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Abstract

Single-cell RNA sequencing and other profiling assays have helped interrogate cells at 

unprecedented resolution and scale, but are inherently destructive. Raman microscopy reports on 

the vibrational energy levels of proteins and metabolites in a label-free and nondestructive manner 

at subcellular spatial resolution, but it lacks genetic and molecular interpretability. Here we present 

Raman2RNA (R2R), a method to infer single-cell expression profiles in live cells through label-

free hyperspectral Raman microscopy images and domain translation. We predict single-cell RNA 

sequencing profiles nondestructively from Raman images using either anchor-based integration 

with single molecule fluorescence in situ hybridization, or anchor-free generation with adversarial 

autoencoders. R2R outperformed inference from brightfield images (cosine similarities: R2R 

>0.85 and brightfield <0.15). In reprogramming of mouse fibroblasts into induced pluripotent stem 

cells, R2R inferred the expression profiles of various cell states. With live-cell tracking of mouse 

embryonic stem cell differentiation, R2R traced the early emergence of lineage divergence and 

differentiation trajectories, overcoming discontinuities in expression space. R2R lays a foundation 

for future exploration of live genomic dynamics.

Cellular states and functions are determined by a dynamic balance between intrinsic and 

extrinsic programs. Dynamic processes such as cell growth, stress responses, differentiation 

and reprogramming are not determined by a single gene, but by the orchestrated temporal 

expression and function of multiple genes organized in programs and their interactions with 

other cells and the surrounding environment1. Deciphering the dynamics of the underlying 

gene programs is essential to understanding how cells change their states in physiological 

and pathological conditions.

Despite substantial advances in single-cell genomics and microscopy, we still cannot 

typically track live cells and tissues at the genomic level. On the one hand, single-cell and 

spatial genomics have provided a view of gene programs and cell states at unprecedented 

scale and resolution1. However, these measurement methods are destructive and involve 

tissue fixation and freezing or cell lysis, precluding us from directly tracking the dynamics 

of full molecular profiles in live cells across multiple divisions or organisms. While 

advanced computational methods such as pseudo-time algorithms (for example, Monocle2 

and Waddington-OT (WOT)3) and RNA velocity-based methods (for example, velocyto4 and 

scVelo5) can infer dynamics from snapshots of molecular profiles, they rely on assumptions 

that remain challenging to achieve experimentally6. These include continuity in expression 

space, the Markov property, or known and time-invariant RNA processing rates, which may 

be violated, respectively, when the time scale of sampling mismatches biological changes3,7, 

epigenetic modifications occur, or rates vary with time8. On the other hand, fluorescent 

reporters can be used to monitor the dynamics of individual genes and programs within live 

cells, but are limited in the number of targets they can report9, must be chosen ahead of 

Kobayashi-Kirschvink et al. Page 2

Nat Biotechnol. Author manuscript; available in PMC 2024 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the experiment, and often involve genetically engineered cells. Moreover, the vast majority 

of dyes and reporters require fixation or can interfere with nascent biochemical processes 

and alter the natural state of the gene of interest9. Exciting advances such as Live-seq that 

samples genomic profiles from live cells can only be applied at a small number of time 

points per cell with very limited throughput10. Therefore, it remains technically challenging 

to dynamically monitor the activity of a large number of genes simultaneously.

Raman microscopy opens a unique opportunity for monitoring live cells and tissues, 

because it collectively reports on the vibrational energy levels of molecules, such as nucleic 

acids, proteins and metabolites, in a label-free and nondestructive manner at subcellular 

spatial resolution (<500 nm), thus providing molecular fingerprints of cells11. Pioneering 

research has demonstrated that Raman microscopy can be used for characterizing cell types 

and cell states11, nondestructively diagnosing pathological specimens such as tumors12, 

characterizing the developmental states of embryos13, and identifying bacteria with 

antibiotic resistance14. However, the complex and high-dimensional nature of the spectra, 

the spectral overlaps of biomolecules such as proteins and nucleic acids, and the lack of 

unified computational frameworks have hindered the decomposition and interpretation of the 

underlying molecular profiles9,11.

In this Article, to address this challenge and leverage the complementary strengths of Raman 

microscopy and single-cell RNA sequencing (scRNA-seq), we developed Raman2RNA 

(R2R), an experimental and computational framework for inferring single-cell RNA 

expression profiles from label-free nondestructive Raman hyperspectral images (Fig. 1). 

R2R takes spatially resolved hyperspectral Raman images (full Raman spectrum for each 

pixel in an image) from live cells, single molecule fluorescence in situ hybridization 

(smFISH) data of selected markers from the same cells, and scRNA-seq from the same 

biological system. R2R then learns a common latent space of the paired or unpaired 

Raman images and scRNA-seq using Tangram’s15 label transfer or adversarial autoencoders 

(AAEs), respectively. Finally, R2R translates Raman images into single-cell expression 

profiles, which we validated by smFISH. When combined with separate single-cell live 

tracking of time-lapse Raman imaging during embryonic stem (ES) cell differentiation, the 

result is a label-free live-cell inference of single-cell expression profiles over time.

To facilitate data acquisition, we developed a high-throughput multimodal Raman 

microscope that enables the automated acquisition of Raman spectra, brightfield and 

fluorescent images. To this end, we integrated Raman microscopy optics to a fluorescence 

microscope, where high-speed galvo mirrors and motorized stages were combined to achieve 

scanning of a large field of view (FOV), and where dedicated electronics and software 

automated measurements across multiple modalities (Extended Data Fig. 1, Supplementary 

Fig. 1 and Methods).

We first demonstrated that R2R can infer profiles of two distinct cell types: mouse induced 

pluripotent stem (iPS) cells expressing an endogenous Oct4–green fluorescent protein (GFP) 

reporter and mouse fibroblasts16. To this end, we mixed the cells in equal proportions, plated 

them in a gelatin-coated quartz glass-bottom Petri dish, and performed live-cell Raman 

imaging, along with fluorescent imaging of a live-cell nucleus staining dye (Hoechst 33342) 
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for cell segmentation and image registration, and an iPS cell marker gene, Oct4–GFP (Fig. 

2a and Methods). The excitation wavelength for our Raman microscope (785 nm) was 

distant enough from the GFP Stokes shift emission, such that there was no interference with 

the cellular Raman spectra (Supplementary Fig. 2). Furthermore, there was no noticeable 

phototoxicity induced in the cells (Supplementary Fig. 3). After Raman and fluorescence 

imaging, we fixed and permeabilized the cells and performed smFISH of marker genes 

for mouse iPS cells (Nanog) and fibroblasts (Col1a1) with hybridization chain reaction 

(HCR17; Methods). We registered the nucleus stains, GFP images, HCR images and Raman 

images through either polystyrene control bead images or reference points marked under the 

glass-bottom dishes (Supplementary Fig. 4 and Methods).

The Raman spectra distinguished the two cell populations in a manner congruent with 

the expression of their respective reporters (measured live or by smFISH in the same 

cells), as reflected by a low-dimensional embedding of hyperspectral Raman data (Fig. 

2b). Specifically, we focused on the fingerprint region of Raman spectra (600–1,800 cm−1, 

capturing 930 of the 1,340 features in a Raman spectrum), where most of the signatures 

from various key biomolecules, such as proteins, nucleic acids and metabolites, lie11. After 

basic preprocessing, including cosmic-ray and background removal and normalization, we 

aggregated Raman spectra that are confined to the nucleus, obtaining a 930-dimensional 

Raman spectroscopic representation for each cell’s nucleus. We then visualized these 

Raman profiles in an embedding in two dimensions using uniform manifold approximation 

and projection (UMAP)18 and labeled cells with the gene expression levels that were 

concurrently measured by either an Oct4–GFP reporter or smFISH (Fig. 2b). The cells 

separated clearly in their Raman profiles in a manner consistent with their gene expression 

characteristics, forming two main subsets in the embedding, one with cells with high 

Oct4 and Nanog expression (iPS cell markers) and another with cells with relatively high 

Col1a1 expression (fibroblast marker), indicating that Raman spectra are consistent with 

cell-intrinsic expression differences (Fig. 2b).

We further successfully trained a classifier to classify the ‘on’ or ‘off’ expression states 

of Oct4, Nanog and Col1a1 in each cell on the basis of its Raman profile (Methods). We 

trained a logistic regression classifier with 50% of the data and held out 50% for testing. 

We predicted Oct4 and Nanog expression states with high accuracy on the held-out test data 

(area under the receiver operating characteristic curve (AUROC) 0.98 and 0.95, respectively; 

Fig. 2c), indicating that expression of iPS cell markers can be predicted confidently from 

Raman spectra of live, label-free cells. We also successfully classified the expression state of 

the fibroblast marker Col1a1, albeit with lower confidence (AUROC 0.87; Fig. 2c), which is 

consistent with the lower contrast in Col1a1 expression (Fig. 2b) between iPS cells (Oct4+ 

or Nanog+ cells) versus non-iPS cells, compared to Oct4 or Nanog. Most misclassifications 

occurred when the ground truth expression level was near the threshold of the classifier, 

showing that misclassifications were probably due to the uncertainty in the ground truth 

expression (Supplementary Fig. 5).

Next, we asked if the Raman images could predict entire expression profiles 

nondestructively at single-cell resolution. To this end, we aimed to generate single-cell 

expression profiles from Raman images by multimodal data integration and translation, 
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using multiplex smFISH data to anchor between the Raman images and scRNA-seq profiles 

(Fig. 3a). As a test case, we focused on mouse iPS cell reprogramming, where we have 

previously generated ~250,000 scRNA-seq profiles at half-day intervals throughout an 18-

day, 36-time-point time course of reprogramming3 (Methods). Using WOT3 we selected 

from the scRNA-seq profiles nine anchor genes that represent diverse cell types that 

emerge during reprogramming (iPS cells: Nanog, Utf1 and Epcam; mesenchymal–epithelial 

transition (MET) and neural: Nnat and Fabp7; epithelial: Krt7 and Peg10; stromal: Bgn and 

Col1a1; Methods). We performed live-cell Raman imaging from day 8 of reprogramming, in 

which distinct cell types begin to emerge3, up to day 14.5, at half-day intervals, totaling 14 

time points (Methods). We imaged ~500 cells per plate at 1 μm spatial resolution. Finally, 

we fixed cells immediately after each Raman imaging time point, followed by smFISH 

on the nine anchor genes (Methods). Strikingly, a low-dimensional representation of the 

Raman profiles showed that they encoded similar temporal dynamics to those observed with 

scRNA-seq during reprogramming (Fig. 3b,c and Supplementary Fig. 6), indicating that they 

may qualitatively mirror scRNA-seq.

We next inferred scRNA-seq expression profiles from Raman images in two steps using the 

smFISH marker genes as anchors (Methods), first learning a fully connected neural net that 

predicts smFISH anchors from the Raman profiles (Methods) and then using Tangram15 to 

map from the predicted anchors to full scRNA-seq profiles (Figs. 1 and 3a). In the first 

step, we averaged the smFISH signal within a nucleus, yielding a nine-dimensional smFISH 

profile for each single nucleus. Then, we trained a deep neural net to translate Raman 

profiles to these nine-dimensional profiles using 50% of the paired Raman and smFISH 

profiles as training data. In the second step, we mapped the anchor smFISH profiles to full 

scRNA-seq using Tangram.

The anchor-based R2R yielded well-predicted single-cell RNA profiles, by several lines of 

evidence (Fig. 3d–f). First, we performed leave-one-out cross-validation (LOOCV), in which 

we used eight of the nine anchor genes to integrate Raman with scRNA-seq profiles and 

compared the predicted expression of the remaining gene to its smFISH measurements. 

There was a significant correlation between the predicted and measured smFISH expression 

for any left-out gene, albeit with lower performance for Col1a1 (as also noted above) (cosine 

similarity r ≈ 0.8 except Col1a1, P value <10−100; Fig. 3d). Second, we compared the real 

(scRNA-seq measured) and R2R-generated expression profiles averaged across cells of the 

same cell type (‘pseudo-bulk’ for each of iPS cells, epithelial cells, stromal cells and MET). 

To this end, we first obtained the ‘ground truth’ cell types of R2R profiles by transferring 

scRNA-seq annotations to the paired real smFISH profiles in the test set using Tangram’s 

label transfer function, and based on the labels, averaged R2R’s generated profiles across 

the cells of a single cell type (Supplementary Fig. 7). The R2R-generated and scRNA-seq 

pseudo-bulk profiles per cell type were highly correlated (cosine similarity >0.85) (Fig. 

3e,f and Extended Data Fig. 2), demonstrating the accuracy of R2R at the cell type level. 

Moreover, the R2R generated profiles could be correctly classified to their day label at half-

day resolution and were reasonably correlated (in pseudo-bulk) to real profiles at each time 

point for each cell type at both the global profile and individual gene level (Supplementary 

Fig. 8), showing that the generated profiles can distinguish temporal changes during iPS 

cell reprograming. Consistently, projecting the R2R generated profiles of each cell onto 
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an embedding learned from the real scRNA-seq shows that the generated profiles span the 

key cell types as captured in real profiles (Fig. 3g–i and Extended Data Figs. 3–7). We 

note that the predicted profiles had lower variance compared to real scRNA-seq. As this 

is observed even when only using smFISH profiles to infer scRNA-seq profiles (with no 

Raman data; Supplementary Fig. 9, right), we believe it mostly reflects the limited number 

and domain maladaptation of the smFISH anchor genes used for integration. To test the 

robustness of the predictions, we downsampled the number of cells and anchor genes used 

for training, finding that ~600 cells (approximately tenfold less than the original input) and 

four to five smFISH genes, were typically sufficient for reliable transcriptome generation as 

long as they covered the relevant cell types (Supplementary Figs. 10a,b and 11). Finally, we 

examind the ability to predict profiles at time points that were not used at training, finding 

that approximately time points suffice to predict correct profiles at other (withheld) time 

points for each subset, as long as the key branching points are covered (Supplementary Fig. 

10c). Thus, a user may be able to consider a design where destructive training data are only 

collected at a few choice time points and the rest are predicted solely by the trained model.

Importantly, an analogous neural net model to either infer smFISH profiles or classify cell 

types from the corresponding brightfield images (Supplementary Fig. 12 and Methods) 

had poor performance for predicting each of the nine smFISH genes in LOOCV (cosine 

similarity <0.15) and poor classification accuracy (F-scores iPS cells: 26.6%, epithelial: 

27.9%, MET: 46.3%, stromal: 1.1%) (Supplementary Fig. 13). This suggests that brightfield 

z-stack images, unlike Raman spectra, either do not have the necessary information to infer 

expression profiles or require substantial modifications in the neural network architecture.

Specific Raman spectral features were correlated with expression levels based on their 

feature importance scores in R2R predictions (Methods, Fig. 3j and Extended Data Fig. 8). 

For example, Raman bands at approximately 752 cm−1 (C–C, Try, cytochrome), 1,004 cm−1 

(CC, Phe, Tyr) and 1,445 cm−1 (G, A, C–H, lipids) contributed to predicting iPS cell-related 

expression profiles, which is consistent with previous research that employed single-cell 

Raman spectra to identify mouse (m)ES cells19. The contributions of these bands were either 

suppressed or increased for other cell types, such as stromal or epithelial cells (Extended 

Data Fig. 8). These results highlight R2R as a unique method to relate Raman spectroscopic 

profiles, which reflect on various molecules such as metabolites and proteins, to expression 

profiles at the single-cell level.

Because spatial gene expression measurements (for example, by smFISH or spatial 

transcriptomics) are typically not paired with Raman measurements of the same cells, 

and anchor gene integration may cause domain maladaptation (Supplementary Fig. 9), we 

explored whether we can perform a ‘one-step’, anchor-free translation using an AAE. With 

the underlying assumption that both Raman and scRNA-seq arise from a common latent 

space, we trained an AAE with unpaired measurements of Raman and scRNA-seq, while 

simultaneously adversarially training a classifier that aims to tell apart a Raman from a 

scRNA-seq profile. The training continued until the classifier could not distinguish the 

two modalities in their low-dimensional embeddings, that is, the two were aligned in a 

common latent space (Methods and Extended Data Fig. 9). We trained our AAEs using 

50% of the Raman profiles as training data and the remaining 50% as test data, to which 
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we applied the trained AAE to generate anchor-free scRNA-seq profiles. For evaluation, 

the real smFISH of test cells was used by Tangram’s label transfer function to transfer 

labels of annotated scRNA-seq profiles to the measured (ground truth) smFISH profiles in 

the test set. Because using only unpaired Raman and scRNA-seq profiles in the training 

did not succeed in our hand, we loosely guided the AAE training with the training cells’ 

ground-truth cell type labels (which were determined by smFISH; Methods). We then used 

the trained AAE for anchor-free generation of accurate profiles (cosine similarity >0.9) (Fig. 

3k,l, Extended Data Fig. 10 and Supplementary Fig. 14), albeit with decreased cell type 

classification accuracy compared to anchor-based generation (~26% decrease in pairwise 

correlation z score; compare Fig. 3d and Fig. 3l). The better classification accuracy of an 

anchor-based model is expected, but comes at a cost. The anchor-free approach resulted 

in predicted profiles with better overall correlation and more characteristic variance to real 

profiles, suggesting improved domain adaptation (Fig. 3e versus Fig. 3k and Supplementary 

Fig. 9 versus Extended Data Fig. 10). Moreover, because the anchor-free method requires 

only the ground truth of cell types, one can probably substitute smFISH with live-cell 

compatible dyes, fluorescent markers or cell surface protein markers, alleviating the need 

for destructive smFISH profiles. Overall, anchor-free generation shows promise for adding 

Raman microscopy to systems already profiled by scRNA-seq without the need to transfer 

through spatial expression anchors.

To illustrate the power of R2R to track live cells and study their dynamics in a genomically 

interpretable way, we performed R2R in live-cell time-lapse measurements during the 

differentiation of mES cells treated with retinoic acid (RA)20 (Fig. 4a). Under RA treatment, 

mES cells differentiate into epiblast, ectoderm or extraembryonic endoderm (XEN)-like 

cells over 48–72 h (ref. 20). We first took Raman snapshot measurements across time 

points (seven time points at ~12-h intervals, one plate per time point), followed by smFISH 

on four lineage-specific anchor genes (ES cells: Pou5f1, epiblasts: Dppa2, ectoderm: 

Hoxb2, XEN: Sox17)20. In parallel, on a separate plate, we conducted Raman time-lapse 

measurements to track the differentiation process over time (Fig. 4a and Methods). Using 

~3,500 previously published scRNA-seq profiles20, generated at either half- or 1-day 

intervals across a 4-day time course, we co-embedded real and R2R-generated (anchor-

based, from snapshot data) single-cell expression profiles, finding good agreement (Fig. 4b–

f and Supplementary Fig. 15). The R2R-generated profiles predicted the four smFISH genes 

(Fig. 4e,f,k and Supplementary Fig. 16) and cell type-specific pseudo-bulk profiles20 (Fig. 

4g,h) with reasonable accuracy. Morevover, the cell type-specific differentially expressed 

genes of R2R-generated profiles were similarly enriched21 for functional gene sets as 

the original profiles (Supplementary Fig. 17). These included ‘mechanisms associated 

with pluripotency’ in ES cells and epiblasts, ‘negative regulation of differentiation’ in 

ES cells, ‘epithelial differentiation’ in ectoderm and ‘collagen formation’ in XEN. Thus, 

R2R-generated profiles capture correct biological processes.

Next, we applied the trained R2R model to our Raman time-lapse measurements, yielding 

transcriptome information of direct cell lineages through live cell tracking (Methods), a 

unique feature of R2R. Once inferred, we could both track the inferred measurement of 

expression of a gene of interest over time in individual cells (Supplementary Fig. 18b), 

and layer live tracking over comprehensive Raman-generated expression profiles (Fig. 4i,j 
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and Supplementary Fig. 18a). In this way, we observe that the differentiation of mES cells 

into epiblasts occurs around 24 hours, followed by ectoderm-like or XEN-like cells (Fig. 

4i,j). Notably, R2R detected ectoderm versus XEN lineage divergence from as early as 

48 h (Fig. 4l), a time point not easily tracked in scRNA-seq-based studies20. The early 

lineage divergence in response to RA treatment is most probably associated with the 

activation of ectoderm- and XEN-like gene programs, which are distinguishable through 

the ground truth of time-lapse measurements but not by scRNA-seq at that time point, and 

yet are known to be validated by literature20. Importantly, state-of-the-art computational 

methods, such as the pseudo-time algorithm and RNA velocity method in CellRank22, 

applied with default parameters to the real scRNA-seq data produced nonsensical results 

in this context, such as epiblasts ‘reprogramming’ back to mES cells (Supplementary Fig. 

18c,d). Similar cases have been reported where different variations of RNA velocity yield 

contradicting trajectories from the same data5,7,22,23. Even WOT3, which incorporates time 

point information for each cell explicitly (Supplementary Fig. 18e), did not reveal lineage 

differences as early or effectively as R2R, nor can it do so deterministically. In summary, 

this shows the broad and unique application of R2R for understanding the molecular 

dynamics in live cells.

Finally, we examined the specificity versus generalizability of the learned R2R models 

across biological systems, hypothesizing that in this current setting the model needs to 

be trained for each system. To this end, we used the anchor-free model trained on the 

iPS cell reprogramming system to generate scRNA-seq profiles from Raman measurements 

from the mES cell differentiation system, and compared the generated profiles to measured 

scRNA-seq profiles. As expected, both pseudo-bulk and pairwise comparisons of the profiles 

showed decreased accuracy for each cell type, with better performance for cells with 

similarities between the systems, such as mES cells (cosine similarity 0.533) and epiblasts 

(0.432), and very poor performance for cell types that are completely distinct (ectoderm 

0.093, endoderm −0.194) (Supplementary Fig. 19). This results suggest that, while there is 

some transferable information, a more foundational R2R model that can generalize would 

require training on a greater variety of biological systems.

In conclusion, we reported R2R, a label-free nondestructive framework for inferring single-

cell expression profiles from Raman spectra of live cells. Our framework conceptually 

differs from approaches that gauge specific Raman spectral bands to specific molecules24,25, 

but rather aims to associate cell states defined by spectral bands to those defined by RNA 

profiles. We integrated Raman hyperspectral images with scRNA-seq data through paired 

or unpaired RNA and Raman measurements with multimodal data integration by Tangram 

or AAEs, respectively, and inferred single-cell expression profiles with high accuracy based 

on both averages within cell types and co-embeddings of individual profiles. We further 

showed that predictions using brightfield z-stacks had poor performance, indicating the 

importance of hyperspectral Raman microscopy for predicting expression profiles. Lastly, 

we applied R2R in live-cell time-lapse measurements, and demonstrated that expression 

profiles of the same live cell can be inferred over time, which is critical in settings where 

trajectory inference methods fail to reconstruct correct biological relations. To facilitate such 

applications, we provide a ‘How To’ guide (Supplementary Note) to construct a similar 

setup and release all the associate code we developed to operate the microscope.
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R2R can be further developed in several ways. First, the throughput of single-cell Raman 

microscopy is still limited. In this pilot study, we profiled ~10,000 cells in each system. By 

using emerging vibrational spectroscopy techniques, such as stimulated Raman scattering 

microscopy26 or photothermal microscopy27,28, we envision increasing throughput by 

several orders of magnitude, to match the throughput of massively parallel single-cell 

genomics. Second, because molecular circuits and gene regulation are structured, with 

strong co-variation in gene expression profiles across cells, we can leverage the advances 

in computational microscopy to infer high-resolution data from low-resolution data, such 

as by using compressed sensing, to further increase throughput29. Third, increasing the 

number of anchor genes (for example, by seqFISH30, merFISH31, STARmap32 or ExSeq33) 

can increase our prediction accuracy and capture more single-cell variance; our current 

results suggest that R2R may best predict the expression of highly variable genes. Fourth, 

using cell membrane dyes (combined with confocal fluorescent microscopes) or cytosol 

Raman bands could help with distinguishing nuclear from cytoplasmic states, and match 

with nuclear or cytoplasmic RNA profiling34,35. Fifth, the adversarial networks that we used 

for unpaired training were relatively unstable, and other domain translation architectures, 

such as contrastive learning36, may be able to produce more stable results. Finally, with 

single-cell multi-omics, we can project other modalities, such as scATAC-seq, to better 

capture the comprehensive nature of Raman spectra and explore the relation across different 

modalities. Moreover, generating training data across diverse cell systems at the cellular 

level—and in the future the organism level—may allow training more foundational models 

that generalize across biological systems and conditions. Overall, with further advances in 

single-cell genomics, imaging and machine learning, R2R could allow us to nondestructively 

investigate genome-wide molecular dynamics and complex biological processes through 

inferred profiles at scale in vitro, and possibly in vivo in living organisms.

Online content

Any methods, additional references, Nature Portfolio reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41587-023-02082-2.

Methods

Mouse fibroblast reprogramming

OKSM secondary mouse embryonic fibroblasts (MEFs) were derived from E13.5 female 

embryos with a mixed B6;129 background. The cell line used in this study was homozygous 

for ROSA26-M2rtTA, homozygous for a polycistronic cassette carrying Oct4, Klf4, Sox2 
and Myc at the Col1a1 3′ end, and homozygous for an EGFP reporter under the control 

of the Oct4 promoter. Briefly, MEFs were isolated from E13.5 embryos from timed 

matings by removing the head, limbs and internal organs under a dissecting microscope. 

The remaining tissue was finely minced using scalpels and dissociated by incubation at 

37 °C for 10 min in trypsin–ethylenediaminetetraacetic acid (ThermoFisher Scientific). 

Dissociated cells were then plated in MEF medium containing Dulbecco’s modified Eagle 
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medium (DMEM; ThermoFisher Scientific), supplemented with 10% fetal bovine serum 

(GE Healthcare Life Sciences), nonessential amino acids (ThermoFisher Scientific) and 

GlutaMAX (ThermoFisher Scientific). MEFs were cultured at 37 °C and 4% CO2 and 

passaged until confluent. All procedures, including maintenance of animals, were performed 

according to a mouse protocol (2006N000104) approved by the MGH Subcommittee on 

Research Animal Care3.

For the reprogramming assay, 50,000 low-passage MEFs (no more than three to four 

passages from isolation) were seeded in 14 3.5-cm quartz glass-bottom Petri dishes 

(Waken B Tech) coated with gelatin. These cells were cultured at 37 °C and 5% 

CO2 in reprogramming medium containing KnockOut DMEM (Gibco), 10% knockout 

serum replacement (Gibco), 10% fetal bovine serum (Gibco), 1% GlutaMAX (Invitrogen), 

1% nonessential amino acids (Invitrogen), 0.055 mM 2-mercaptoethanol (Sigma), 1% 

penicillin–streptomycin (Invitrogen) and 1,000 U ml−1 leukemia inhibitory factor (LIF, 

Millipore). Day 0 medium was supplemented with 2 mg ml−1 doxycycline Phase-1 (Dox) to 

induce the polycistronic OKSM expression cassette. The medium was refreshed every other 

day. On day 8, doxycycline was withdrawn. Fresh medium was added every other day until 

the final time point on day 14. One plate was taken every 0.5 days after day 8 (D8 to D14.5) 

for Raman imaging and fixed with 4% formaldehyde immediately after for HCR.

High-throughput multimodal Raman microscope and time-lapse imaging

We developed an automated high-throughput multimodal microscope capable of multi-

position and multi-time-point fluorescence imaging and point scanning Raman microscopy 

(Extended Data Fig. 1). A 749-nm short-pass filter was placed to separate brightfield and 

fluorescence from Raman scattering signal, and the fluorescence and Raman imaging modes 

were switched by swapping dichroic filters with auto-turrets. To realize a high-throughput 

Raman measurement, galvo mirror-based point scanning and stage scanning was combined 

to acquire each FOV and multiple different FOVs, respectively.

To realize this in an automated fashion, a MATLAB (2020b) script that communicates 

with Micro-manager37, a digital acquisition board, and Raman scattering detector (Princeton 

Instruments, PIXIS 100BR eXcelon) was written (Extended Data Fig. 2). A 2D point scan 

Raman imaging sequence was regarded as a dummy image acquisition in Micro-manager, 

during which the script communicated via the digital acquisition board with (1) the detector 

to read out a spectrum, (2) the mirror to update the mirror angles and (3) shutters to control 

laser exposure. All communications were realized using transistor–transistor logic signaling. 

Updating of the galvo mirror angles was conducted during the readout of the detector. While 

the script ran in the background, Micro-manager initiated a multidimensional acquisition 

consisting of brightfield, 4′,6-diamidino-2-phenylindole (DAPI), GFP and dummy Raman 

channel at multiple positions and z-stacks.

An Olympus IX83 fluorescence microscope body was integrated with a 785-nm Raman 

excitation laser coupled to the backport, where the short-pass filter deflected the excitation 

to the sample through an Olympus UPLSAPO 60× numerical aperture 1.2 water immersion 

objective. The backscattered light was collimated through the same objective and collected 

with a 50-μm core multimode fiber, which was then sent to the spectrograph (Holospec f/1.8i 
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785 nm model) and detector. The fluorescence and brightfield channels were imaged by the 

Orca Flash 4.0 v2 sCMOS camera from Hamamatsu Photonics. The exposure time for each 

point in the Raman measurement was 20 ms, readout time of the detector was 16 ms, and 

laser power at the sample plane was 212 mW. Each FOV was 100 × 100 pixels, with each 

pixel corresponding to about 1 μm. The laser source was a 785-nm Ti-Sapphire laser cavity 

coupled to a 532-nm pump laser operating at 4.7 W.

The time to acquire Raman hyperspectral images was roughly 8 min per FOV. With 8 

min, it is unrealistic to image an entire glass-bottom plate. Therefore, for the iPS cell 

reprogramming system, representative FOVs that cover all representative cell types were 

chosen by visual inspection, including iPS cell-like, epithelial-like, stromal-like and MET 

cells. Twenty-one FOVs were chosen for each plate, where roughly 15 FOVs were from 

the boundaries of colonies, 5 from noncolonies and 1 from noncells to use for background 

correction in reprogramming cells. For mES cell differentiation, 20 FOVs were chosen that 

cover mES cells, epiblast-like, ectoderm-like and XEN-like cells and 1 FOV for background 

correction.

Due to the extended Raman imaging time, evaporation of the immersion water was no 

longer negligible. Therefore, we developed an automated water immersion feeder using 

syringe pumps and syringe needles glued to the tip of the objective lens. Here, water was 

supplied at a flow rate of 1 μl min−1.

For time-lapse measurements in mES cells, Raman measurements were carried out every 6 

h, whereas for brightfield imaging it was every 30 min. Measurement were halted at 72 h, as 

after that time point, differentiation led to cell death, making cell tracking challenging.

iPS cell and MEF mixture experiment

Low-passage iPS cells were first cultured in N2B27 2i media containing 3 mM CHIR99021, 

1 mM PD0325901 and LIF. On the day of the experiment, 750,000 iPS cells and 750,000 

MEFs were plated on the same gelatin-coated 3.5-cm quartz glass-bottom Petri dish. Cells 

were plated in the same reprogramming medium as previously described (with Dox) with 

the exception of utilizing DMEM without phenol red (Gibco) instead of KnockOut DMEM. 

Six hours after plating, the quartz dishes were taken for Raman imaging and fixed with 4% 

formaldehyde immediately after for HCR.

mES cell differentiation experiment

For mES cell differentiation, we followed the protocol described by Semrau et al.20. 

Briefly, 40,000 V6.5 mES cells were plated onto 35-mm quartz bottom plates with a 

10% gelatin coating and grown overnight, using modified 2i medium plus LIF (2i/L) 

containing no phenol-red DMEM/F12 (Life Technologies) and supplemented with 0.5× N2 

supplement (Gibco), 0.5× B27 supplement (Gibco), 0.5 mM L-glutamine (Gibco), 20 μg 

ml−1 human insulin (Sigma-Aldrich), 1× 100 U ml−1 penicillin/streptomycin (Gibco), 0.5× 

MEM nonessential amino acids (Gibco), 0.1 mM 2-mercaptoethanol (Sigma-Aldrich), 1 μM 

MEK inhibitor (PD0325901, Stemgent), 3 μM GSK3 inhibitor (CHIR99021, Stemgent) and 

1,000 U ml−1 mouse LIF (ESGRO). The next day, cells were washed twice with phosphate-

buffered saline and differentiation medium was added. The differentiation medium used 
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was basal N2B27 medium (2i/L without the inhibitors, LIF, and insulin) supplemented 

with all-trans RA (Sigma-Aldrich) at 0.25 μM unless stated otherwise. Spent medium was 

exchanged with fresh medium every 48 h.

Anchor gene selection by WOT

To select anchor genes for connecting spatial information to the full transcriptome data, 

WOT3 was applied to mouse fibroblast reprogramming scRNA-seq data collected at 

matching time points and culture condition (days 8 to 14.5 at half-day intervals)3. For each 

cell fate, the transition probabilities of each cell toward iPS cells, epithelial-like or stromal-

like cells were calculated and the cells with the top 10 percentile transition probabilities 

were selected per time point (Extended Data Fig. 6). Next, the FindMarker function in 

Seurat38 was used to find genes differentially expressed in these cell subsets versus all other 

cells per time point. Through this approach, two genes were chosen per cell type that are 

both found by Seurat and commonly used for these cell types (iPS cells: Nanog, Utf1; 

epithelial: Krt7, Peg10; stromal: Bgn, Col1a1; MET and neural: Fabp7, Nnat), along with 

Epcam, an established early marker of iPS cells and epithelial cells in this system3,39.

smFISH by HCR

Fixed samples were prepared for imaging using the HCR v3.0 protocol for mammalian 

cells on a chambered slide, incubating at the amplification step for 45 min in the dark at 

room temperature. Three probes with amplifiers conjugated to fluorophores Alexa Fluor 

488, Alexa Fluor 546 and Alexa Fluor 647 were used. Samples were stained with DAPI 

before imaging. After imaging, probes were stripped from samples by washing samples once 

for 5 minutes in 80% formamide at room temperature and then incubating three times for 

30 min in 80% formamide at 37 °C. Samples were washed once more with 80% formamide, 

then once with phosphate-buffered saline, and reprobed with another panel of probes for 

subsequent imaging.

Image registration of Raman hyperspectral images and fluorescence/smFISH images

Brightfield and fluorescence channels including DAPI and GFP, along with corresponding 

Raman images, were registered by using 5-μm fluorescent polystyrene beads deposited 

on quartz glass-bottom Petri dishes (SF-S-D12, Waken B Tech) as calibration. The 

brightfield and fluorescence images of the beads were then registered by the scale-invariant 

template matching algorithm of the OpenCV40 matchTemplate function followed by manual 

correction.

For the registration of smFISH and Raman images, four marks inscribed under the 

glass-bottom Petri dishes were used as reference points (Extended Data Fig. 4). As the 

Petri dishes are temporarily removed from the Raman microscope after imaging to do 

smFISH measurements, the dishes cannot be placed back at the same exact location on 

the microscope. Therefore, the coordinates of these reference points were measured along 

with the different FOVs. When the dishes were placed again after smFISH measurements, 

the reference mark coordinates were measured, and an affine mapping was constructed 

to calculate the new FOV coordinates. Lastly, as smFISH consisted of three rounds of 
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hybridization and imaging, the following steps were performed to register images across 

different rounds with a custom MATLAB script:

1. Maximum intensity projection of nuclei stain and RNA images

2. Automatic registration of round 1 images to rounds 2 and 3 based on nuclei 

stain images and MATLAB function imregtform. First, initial registration 

transformation functions were obtained with a similarity transformation model 

passing the ‘multimodal’ configuration. Then, those transformations were 

used as the initial conditions for an affine model-based registration with the 

imregtform function. Finally, this affine mapping transformation was applied to 

all the smFISH (RNA) images.

3. Use the protocol in (2) to register nuclei stain images obtained from the 

multimodal Raman microscope and the first round of images used for smFISH. 

Then, apply the transformation to the remaining second and third rounds.

4. Manually remove registration outliers in (3). Approximately 10% of the images 

were removed.

Fibroblast cells were mobile during the two-class mixture experiment so that, by the time 

Raman imaging finished, cells had moved far enough from their original position that 

the above semi-automated strategy could not be applied. Thus, ~100 cells were manually 

identified as present in nuclei stain images both before and after Raman imaging.

Hyperspectral Raman image processing

Each raw Raman spectrum has 1,340 channels. Of those channels, we extracted the 

fingerprint region (600–1,800 cm−1), which resulted in a total of 930 channels per spectrum. 

Thus, each FOV is a 100 × 100 × 930 hyperspectral image. As samples were scanned at 

1-μm steps, the FOV corresponded to a 100-by-100 μm2 region. The hyperspectral images 

were then preprocessed by a Python script as follows:

1. Cosmic ray removal. Cosmic rays were detected by subtracting the median 

filtered spectra from the raw spectra, and any feature above 5 was classified as 

an outlier and replaced with the median value. The kernel window size for the 

median filter was 7.

2. Autofluorescence removal. The baseline function in rampy41, a Python package 

for Raman spectral preprocessing, was used with the alternating least squares 

algorithm ‘als’.

3. Savitzky–Golay smoothing. The scipy.signal.savgol_filter function was used 

with window size 5 and polynomial order 3.

4. Averaging spectra at the single-cell level. Nuclei stain images were segmented 

using NucleAIzer42 and averaged pixel-level spectra that fall within each 

nucleus.

5. Spectra standardization. Spectra were standardized to a mean of 0 and a standard 

deviation of 1.
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Anchored generation of scRNA-seq profiles from paired Raman spectra and smFISH

Anchored generation of scRNA-seq profiles consists of two steps: (1) prediction of anchor 

smFISH profiles from Raman profiles using a fully connected neural net, and (2) integration 

of predicted smFISH profile to scRNA-seq using Tangram15.

The neural network model to predict smFISH from Raman spectra consisted of three Linear, 

BatchNorm, ReLU activation blocks in sequence. Letting n be the number of input spectra, 

the number of nodes in these three blocks were, in order, n, 512, 128, 10. Input smFISH 

data were normalized, per gene, using min–max normalization before training. Training was 

carried out on an NVIDIA Tesla P100 graphics processing unit (GPU), according to a mean 

square error loss, for 100 epochs with a learning rate of 0.00001 on an Adam Optimizer and 

a batch size of 64.

The predicted smFISH was integrated with expression profiles using Tangram15, a method 

that aligns scRNA-seq profiles to spatial measurements of a small number of genes. 

Tangram’s map_cells_to_space function was applied (learning_rate 0.1, num_epochs 1000) 

on an NVIDIA Tesla P100 GPU, followed by Tangram’s project_genes function.

To assess performance, 50% of the paired smFISH-Raman data were used for training and 

the remaining 50% were held as test data (not validation data), as follows. The training 

Raman/smFISH partition was used to learn a Raman to smFISH neural net model. Then, 

the trained neural net model was applied to the Raman profiles in the test set to generate 

predicted smFISH data, and Tangram’s functions were used to generate predicted scRNA-

seq profiles from the predicted smFISH. Separately, the real smFISH of test cells was 

used by Tangram’s label transfer function project_cell_annotations to transfer labels of 

annotated scRNA-seq profiles to the measured (ground truth) smFISH profiles in the test 

set. Finally, pseudo-bulk profiles were calculated per cell type for both R2R-predicted and 

real scRNA-seq and compared between them3 based on the cosine similarity, calculated 

as the dot product and magnitude of the predicted (x) and ground truth (y) measurements, 

cos θ = xy/ x y .

For any classification tasks based on Raman spectra, a decision tree-based nonlinear 

regression Catboost43 was used with the early stopping parameter set to 5.

Anchor-free generation of Raman and scRNA-seq profiles using AAEs

One-step anchor-free prediction was carried out with AAEs44 consisting of three models: 

a gene-expression autoencoder, G, which reconstructed gene-expression data by encoding 

then decoding, a Raman-spectra autoencoder, R, similar to G but for Raman profiles, and 

an adversarial discriminator, A, which ensured that the encoders of G and R encoded 

to an identical latent domain. To accomplish this, first G was trained to reconstruct gene-

expression data, after which R and A were trained ‘against’ each other, such that A was 

trained to differentiate between encodings by G and R, and R was trained such that, in 

addition to reconstructing Raman data, it was penalized when A correctly differentiated 

between encodings by G and by R. After training, to translate from Raman to gene 

expression, we encoded a Raman spectrum with R’s encoder and decoded a gene-expression 
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profile with G’s decoder, made possible by the shared latent domain to which G and R 
encode.

However, the initial approach did not succeed in ensuring that cells of the same cell type in 

the Raman and gene-expression domains mapped to same parts of the latent space. We thus 

introduced an additional model, S, that classified latent encodings of G by cell type. S was 

trained after G but before R and A. When R was trained, in addition to being penalized when 

A correctly differentiated between encodings by G and by R, it was also penalized when the 

cell type of the cell’s encodings inferred by S was different from its assigned cell type. The 

ground truth cell types were given by the smFISH measurements for each Raman profile.

G, a deep neural network, consisted of 10 Linear, BatchNorm, ReLU activation blocks in 

sequence. Letting n be the number of input genes, 19,089, the number of nodes in these ten 

blocks were, in order, n, 2,048, 2,048, 2,048, 2,048, 512, 2,048, 2,048, 2,048, 2,048, n. R 
followed an architecture identical to G, but with n being 930, the number of Raman spectral 

features in each cell’s spectrum. A consisted of four Linear, Spectral Normalization, ReLU 

activation blocks. The numbers of nodes in each of these blocks are, in order, 128, 64, 32, 

32, 2. S followed the same architecture as A, but with number of nodes in each of its blocks 

being, in order, 128, 64, 32, 32, 4.

G was trained according to a mean-square error loss function. S was then trained with a 

weighted cross-entropy loss function with one-hot vectors for cell types. R and A were then 

trained adversarially, taking turns between weight updates. A was trained according to a 

binary cross-entropy loss. S was also trained according to a binary cross-entropy loss. R was 

trained according to the following loss function:

f r = MSE r, R r + λ1 ADV A R r + λ2 CE S R r , cr

where r was a Raman spectrum, λ1 was r’s cell type, λ2 were regularizing constants, 

MSE(x, y) was a mean-square error loss between x and y, ADV(x) was the cross-entropy loss 

against labels indicating x was a gene-expression encoding, and CE(x, y) was a cross-entropy 

loss between x and y. All models were trained using the Adam optimizer, with Gs having a 

learning rate of 0.00001, Rs having 0.00005, As having 0.004 and Ss having 0.001. G was 

trained for 30 epochs, S was trained for 100 epochs, and R and A were trained together, 

adversarially, for 100 epochs. Training and inference was carried out by Pytorch 1.9.0 and 

Tensorflow 2.5.3.

To assess performance, 50% of the paired Raman/smFISH data were used for training and 

the remaining 50% were held as test data (not validation data). The training Raman/smFISH 

partition was used to learn a Raman to scRNA-seq AAE model along with the cell type 

information of the training cells (for which smFISH data were used). Here the cell types 

for training cells were given by Tangram’s label transfer function project_cell_annotations 

applied on the real smFISH of the training cells. Then, the trained neural net model was 

applied to the Raman profiles in the test set to generate predicted scRNA-seq profiles.
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Separately, for evaluation of the predictions, the real smFISH data of test cells were 

used by Tangram’s label transfer function project_cell_annotations to transfer labels of 

annotated scRNA-seq profiles to the measured (ground truth) smFISH profiles in the test set. 

Finally, pseudo-bulk profiles were calculated per cell type for both R2R-predicted and real 

scRNA-seq3 and compared between them on the basis of the cosine similarity, calculated 

as the dot product and magnitude of the predicted (x) and ground truth (y) measurements, 

cos θ = xy/ x y .

Inferring smFISH and cell types from brightfield images

To regress cellular smFISH levels from brightfield cell images, target cell masks were 

created where segmentation masks from nucleus stains were replaced with the average 

smFISH expression level, thereby averaging out any subcellular variations for a fair 

comparison with R2R predictions. A modified U-net with skip connections and residual 

blocks5 was trained to estimate the corresponding average smFISH per cell. Due to the 

small size of the available training set, data were augmented the rotation and flipping and 

a subsample 50 × 50 pixel region of each brightfield image was taken due to memory 

constraints. Training was carried out on an NVIDIA Tesla P100 GPU, with 100 epochs, a 

learning rate of 0.01 and a batch size of 400. For each smFISH prediction, the epoch with 

the validation score was selected.

For cell-type classification from brightfield images of individual cells, registered smFISH-

brightfield images were broken into smaller 32-by-32 pixel nonoverlapping tiles and 

the average smFISH expression level was calculated for each tile (this tile size rougly 

corresponds to the size of one cell, but depending on the location and cell size can capture 

portions of more than one cell). Tangram was used with scRNA-seq data to map each 

tile’s average smFISH vector to a cell type. A convolutional neural network (CNN) was 

then trained to map a brightfield tile to a cell type. The CNN consisted of a convolutional 

layer with 11 input channels, 20 output channels, a kernel size of 5 and a stride of 1, 

followed by a ReLU activation layer, followed by a maximum-pool layer with a kernel size 

of 2 and a stride of 2, followed by another convolutional layer with 20 input channels, 20 

output channels, a kernel size of 5 and a stride of 1, followed by another ReLU activation 

layer, followed by another maximum-pool layer with a kernel size of 2 and a stride of 2, 

followed by a reshaping layer to 500 nodes, another ReLU activation layer, and final fully 

connected layer to 4 final nodes. The CNN was trained via a cross-entropy loss with an 

Adam optimizer at a learning rate of 0.00003 for 20 epochs.

Dimensionality reduction, embedding and projection

For dimension reduction and visualization of Raman and scRNA-seq profiles, we performed 

forced layout embedding using the Pegasus pipeline45. First, we performed principal 

component analysiś(PCA) on both Raman and scRNA-seq profiles independently, calculated 

diffusion maps on the top 100 principal components, and performed an approximated forced 

layout embedding graph using Deep Learning by pegasus.net_fle with default parameters.

To project Raman profiles to a scRNA-seq embedding, we calculated a k-nearest neighbor 

(k-NN) graph (k = 15) on the scRNA-seq top 50 principal components with the cosine 

Kobayashi-Kirschvink et al. Page 16

Nat Biotechnol. Author manuscript; available in PMC 2024 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://pegasus.net_fle


metric, and UMAP with the scanpy.tl.umap function in Scanpy46 version 1.7.2 with default 

parameters. Then, the Raman predicted expression profiles were projected on to the scRNA-

seq UMAP embedding by scanpy.tl.ingest using k-NN as the labeling method and default 

parameters.

Feature importance analysis

To evaluate the contributions of Raman spectral features to expression profile prediction, 

we used the get_feature_importance function in Catboost. The early stopping parameter 

was set to 5. As the dimensions of Raman spectra were reduced by PCA before Catboost, 

feature importance scores were calculated for each principal component, and the weighted 

linear combination of the Raman PCA eigenvectors with feature scores as the weight was 

calculated to obtain the full spectrum.

Cell segmentation and tracking of Raman time-lapse images during mES cell 
differentiation

Nucleus stains such as DAPI or Hoechst 33342 require ultraviolet excitation, limiting 

long-term time-lapse imaging. Thus, cell segmentation of time-lapse measurements was 

performed by first converting brightfield z-stack images with f-net, a deep learning model 

that predicts fluorescent images from brightfield images47. Here, ground truth nucleus stains 

of the corresponding brightfield images, obtained at snapshot time points, were used to train 

f-net, and the trained neural net was applied to real time-lapse images to produce ‘digital 

stains’. Then, Stardist48 was applied to perform cell segmentation. Segmentation errors 

were manually corrected with Napari49. Lastly, cell tracking was conducted by Bayesian 

Tracker50.

Pseudo-time analysis was carried out by following the CellRank22 v1.3 pipeline. To 

calculate the transition matrix, the CytoTRACEKernel function was applied to mES 

cell scRNA-seq profiles20, and then compute_transition_matrix was applied with default 

parameters to visualize the transition of cells across time.

For RNA velocity, first, mES cell scRNA-seq fastq reads51 were processed using zUMI51 

v2.9.7. Splicing rates were quantified by velocyto4, and generalized RNA velocity was 

carried out by scVelo5 v0.2.5 using the dynamical model. In scVelo, tl.recover_dynamics 

was used to estimate velocity parameters, then tl.velocity with the ‘dynamical’ parameter to 

estimate velocity, and finally tl.velocity_graph was used to estimate the velocity graph.
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Extended Data

Extended Data Fig. 1 |. A multi-modal Raman microscope capable of fluorescence imaging and 
Raman microscopy.
Schematic of a Raman microscope integrated with a wide-field fluorescence microscope for 

simultaneous detection of nuclei staining, bright field, fluorescence channels, and Raman 

images.

Extended Data Fig. 2 |. Raman-predicted and scRNA-seq measured pseudo-bulk profiles are well 
correlated across cell types.
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scRNA-seq measured (y axis) and R2R-predicted (x axis) expression for each gene (dot) in 

pseudo-bulk RNA profiles averaged across cells labeled as iPSC (top left), epithelial (top 

right), stromal (bottom left) and MET (bottom right). Cosine similarity is denoted at the top 

left corner.

Extended Data Fig. 3 |. Measured and Raman-predicted single cell profiles co-embed well as 
reflected by gene scores for each cell type.
UMAP co-embedding of Raman predicted RNA profiles and measured scRNA-seq profiles 

(dots) colored by scores of marker gene for different cell types (rows) determined by 
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smFISH measurements (left, for cells with Raman-predicted profiles) or real scRNA-seq 

measurements (right, for cells with scRNA-seq profiles).

Extended Data Fig. 4 |. Measured and Raman-predicted single cell profiles co-embed well as 
reflected by smFISH measurement of Raman cells.
UMAP co-embedding of Raman predicted RNA profiles and measured scRNA-seq profiles 

(dots) where the Raman cells are colored by smFISH measurement of each of nine anchor 

genes.
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Extended Data Fig. 5 |. Measured and Raman-predicted single cell profiles co-embed well as 
reflected by scRNA-seq based expression of nine anchor genes.
UMAP co-embedding of Raman predicted RNA profiles and measured scRNA-Seq profiles 

(dots) where the scRNA-seq profiled cells are colored by scRNA-seq measured expression 

of each of nine anchor genes.
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Extended Data Fig. 6 |. Distributions of expression of marker genes based on R2R-predicted 
profiles.
Distributions (density plots) of the predicted expression in Raman2RNA inferred profiles 

for each marker gene (panel) in its expected corresponding cell type (blue, based on the 

predicted expression profiles) and all other cells (orange).
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Extended Data Fig. 7 |. Distributions of expression of marker genes based on real smFISH 
profiles.
Distributions (density plots) of the real smFISH profiles for each marker gene (panel) in its 

expected corresponding cell type (blue, based on the R2R predicted expression profiles) and 

all other cells (orange).
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Extended Data Fig. 8 |. Raman spectral feature importance scores for each smFISH anchor gene 
and its average across all genes for a cell type.
Feature importance scores (y axis) for marker genes of each cell type (top two rows), and 

for all cell types (bottom row), along the Raman spectrum (x axis). Known signals2 are 

annotated in the top left panel (identical to Fig. 3j).
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Extended Data Fig. 9 |. Adversarial autoencoder (AAE) based model for anchor-free generation 
of scRNA-seq from Raman profiles.
Top: Two autoencoders (AEs) – one for Raman and the other for scRNA-seq – are trained 

adversarially to learn two indistinguishable latent spaces. Once a common latent space 

is found, new Raman spectra are encoded using the encoder part of the Raman AE and 

decoded to scRNA-seq using the decoder part of the scRNA-seq AE (bottom).
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Extended Data Fig. 10 |. Anchor-free R2R profiles capture variance in single cell profiles as 
indicated by co-embedding.
UMAP co-embedding of anchor-free R2R-generated profiles and real scRNA-seq (dots) 

colored by cell types determined by Tangram label-transfer on smFISH measurements (left, 

for cells with R2R-generated profiles) or by ground truth scRNA-seq (right, for cells with 

scRNA-seq profiles).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. R2R.
Live cells were cultured on gelatin-coated quartz glass-bottom plates (top) and Raman 

spectra were then measured at each pixel (at subcellular spatial resolution) within an image 

frame, and after time-lapse imaging and cell tracking (1), smFISH imaging in the same area 

was carried out (3). In an independent experiment, cells in the same system were dissociated 

into a single-cell suspension and profiled by scRNA-seq (2). scRNA-seq profiles were used 

to select nine marker genes for five major cell clusters for mouse iPS cell reprogramming 

and four marker genes for three major cell lineages in mES cell differentiation, and 

those were measured with spatial smFISH (3). Lastly, single-cell expression profiles were 

generated from Raman spectra of individual cells, by either anchor-based (measured by 

smFISH) or anchor-free methods (4) using fully connected neural networks and AAEs, 

respectively. Marker gene profiles measured by smFISH are used for either training or 

validation.
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Fig. 2 |. R2R accurately distinguishes cell types and predicts binary expression of marker genes 
in a mixture of mouse fibroblasts and iPS cells.
a, Overview. Top: experimental procedures. Mouse fibroblasts and iPS cells were mixed 

1:1 and plated on glass-bottom plates, followed by Raman imaging of live cells, 

nucleus staining and measurement of endogenous Oct4–GFP (iPS cell marker) reporter 

by fluorescence imaging, and cell fixation and processing for smFISH with DAPI and 

probes for Nanog (iPS cells, magenta) and Col1a1 (fibroblasts). Bottom: preprocessing and 

analysis. From left: image registration with control points (Methods), followed by semantic 

cell segmentation, outlier removal/normalization and dimensionality reduction/trajectory 

analysis. b, R2R distinguishes cell states from Raman spectra. UMAP embedding of 

single-cell Raman spectra (dots) colored by Louvain clustering labels (top left) or smFISH 

measured expression of Oct4 (top right), Nanog (bottom left) and Col1a1 (bottom right). 

c, R2R accurately predicts binary (on/off) expression of marker genes. Receiver operating 

characteristic (ROC) plots and area under the curve (AUC) obtained by classifying the ‘on’ 

and ‘off’ states of Oct4 (blue), Nanog (orange) and Col1a1 (green).
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Fig. 3 |. R2R predicts single-cell RNA profiles during reprogramming of mouse fibroblasts to iPS 
cells.
a, Anchor-based approach overview. From left: mouse fibroblasts were reprogrammed into 

iPS cells over the course of 14.5 days (‘D’), and, at half-day intervals from days 8 to 14.5, 

spatial Raman spectra, smFISH for nine anchor genes, and nucleus stains by fluorescence 

imaging were measured. Domain translation methods (fully connected neural network and 

Tangram) were used to predict scRNA-seq profiles from Raman spectra using smFISH as 

anchor. b,c, Low-dimensionality embedding by force-directed layout embedding (FLE) of 

Raman spectra (b, dots) or scRNA-seq (c, dots) profiles colored by measurement day (color 

bar). d, Cosine similarity (y axis) between measured (smFISH) and Raman-predicted levels 

for each smFISH anchor (x axis) in LOOCV where eight out of nine smFISH anchor genes 

were used for training, and the left-out gene was predicted. Error bars: standard error of 
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five trials with different subset of cells, and mean value at center. e, Measured (y axis) 

and R2R-generated (x axis) pseudo-bulk RNA profiles (Supplementary Fig. 7) averaged 

across iPS cells of test cells for each of the top 2,000 highly variable genes (HVGs; dots). 

f, Pairwise cosine similarity (color bar, z score) between R2R-generated and scRNA-seq 

measured pseudo-bulk profiles (top 2,000 HVGs) in each cell type (rows, columns). g–i, 
UMAP co-embedding of R2R-generated RNA profiles on Raman test cells (not used for 

training) and measured scRNA-seq profiles (dots) colored by cell type annotations (g) or by 

iPS cell gene signature scores (Methods) of Raman-predicted profiles (h) or of real scRNA-

seq (i). j, Feature importance scores of Raman spectra in predicting iPS cell-related marker 

genes (y axis) along the Raman spectrum (x axis). Known Raman peaks19 were annotated. 

k, Measured (y axis) and R2R-generated (x axis; anchor-free method) pseudo-bulk RNA 

profiles averaged across iPS cells for each of the top 2,000 HVGs (dots). l, Cosine similarity 

(y axis) between measured (smFISH) and anchor-free Raman-generated levels for each 

smFISH anchor (x axis). Error bars: standard error of five trials with different subset of cells, 

and mean value at center.
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Fig. 4 |. R2R tracks and predicts gene expression dynamics in live single cells during mES cell 
differentiation.
a, Overview. Snapshot Raman, smFISH and brightfield images were obtained every 12 h, 

and time-lapse Raman and brightfield were collected every 6 h and 30 min, respectively. 

scRNA-seq was collected in an independent experiment20. Anchor-based R2R was trained 

on the paired Raman and smFISH data and applied to generate scRNA-seq from the Raman 

time-lapse data. b–f, Anchor-based R2R generates cell profiles consistent with a scRNA-seq 

time course. UMAP co-embedding of R2R-generated and measured (scRNA-seq) profiles 

(dots) colored by source of cell (b), time point (c), scRNA-seq cell types (d), scRNA-seq 

measured gene score of XEN marker gene20 expression (e), or R2R-predicted gene score 

of XEN marker gene expression (f). g, scRNA-seq measured (y axis) and R2R-predicted 

(x axis) for each gene (dot) in pseudo-bulk RNA profiles averaged across mES cells 

at day 0. h, Pairwise correlation (color bar) between anchor-free Raman-predicted and 

Kobayashi-Kirschvink et al. Page 33

Nat Biotechnol. Author manuscript; available in PMC 2024 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



scRNA-seq measured pseudo-bulk profiles in each cell type (rows, columns). i,j, Live cell 

tracking layered on R2R-generated profiles. UMAP as in c but with R2R-generated profiles 

connected by live cell tracking of underlying cells from brightfield time-lapse images 

that lead either to XEN-like (i) or ectoderm-like (j) cell fate. k, Prediction of smFISH 

anchors from Raman spectra. Cosine similarity (y axis) between measured (smFISH) and 

Raman-predicted levels for each smFISH anchor (x axis) in LOOCV, where three out of four 

smFISH anchor genes were used for training, and the left-out gene was predicted. Error bars: 

standard error of five trials with different subset of cells, and mean values at center. l, Mean 

expression (y axis) of marker genes (color) of each lineage (color) at different time points 

(x axis) post RA induction along XEN-like (solid) and ectoderm-like (dashed) trajectories. 

Error bars: standard error of expression level across cells with same lineage (nectoderm = 148, 

nXEN = 200).
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