleep-dependent regulation of the synaptic proteome (Noya 
et al. 2019). Nearly half of locally translated synaptic pro-
teins are represented in the oscillating proteome (Ouwenga 
et al. 2017). Among synaptically localized proteins, approx-
imately 50% also exhibit cyclic phosphorylation, peaking 
at transitions between sleep and wake. Under conditions 
of sleep deprivation, 98% of rhythmic synaptic phospho-
rylation is lost (Brüning et al. 2019). The synchronous but 
differentially regulated relationship between the synaptic 
transcriptome and proteome suggests a model in which the 
production and transport of synaptic transcripts oscillate in 
circadian anticipation of need, followed by local translation 
at the synapse based on actual need during sleep and wake.

Local translation enables spatio‑temporal 
compartmentalization

Activity-dependent translation plays an important role in 
synapse maturation and function, which is critical in learn-
ing and memory (Migaud et al. 1998; El-Husseini et al. 
2002). Increased need for translation efficiency in response 
to synaptic stimuli may require a shift towards local transla-
tion over protein shuttling. In recent years, evidence sup-
porting local translation at synapses has grown, and it has 
become increasingly clear that protein synthesis occurs 
directly in pre- and postsynaptic compartments. Local 
translation responds to local activity and metabolic needs 
at large distances from the nucleus (Hafner et al. 2019). 
This offers increased flexibility in response to stimuli in 
distal cellular compartments, such as axons and dendrites. 
Transcripts and regulatory proteins are preemptively shut-
tled from the nucleus to sites of activity, with diversity in 
the 3’ untranslated region (UTR) playing a role in localiza-
tion, stabilization, and translational regulation (Tushev et al. 
2018). Locally translated transcripts are enriched for longer, 
more GC-rich coding sequences and UTRs with increased 
G-quartet structure (Ouwenga et al. 2017). This mechanism 
enables translation to occur directly on site by local pools of 
ribosomes and other translational machinery in response to 
stimuli and is critical for protein synthesis-dependent syn-
aptic plasticity (Fig. 1).

The functional relationship between synaptic plasticity and 
translation has been demonstrated through reciprocal modula-
tion of long-term depression (LTD) and long-term potentia-
tion (LTP) by translation induction and inhibition respectively 
(Gkogkas et al. 2013; Santini et al. 2013). Furthermore, the 



255Journal of Comparative Physiology B (2024) 194:253–263 

importance of sleep-specific protein translation in memory 
consolidation and cortical plasticity has been demonstrated 
in ocular dominance plasticity (ODP) in the cat (Seibt et al. 
2012). This model demonstrates that although transcription 
occurs during waking experience, protein translation must 
occur during sleep to promote ODP and favors the mTOR-
dependent translation of a specific subset of plasticity-related 
transcripts. Sleep specifically promotes translation initiation 
over elongation through the phosphorylation of 4E-BP1 and 
eEF2, potentially enhancing the translation of specific pools 
of transcripts (Belelovsky et al. 2005; Seibt et al. 2012). To 
support proteomic needs at the synapse, polyribosomes tran-
siently and selectively accumulate in dendritic spines during 
memory consolidation (Ostroff et al. 2017, 2018). However, 
within the neuropil, local translation prioritizes monosomes 
(solitary mRNA-associated ribosomes), compared to the soma, 
where translation by polysomes is more frequent. While the 
abundance of monosomes at the synapse was previously con-
sidered evidence for limited or inefficient local translation, this 
may be a mechanism of promoting the translation of a diverse 
set of proteins at the synapse, where ribosome availability may 
be limited. Neuropil transcripts translated by monosomes are 
enriched for functions relating to the synapse, vesicles, and 
dendritic tree and include both low and high abundance tran-
scripts (Biever et al. 2020).

Translation of stress response proteins 
is prioritized during sleep

RNA granules regulate the transport of aggregated 
mRNA–protein complexes for local translation at the syn-
apse. Stress granules carrying mRNAs and binding proteins 

which function to reprogram translation to respond to stress-
ful conditions may be particularly relevant to sleep-specific 
translation, as sleep promotes repair and recovery (Suber-
bielle et al. 2013; Bellesi et al. 2016; Xie et al. 2018; Cheung 
et al. 2019; Mourrain and Wang 2019; Zada et al. 2019). 
eIF2α is a central hub of translational regulation, mediating 
proteomic transitions between normal neuronal function and 
stress response. Phosphorylation of eIF2α results in a shift 
from polysome translation to monosomes (Bellato and Hajj 
2016), thus after the buildup of damage from activity and 
stress during wake, phosphorylation of synaptically local-
ized eIF2α may drive translation towards the prioritization 
of repair and recovery proteins by monosomes during sleep. 
Recently, a non-canonical translational program mediated by 
phospho-eIF2α was characterized in axons. This pathway is 
induced by Sema3A, which initiates an early wave of local 
translation by mTOR and ERK1/2, triggering the phospho-
rylation of eIF2α by PERK. This Sema3A-phospho-eIF2α 
pathway induces the translation of proteins involved in meta-
bolic pathways, endoplasmic reticulum (ER) and mitochon-
drial processes, and response to stress (Cagnetta et al. 2019). 
This pathway, however, is distinct from the canonical stress 
response, resulting in an eIF2B-mediated upregulation of 
global translation rather than repression. In Xenopus, this 
local PERK-induced phospho-eIF2α translational pathway 
is required for axon guidance and terminal branching in the 
retina.

Not only does sleep dictate proteomic need, but pro-
teostatic pathways also directly impact sleep–wake states. 
PERK signaling, which regulates translation in response to 
ER stress, promotes sleep in both Drosophila and zebrafish 
(Ly et al. 2020). PERK activity is directly linked to the 
phosphorylation of eIF2α, which is a critical component of 

Fig. 1  Translation is locally regulated during sleep to promote path-
ways involved in memory consolidation, homeostasis, and repair. 
Binding of specific translation regulators, prioritization of initiation 

over elongation, and preferential translation by monosomes promotes 
the synthesis of a diverse and specific pool of proteins required for 
these functions
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translation initiation and is responsive to stress through the 
convergence of PERK, PKR, GCN1, and HRI pathways, 
known as the integrated stress response. Sleep deprivation 
induces PERK and eIF2α phosphorylation (Naidoo et al. 
2005) and reduced ER stress improves sleep consolidation 
and cognitive performance (Hafycz et al. 2022). Addition-
ally, Salubrinal, an inhibitor of eIF2α dephosphorylation, 
blocks LTP and promotes non-REM sleep (Costa-Mattioli 
et al. 2007; Methippara et al. 2009, 2012). Sleep is consid-
ered a restorative state, and changes in the translational pro-
file is one mechanism by which this occurs. Oxidative stress, 
ER stress, and macromolecular damage all trigger responses 
in this translational pathway to restore proteostasis and pri-
oritize the translation of proteins necessary to respond to a 
particular stress stimulus.

Early life sleep has long‑term behavioral 
effects

The developmental regulation of sleep is conserved across 
multiple species, including mammals, fish, birds, insects, 
and worms, with sleep duration peaking during early life 
and decreasing through development (reviewed by Kayser 
and Biron 2016). In humans, infants sleep 16–18 h a day on 
average, however, sleep architecture is markedly different 
during postnatal years compared to later in development, 
and is characterized by increased daytime sleep, fragmented 
nighttime sleep, and transition into REM sleep at onset, with 
50% of sleep time spent in active sleep/REM sleep (Grigg-
Damberger 2016). Sensory feedback during REM myoclonic 
twitches promotes cortico-hippocampal coherence and the 
development of sensorimotor circuits (Del Rio-Bermudez 
et al. 2020), and extended postnatal REM sleep likely plays 
a role in the early development of this system (Gómez et al. 
2023). The human brain doubles in volume during the first 
year of life, a period of rapid synaptogenesis, reaching about 
80–90% of adult volume by 2 years of age (Knickmeyer et al. 
2008), and sleep duration during the first year of life is posi-
tively associated with this growth in brain volume (Pittner 
et al. 2023). This growth is mirrored by the increase of syn-
aptic density and the abundance of synaptic proteins, which 
peak early in development (Glantz et al. 2007).

Early postnatal development is characterized by “critical 
periods”, or heightened periods of plasticity characterized by 
increased receptiveness to external stimuli. Sleep enhances 
plasticity during these periods (Frank et al. 2001; Wang et al. 
2011) and synaptic changes caused by sleep disruption have 
long-term effects on behavior and cognition throughout life. 
Early postnatal sleep disruption leads to chronic age and sex-
dependent dysregulation of sleep in adulthood and impaired 
sociability and social bonding in prairie voles (Jones et al. 
2019; Jones-Tinsley et al. 2023). Similarly, early life sleep 

deprivation leads to long-lasting social novelty preference 
impairment in mice (Bian et al. 2022) and REM deprivation 
in neonatal rats leads to depressive symptoms in adulthood 
(Feng and Ma 2003). These deficits are characteristic of 
behavioral features shared by many NDDs, highlighting the 
impact of disrupted sleep during postnatal critical periods in 
the establishment of synaptic networks and shaping life-long 
changes in plasticity and behavioral outcomes.

Sleep intervention may target synaptic 
translation defects in neurodevelopmental 
disorders

The pathology of many NDDs lies at the convergence of 
translational dysregulation, sleep abnormalities, and altered 
synaptic function. ASD is a complex NDD, characterized 
by social, behavioral, and cognitive deficits, and affects 1 
in 59 children worldwide (Baio et al. 2018). The genetic 
etiology of ASD is extremely variable and often unknown, 
with combined copy number variant (CNV) and exome 
sequencing identifying single causative mutations in only 
11% of simplex ASD cases (Sanders et al. 2015). Fragile X 
syndrome (FXS) is the most common monogenic cause of 
inherited intellectual disability and ASD, and is character-
ized by behavioral deficits, cognitive impairment, and sleep 
abnormalities (Kelleher and Bear 2008). FXS is primarily 
caused by the expansion of a CGG trinucleotide beyond 
200 repeats within the 5ʹ UTR of the Fragile X Messenger 
Ribonucleoprotein 1 gene (FMR1), leading to its hypermeth-
ylation and silencing. Its encoded protein, Fragile X Mes-
senger Ribonucleoprotein (FMRP), regulates approximately 
4% of all mRNA transcripts in the brain (Brown et al. 2001), 
many of which play critical roles in synapse development 
and plasticity (Brown et al. 2001; Darnell et al. 2001; Miya-
shiro et al. 2003; Antar et al. 2006; Zalfa et al. 2007; Bassell 
and Warren 2008). Phelan-McDermid syndrome, another 
genetic cause of ASD, is caused by the loss of SHANK3, 
a junction protein critical for synaptic function, and shares 
many behavioral, cognitive, and sleep phenotypes with other 
NDDs (Peça et al. 2011; Ingiosi et al. 2019; Bian et al. 2022, 
2023; Lord et al. 2022; Medina et al. 2022). Despite vari-
ability in the underlying etiologies of NDDs, poor sleep is 
an extremely pervasive feature, with negative consequences 
on brain development, cognition, mood, and behavior. Dis-
rupted sleep is observed in infants prior to the development 
of autistic traits, suggesting a causal impact on the develop-
ment of these traits (Reynolds et al. 2019; MacDuffie et al. 
2020). Sleep onset in early development correlates with 
behavioral regulation in children with ASD (Tesfaye et al. 
2021) and sleep difficulties are predictive of several diagnos-
tic criteria including autism severity scores, social deficits, 
stereotypic behaviors, communication deficits, and general 
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developmental abnormalities (Schreck et al. 2004). Although 
the causative mutation may vary, dysregulated protein syn-
thesis is a commonly affected functional pathway among 
genetically unique cases (Table 1).

Local translation in dendritic spines plays an important 
role in their size and morphology, which is a major molecu-
lar phenotype of ASD. Overexpression of eIF4E, a key factor 
in translation initiation, alone mimics many synaptic and 
behavioral phenotypes of ASD in mice and is rescued by 
the downregulation of translation or specific knockdown 
of neuroligins (Gkogkas et al. 2013). In fact, disruption of 
the synthesis of several synaptic proteins, resulting in either 
overexpression or under expression, leads to the develop-
ment of ASD-like phenotypes (Santini et al. 2013). In den-
drites and dendritic spines, FMRP is involved in mRNA 
transport and the local synthesis of proteins involved in 
postsynaptic functions (Feng et al. 1997b, a; Weiler et al. 
2004; Dictenberg et al. 2008). FMRP functions as part of 
ribonuclear protein (RNP) granules to regulate translation 
in cellular compartments distant from the nucleus, such 
as synapses. FMRP preferentially binds and promotes the 
translation of large transcripts, which often have low transla-
tion efficiencies, similar to transcripts that are preferentially 
translated by phospho-eIF2α and transcripts that are locally 
translated. Concordantly, locally translated transcripts are 
enriched for FMRP binding (Ouwenga et al. 2017). In Dros-
ophila, dFmr1 plays an important role in the translation of 
transcripts supporting neurogenesis after a prolonged pause 
at the oocyte stage (Greenblatt and Spradling 2018). Thus, 
FMRP preserves the translational efficiency of targets that 
must undergo delayed translation after transport or storage. 
This stimulus-induced delayed translation is essential for 
modulation of neuronal networks, such as the plasticity of 
synaptic strength through the regulation of glutamate signal-
ing at the synapse. FMRP modulates the translation of spe-
cific mRNA pools that directly affect the internalization of 
glutamate receptors at the synapse (Bear et al. 2004; Bhakar 
et al. 2012). Glutamate receptor internalization is a criti-
cal step in LTD-dependent synaptic plasticity (Bear et al. 
2004) and in normal sleep-dependent synaptic homeostasis 
(Bushey et al. 2011).

In Drosophila, dFmr1 levels are inversely correlated with 
sleep amount, with high levels corresponding to short sleep 
and low levels corresponding to long sleep, and modulation 
in both directions impairs sleep homeostasis after depriva-
tion (Bushey et al. 2009). Disrupted rhythms of metabolic 
demand at the synapse due to persistent sleep dysregula-
tion likely has significant impacts on synaptic function and 
behavioral and cognitive outcomes. Targeting of major 
translational regulators presents a potential therapeutic strat-
egy for the rescue of synaptic and behavioral phenotypes 
observed broadly among NDDs. Because of the shift in pro-
teomic need between wake and rest, sleep is one of the key 

drivers of translation. Failure to coordinate proteomic levels 
with energy demand hinders the ability of synapses to cycle 
between activity and repair. Thus, the frequent and persis-
tent sleep deficits experienced by individuals with NDDs 
likely cause a detrimental shift in translation, leading to an 
imbalance in the synaptic proteome and the development of 
adverse behavioral and cognitive outcomes. Sleep defects in 
NDDs manifest very early in development, likely having a 
compounding effect on synaptic structure and connectivity 
over the course of an individual’s life. Combining pharma-
cological treatment with sleep intervention early in develop-
ment is a promising therapeutic strategy in modulating local 
synaptic translation and improving cognitive and behavioral 
outcomes in NDDs.

Discussion

Sleep is a fundamental state, conserved across all animals 
and plays essential roles in functions throughout the body, 
including cellular metabolism, biomolecular repair, and 
synaptic plasticity. In particular, the awake brain is highly 
metabolically demanding and is under unique regeneration 
constraints. Sleep provides a restorative state to maintain and 
repair this system, however, the specific mechanisms driving 
sleep-mediated synaptic plasticity and how they are dys-
regulated in disease are not fully understood. Further study 
examining the molecular mechanisms of sleep-dependent 
synaptic translation is critical for the development of tar-
geted therapies to improve the quality of life of individuals 
with NDDs. Sleep intervention presents a non-invasive and 
adaptable therapeutic strategy to alleviate the cognitive and 
behavioral phenotypes that arise from dysregulation at the 
molecular level. Local translation at the synapse provides 
the spatial and temporal capacity necessary to respond to 
changes in signaling and metabolic demand between states 
of activity and rest (Fig. 2). Additional research on the role 
of eIF2α-mediated translation at the synapse in the response 
to acute stress and physiological rhythms of activity/rest and 
damage/repair will provide valuable insight into the role of 
this translational hub in supporting synaptic plasticity and 
cognitive function. The complexity of the synaptic network 
creates increased demand on translational regulation, and 
sleep provides a critical phase for the processing of waking 
experiences and repair of activity-induced damage, which 
rely heavily on protein synthesis. Impaired sleep results in a 
variety of stresses and dysfunction at the molecular, cellular, 
and synaptic levels. While sleep deficits are widely thought 
to contribute to cognition and memory impairment in NDD, 
the molecular underpinnings of its effect on synaptic plastic-
ity are complex and not fully understood. Although NDDs 
arise through diverse genetic and environmental interac-
tions and differ in their unique presentation, disruption of 
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translation by sleep dysregulation could be a core phenotype 
across the spectrum.
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