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Estimation of joint torque in dynamic
activities using wearable A-mode ultrasound

Yichu Jin 1, JonathanT.Alvarez 1, Elizabeth L. Suitor1, KrithikaSwaminathan 1,
Andrew Chin 1, Umut S. Civici 1, Richard W. Nuckols1,2, Robert D. Howe 1 &
Conor J. Walsh 1

The human body constantly experiences mechanical loading. However,
quantifying internal loads within the musculoskeletal system remains chal-
lenging, especially during unconstrained dynamic activities. Conventional
measures are constrained to laboratory settings, and existing wearable
approaches lack muscle specificity or validation during dynamic movement.
Here, we present a strategy for estimating corresponding joint torque from
muscles with different architectures during various dynamic activities using
wearable A-mode ultrasound. We first introduce a method to track changes in
muscle thickness using single-element ultrasonic transducers. We then esti-
mate elbow and knee torque with errors less than 7.6% and coefficients of
determination (R2) greater than0.92 during controlled isokinetic contractions.
Finally, we demonstrate wearable joint torque estimation during dynamic real-
world tasks, including weightlifting, cycling, and both treadmill and outdoor
locomotion. The capability to assess joint torque during unconstrained real-
world activities can provide new insights into muscle function and movement
biomechanics, with potential applications in injury prevention and
rehabilitation.

The human body constantly undergoes dynamic mechanical loading
during movement and locomotion. However, excessive loading within
the body can lead to fatigue and increase the risk of injury1,2. Quanti-
fying internal mechanical loads within the musculoskeletal system can
thus be valuable for risk assessment and injury prevention in sports
and ergonomics2–4. Post-injury or surgery, the monitoring of loads
experienced by the damaged tissue remains important for facilitating
optimal tissue healing5. Additionally, in the field of robotics, tracking
muscle and joint loads shows potential for developing effective
wearable assistive robots for clinical rehabilitation and performance
augmentation6,7. Despite the wide range of applications, measuring in
vivo mechanical loads within the musculoskeletal system remains
challenging with existing technologies, especially during uncon-
strained dynamic movements3,8.

Research has explored quantifying biomechanical loads on
joints and on the various tissues comprising these joints (e.g.,

muscles, tendons, bones). At the tissue level, surgically implanted
force transducers have been used to measure forces in muscle-
tendon units9,10 and bones11. However, the invasiveness of these
implants limits their applicability in human studies. Shear wave ten-
siometry estimates superficial tendon forces by mechanically excit-
ing the tendon and measuring resultant shear wave speeds12. Despite
the promising results in estimating Achilles and patellar tendon
forces12,13, its applicability to less prominent or deep tendons has yet
to be demonstrated. At the joint level, isokinetic dynamometers can
directly measure joint torques and assess the force-generation
capacity of an agonist muscle group14. However, these lab-based
equipment limit joint torque measurements to controlled muscle
contractions in a fixed testing setup. Modeling techniques (e.g.,
inverse dynamics, computational musculoskeletal models)15,16 have
been commonly used to indirectly estimate both muscle force and
joint torque. Specifically, inverse dynamics can reliably estimate joint
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torques within a rigid body model using motion and external force
measurements. With additional optimization and biomechanical
constraints, musculoskeletal models can further estimate individual
muscle forces. Despite these simulation models’ wide use in bio-
mechanical studies, they rely on intensive computation with a com-
bination of measurements (e.g., motion-capture systems, force
platforms) that are yet largely constrained to research
environments8. Surface electromyography (EMG) has been used as a
wearable alternative for studying muscle force and joint torque17,18.
However, EMG measures the electrical activation of a muscle,
representing neurological input rather than the muscle’s mechanical
output, and its measurements are hence susceptible to electrical
artifacts like sweat or humidity-induced impedance mismatch and
neurological conditions like fatigue or neuromotor disorders19,20.

Recently, researchers have begun to explore various measures of
muscle deformation, inspired by its direct coupling with muscle force
production21. Mechanomyography (MMG) is often considered as the
mechanical counterpart to EMG, and it estimates muscle mechanical
loads by measuring the lateral oscillations elicited from contracting
muscle fibers. However, like EMG, the MMG signal alone is susceptible
to crosstalk contamination from nearby muscles and motion artifacts
from limb movements22,23. Force myography (FMG) captures the
muscle geometry change bymeasuring pressure variations on the skin
that occurs from muscle bulging. By using a band of pressure sensors
wrapped around the limb, FMG captures the net shape change from all
muscles within the limb, often including agonist and antagonist mus-
cle pairs24. More recently, ultra-sensitive soft strain sensors have been
adhered to skin to capture the localized skin deformation from the
underlying muscle bulge, which has been found to positively correlate
with changes in joint torque25. However, this surface-level measure-
ment cannot decouple deformations from superficial and deep mus-
cles.Muscle specificity is desirable becausemuscles at different depths
can have different functionalities. For instance, the gastrocnemius
muscle serves both as an ankle plantar flexor and a knee flexor,
whereas the soleus underneath functions only as an ankle plantar
flexor26. To achieve muscle specificity, brightness mode (B-mode)
ultrasound imaging has been used to extract changes in architectural
parameters of specific muscles. Parameters such as muscle thickness,
fascicle length, and pennation angle have been shown to correlatewith
muscle force or joint torque measurements during static muscle
contractions27–29 and dynamic functional movements30–32. However,
despite recent advances in both microfabrication of miniaturized
wearable imaging systems33,34 and automated parameter extraction
algorithms35,36, B-mode ultrasound remains primarily limited to
research settings due to its hardware and computational
requirements.

Amplitude mode (A-mode) ultrasound offers a potential light-
weight solution for muscle-specific deformation measurements. As a
simplified alternative to B-mode, A-mode ultrasound can track one-
dimensional muscle deformation, like muscle thickness, with reduced
computational and hardware requirements37. Specifically, A-mode
ultrasound uses single-element transducers (SETs) to generate 1D
scans insteadof 2D images of themuscle, thereby eliminating the need
for computationally intensive image processing algorithms and asso-
ciated instrumentation. While A-mode ultrasound has been used to
classify hand gestures38–41, muscle states42, and ambulation modes43,
continuous estimation of muscle mechanical loads is less explored.
Only a few studies have investigated estimating hand grip force44,45 and
knee torque46 during static isometric contractions or elbow torque
during controlled isokinetic elbow flexions47. The use of A-mode
ultrasound for reliable muscle deformation measurement and joint
torque estimation during dynamic and unconstrained functional tasks
remains unexplored. Hence, there remains a gap to investigate the
applicability of A-mode ultrasound for continuous tracking of muscle

mechanical loads during unconstrained dynamic activities in real-
world environments.

In addition to unconstrained dynamic activities, it is also impor-
tant to study the applicability of A-mode ultrasound on muscles with
different architectures. Skeletal muscles are typically categorized as
parallel or pennate based on the orientation of their fascicles48. During
contraction, a parallel muscle uniformly bulges across its cross-
section21, suggesting a direct relationship between the produced load
and changes in thickness or width, which can be captured by A-mode
ultrasound. In contrast, a pennate muscle undergoes more complex
morphology during contraction, exhibiting a diverse range of cross-
sectional shape changes related to both contraction intensity and joint
angle49–51. As a result, multiple levels of mechanical loads can be
observed at the same muscle thickness or width50,51. Hence, the effec-
tiveness of using A-mode ultrasound to track the load produced by
pennate muscles remains unexplored.

In this work, we aim to develop an approach for joint torque
estimation using A-mode ultrasound for both parallel and pennate
muscles during unconstrained dynamic activities. To achieve this goal,
we first present a method to track muscle thickness with A-mode
ultrasound during dynamic motion. Next, we evaluate estimating joint
torque using muscle thickness and joint angle during isokinetic con-
tractions of a parallel muscle, the biceps brachii (BB), and a pennate
muscle, the rectus femoris (RF). Finally, we demonstrate the feasibility
of joint torque estimation using A-mode ultrasound and wearable
measures of joint kinematics during a range of unconstrained real-
world tasks, including weightlifting, cycling, and both treadmill and
outdoor locomotion.

Results
Muscle thickness tracking during motion
To enable joint torque estimation, we designed a transducer mount
capable of holding four SETs at different angles (Fig. 1a), which can be
worn on the limb above the target muscle (Fig. 1b, c). This sensor
redundancy was implemented to account for the difference in muscle
shape among participants. Specifically, ultrasound echo intensity is
highly dependent on the angle of incidence, with the intensity max-
imized when the ultrasound beam hits the target boundary at a 90°
angle (Supplementary Fig. S2). With multiple transducers at a range of
angles, we increased the likelihood of normal incidence while col-
lecting from muscles with different sizes and shapes.

To measure muscle thickness, we developed a custom muscle
boundary tracking algorithm (MBTA) that identifies the transducer
with the strongest echoes and uses its signal to measure muscle
boundary depth (Fig. 1d). The MBTA can continuously track thick-
ness changes in both superficial and deep muscles during contrac-
tions (Supplementary Fig. S1). In practice, muscle deformation
constantly alters the angle between the muscle boundary and the
transducer, especially during dynamic motion. To address the
resultant variations in ultrasound echo intensity, the MBTA fuses
results from two different tracking methods to provide robust esti-
mation of muscle thickness (Methods). To test the MBTA’s tracking
performance and robustness, we cyclically displaced a SET relative to
3D printed surfaces on a mechanical testing system (Supplementary
Fig. S2) and artificially altered the echo intensity to simulate the
effect of changing angle of incidence (Supplementary Fig. S3). In
reference to the ground truth displacement, the MBTA produced
robust tracking with a root mean squared error (RMSE) of 0.05mm
and a normalized root mean squared error (NRMSE) of 0.5%.

Lastly, we conducted an in vivo validation by simultaneously
collecting B-mode and A-mode ultrasound while a participant per-
formed isokinetic concentric and eccentric knee extensions on a
dynamometer (Supplementary Fig. S4). Compared to the muscle
thickness measured with B-mode, A-mode ultrasound achieved an
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RMSE of 0.48mm and a NRMSE of 1.7%, which was smaller than the
average thickness of the deep thigh fascia52.

Elbow torque estimation during isokinetic contractions
To evaluate the estimation of corresponding joint torque fromparallel
muscles, we acquired A-mode ultrasound of the BB and elbow kine-
matics and kinetics with an isokinetic dynamometer on ten healthy
adults while performing passive, concentric, and eccentric BB con-
tractions at various speeds (Figs. 1b, 2a, Supplementary Fig. S5). Data
from a representative participant showed that the BB thickness
exhibited minimal change during passive motion compared to active
contractions and varied synchronously with elbow torque in all con-
ditions (Fig. 2b). For each participant, we applied a quadratic fit to data
from all conditions (Methods). The quadratic fit, denoted as (MT,
Ang)2, uses two input variables, BB thickness and elbow angle, and
estimates elbow torque as the target variable (Fig. 2c). Across all par-
ticipants, the individualizedmodels achievedRMSEs of 3.89 ± 0.86Nm
(mean± SD), NRMSEs of 7.6 ± 1.4%, and coefficients of determination
(R2) of 0.92 ±0.03 (Supplementary Table S1).

Weobservedno significant effect of joint velocity on theRMSEs of
individualized models (F2,18 = 0.163, p =0.851) (Fig. 2d). A significant
effect of contraction type on the RMSEs was observed (F2,18 = 35.0,
p <0.001) with multiple pairwise comparisons revealed no significant
difference in estimation errors between concentric and eccentric
contractions (p =0.527) and significantly lower errors during passive
motion than those during active contractions (concentric: p < 0.001;
eccentric: p < 0.001) (Fig. 2e). These lower RMSEs aligned with
expectations given the minimal torque variation during passive
motion. Furthermore, we studied the contributions of input variables
by comparing the performance of (MT, Ang)2 to quadratic fits based
solely on muscle thickness (MT2) and solely on joint angle (Ang2)
(Supplementary Figs. S6a, S6b). We observed significant effects of
input variables on estimation accuracy (NRMSEs: χ22 = 20, p <0.001;R2:
F2,18 = 1001, p < 0.001). MT2 produced a small and non-significant
decline in performance compared to (MT, Ang)2 (NRMSE: p = 0.312; R2:

p =0.090), with NRMSEs increasing to 9.6 ± 2.9% and R2 decreasing to
0.87 ± 0.05. In contrast, Ang2 yielded significantly poorer estimations
than (MT, Ang)2 (NRMSE: p <0.001; R2: p <0.001), with NRMSEs of
25.8 ± 3.0% and R2 of 0.10 ±0.05. This model comparison suggested
that muscle thickness played a much more substantial role than joint
angle for estimating the corresponding joint torque from a parallel
muscle. Lastly, we evaluated a generalized model by fitting (MT, Ang)2

on data from all participants. In comparison to individualized models,
the generalized model generated an increased NRMSE of 11.5% and a
decreased R2 of 0.82 (Supplementary Table S1).

Elbow torque estimation during dumbbell curls
To investigate functional applications of elbow torque estimation, we
performed a study on five participants during dumbbell curls. The
study consisted of dynamometer calibration and free weight demon-
stration.We collected BB thicknesswith A-mode ultrasound and elbow
angle with inertial measurement units (IMUs). During the calibration,
participants performed single-speed BB contractions on the dynam-
ometer (Fig. 2a). Using the calibration data, we fitted individualized
(MT, Ang)2 models which produced RMSEs of 2.62 ± 0.78 Nm, NRMSEs
of 6.8 ± 1.4% and R2 of 0.96 ± 0.02 across all participants (Supple-
mentary Table S2). These models were then used to estimate elbow
torque during unconstrained dumbbell curls.

During the demonstration, participants performed dumbbell
curls with various free weights (Fig. 3a). Data from a representative
participant showed that BB thickness increased with weight, while
elbow range of motion decreased (Fig. 3b). We obtained the elbow
torque estimation (Fig. 3c) by applying the (MT, Ang)2 model from
calibration and compared the resultswith those calculated froma rigid
body model (Fig. 3d, Supplementary Fig. S7, Methods). For all parti-
cipants, there was a close agreement between the estimated and cal-
culated torque (Supplementary Fig. S8), with the average elbow torque
increasing proportionally to the weight of the dumbbell (Fig. 3e, f).
Quantitatively, absolute errors in average torque measurements were
1.25 ± 0.71 Nm for no weight, 1.18 ± 0.57 Nm for medium weights, and
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Fig. 1 | Overview of the A-mode ultrasound system. A Exploded view of the
wearable transducer mount. Four SETs are mounted on a 3D-printed case and
attached to the body using a compressive fabric band. B Photograph of SETs worn
on the upper arm over the BB muscle belly. C Photograph of SETs worn on the
upper leg over the RF muscle belly. D Representative A-mode ultrasound data

during concentric contractions of the parallel BB muscle (top) and the pennate RF
muscle (bottom).Reddashed lines indicate superficial anddeepmuscle boundaries
measured with the MBTA. Right insets show representative raw ultrasound data at
specific time frames.
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2.41 ± 0.94 Nm for heavy weights across all participants. Qualitatively,
we observed similar double-peak torque profiles from both models,
with peak locations aligned with instances when the forearm was
perpendicular to gravity and the moment arm was maximized
(Fig. 3c, d). Additionally, the first peaks had lower amplitudes, as they
occurred during elbow extension when gravity aligned with the
motion, while the second peaks occurred during elbow flexion when
gravity needed to be counteracted. We further noted that our esti-
mation tends to produce higher torque values at these peak locations
compared to the rigid body calculations (Supplementary Fig. S8). Such
discrepancy is likely attributed to factors such as muscle co-contrac-
tion, which the rigid model cannot capture, as well as the various
simplifying assumptions employed in the rigid bodymodel (Methods).
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Fig. 2 | Elbow torque estimation during isokinetic contractions of the biceps
brachii. A Illustration of participants secured on a dynamometer with SETs
placed over the BB muscle belly. B Example elbow angle, elbow torque, and BB
thickness from a representative participant during passive (pass; gray), con-
centric (conc; red), and eccentric (ecc; blue) contractions at 60° s−1, 90° s−1, and
120° s−1. Lines and shaded regions represent mean ± SD (n = 7 contractions).
C Example relationship between BB thickness, elbow angle, and elbow torque
from a representative participant across all conditions, with an overlaid quadratic
fit (gray).D RMSEs for different contraction speeds across all participants (n = 10).
One-way ANOVA: no significant main effect (p = 0.851, F2,18 = 0.163). E RMSEs for
different contraction types across all participants (n = 10). One-way ANOVA: sig-
nificant main effects (p < 0.001, F2,18 = 35.0). Bonferroni post-hoc analysis: pass vs
conc (p < 0.001), pass vs ecc (p < 0.001), and conc vs ecc (p = 0.527). For D and
E, each box bounds the interquartile range (IQR) divided by the median with
whiskers extending up to 1.5*IQR. Each dot represents the RMSE for one partici-
pant. *p < 0.05.
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Knee torque estimation during isokinetic contractions
To evaluate the estimation of corresponding joint torque from pen-
nate muscles, we collected A-mode ultrasound of the RF and knee
kinematics and kinetics with the dynamometer on ten participants
during isokinetic RF contractions (Figs. 1c, 4a, Supplementary Fig. S5).
Data from a representative participant showed a correlated yet non-
monotonic relationship between RF thickness and knee torque, as
evidenced by the mismatch between peak locations of RF thickness
and knee torque during active contractions (Fig. 4b). By fitting (MT,
Ang)2 ondata fromeachparticipant across all contractions (Fig. 4c), we
obtained individualized models with RMSEs of 12.59 ± 3.12Nm,
NRMSEs of 7.0 ± 1.3%, and R2 of 0.92 ±0.02 (Supplementary Table S1).

Joint velocity showed no significant effect on the RMSEs
(χ22 = 0.000, p = 1.00) (Fig. 4d), whereas contraction type showed a
significant effect (F2,18 = 21.8, p <0.001). Despite the significantly lower
RMSEs during passive motion than active contractions (concentric:
p <0.001; eccentric: p <0.001), there was no significant performance
difference between concentric and eccentric contractions (p =0.894)
(Fig. 4e). Furthermore, during input contribution analysis, quadratic
models with different inputs showed significantly different perfor-
mances (NRMSE: F2,18) = 275, p < 0.001; R2: F2,18 = 434, p <0.001) (Sup-
plementary Figs. S6c, S6d). Both MT2 and Ang2 models produced
significantly poorer fit than the (MT, Ang)2 model (NRMSE of MT2:
p <0.001; R2 of MT2: p =0.003; NRMSE of Ang2: p <0.001; R2 of Ang2:
p <0.001), with Ang2 yielding the worst fit (NRMSEs = 23.6 ± 1.9%,
R2 = 0.16 ± 0.06), followed by MT2 (NRMSEs = 11.6 ± 3.4%,
R2 = 0.79 ± 0.11). Such drastic performance difference suggested that
both muscle thickness and joint angle were important for estimating
the corresponding joint torque from a pennate muscle, with muscle
thickness playing a larger role than joint angle. By fitting (MT, Ang)2 on
data from all participants, the generalized model produced an
increased NRMSE of 12.0% and a decreased R2 of 0.78 (Supplementary
Table S1).

Lastly, we performed a single-participant sensitivity analysis to
understand the effect of transducer placement (Supplementary Text).
By collecting A-mode ultrasound at 18 different locations across the
RF, we observed that transducer placement largely affected the
ultrasound quality of the deep RF boundary but did not dramatically
affect the correlation to knee torque (Supplementary Fig. S9). How-
ever, applying the fit obtained from a specific location to neighboring
locations led to increasing estimation errors, highlighting the impor-
tance of minimizing sensor placement drift during use.

Knee torque estimation during cycling
To investigate functional applications, we performed a single-
participant study to estimate knee torque during stationary cycling
at varying resistance levels. To achieve knee torque estimation, we
collected A-mode ultrasound of the RF and vastus lateralis (VL) mus-
cles and captured knee angle using IMUs (Supplementary Text). Qua-
litatively, estimated knee torque from both the RF and VL increased
with pedaling resistance (Supplementary Fig. S10).

Knee torque estimation during treadmill and outdoor
locomotion
To evaluate knee torque estimation during unconstrained dynamic
activities, we performed a treadmill study on five participants and a
single-participant outdoor locomotion demonstration. We collected
RF thickness using A-mode ultrasound and joint kinematics with IMUs.
We primarily focused on the load-bearing stance phase of gait, seg-
mented using IMU signals (Methods).

During treadmill locomotion, we obtained ground truth knee
torque using inverse dynamics while participants walked and ran at
varying speeds and slopes on an instrumented treadmill (Fig. 5a). By
fitting quadratic fits on data from each participant across all treadmill
conditions, we obtained individualized models with RMSEs of
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17.43 ± 5.09Nm, NRMSEs of 6.0 ± 1.1%, and R2 of 0.92 ±0.03 (Supple-
mentary Table S2). Data from a representative participant is illustrated
to show the correlation between the estimated and the ground truth
knee torque (Fig. 5b). Across participants, we observed no significant
difference in RMSEs during walking and running (p =0.873) (Fig. 5c).
Treadmill slope also had no significant effect on RMSEs (F2,8 = 0.036,
p =0.965) (Fig. 5d). These results were generated using quadratic
models with RF thickness, along with IMU-measured pelvis, thigh, and
shank angles as input variables. These input variables were used to
capture the combined effect of muscle deformation and joint kine-
matics on knee torque estimation.

As proof of concept for real-world use, one participant further
performed an outdoor locomotion demonstration by wearing a
backpack containing the data collection electronics (Fig. 5e). The
demonstration consisted of two parts: (1) walking and running at var-
ious speeds on level ground and (2) walking and running at a self-
selected comfortable speed on slopes. Applying the individualized
model obtained from the treadmill test, we estimated an increase in
knee torque with increasing speeds during the outdoor conditions,
with peak knee torque increased by 78.4% from slow to fast walking
and by 4.3% from jogging to running (Fig. 5f). These percentage
increases aligned with those observed in the treadmill test, where the
peakknee torque for this participant increasedby 71.3% from0.75m s−1

to 1.25m s−1 walking and by 5.7% from 2.50m s−1 to 3.00m s−1 running
(Fig. 5b). Additionally, we observed a decrease in knee torque with
increasing slope, with peak knee torque decreasing by 20.0% from
downhill to uphill walking and by 20.9% from downhill to uphill run-
ning (Fig. 5g). These percentage changes were smaller than those
observed in the treadmill test when comparing the decline and incline
conditions (42.9% decrease at 0.75m s−1 and 46.7% decrease at
2.50m s−1) (Fig. 5b). This difference was likely due to the smaller slope
change in the outdoor test (−7.5% to 7.5%) compared to the treadmill
test (−10% to 10%)53.

Discussion
In this work, we demonstrated the use of A-mode ultrasound to track
muscle thickness during dynamic movements. Subsequently, we
showed that a quadratic fit with muscle thickness and joint angle
enabled joint torque estimation in various dynamic tasks, ranging from
controlled isokinetic contractions to dynamic functional applications.
Additionally, we found that muscle thickness played a substantial
role in joint torque estimation for both parallel and pennate muscles,
while the contribution of joint angle varied based on muscle
architecture.

Our joint torque estimation achieved results comparable to those
in published studies during controlled dynamic contractions. During

Fig. 5 | Knee torque estimation during treadmill and outdoor locomotion.
A Illustration of participants performing various walking and running tasks on an
instrumented treadmill with RF thickness measured with SETs and joint kinematics
measured with wireless IMUs. B Example estimated knee torque during the stance
phase (left column) and corresponding ground truth (right column) for treadmill
locomotion at various speeds (0.75, 1.25, 1.75m s−1 walking and 2.50, 3.00m s−1

running) and slopes [+10% (top row), 0% (middle row), −10% (bottom row)] from a
representative participant. Lines and shaded regions represent mean± SD across
the steps within each condition. C RMSEs for different locomotion types across all
participants (n = 5). Student’s two-tailed t tests: walk vs run (p =0.873).DRMSEs for

different slope levels across all participants (n = 5). One-way ANOVA: no significant
main effect (p =0.965, F2,8 = 0.036). For C andD, each box bounds the IQR divided
by themedianwithwhiskers extending up to 1.5*IQR. Eachdot represents theRMSE
for one participant. E Photograph of a participant performing outdoor locomotion
with a backpack containing the A-mode ultrasound electronics. Placements of SETs
and IMUs remained unchanged compared to the treadmill test. F Knee torque
estimation at different speeds during level ground outdoor locomotion. Lines and
shaded regions represent mean± SD (n = 15 steps). G Knee torque estimation dur-
ing comfortable-speed downhill and uphill walking and running. Lines and shaded
regions represent mean± SD (n = 15 steps).
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the dynamometer tests, we obtained elbow and knee torque estima-
tionwith less than 7.6%NRMSEs andR2 values greater than 0.92 during
isokinetic BB and RF contractions at various speeds (Supplementary
Table S1). Prior studies on controlled contractions have reported
elbow torque estimation with an NRMSE of 9.6% during isokinetic BB
contractions by combining EMG with A-mode ultrasound47 and knee
torque estimation with an NRMSE of 15% during isokinetic knee
extension using soft strain sensors25. However, the applicability of
these existing methods for estimating joint torque during uncon-
strained dynamic tasks remains unexplored.

We further showed that our estimation models could be used in
dynamic functional activities in unconstrained environments. We
demonstrated joint torque estimation during dumbbell curls and
outdoor locomotion with a fully wearable setup including wireless
IMUs, A-mode ultrasound, and electronics housed in a backpack.
During dumbbell curls, our estimated elbow torques increased with
heavier weights and exhibited time series profiles resembling those
from a rigid body model (Fig. 3, Supplementary Fig. S8). Given the
essential role of the elbow in various throwing motions such as base-
ball pitch, basketball pass, and javelin throw, continuousmonitoring of
elbow torque during sports activities holds the potential to facilitate
more effective athletic training programs and targeted injury preven-
tion strategies3,8,54,55. During outdoor locomotion, the estimated knee
torque increased with speed and decreased with incline, with much
higher amplitudes during running than walking (Fig. 5). These torque
profiles are consistent with previously reported values measured with
lab-based equipments53,56. Knee disorders can largely affect people’s
mobility and quality of life. Monitoring knee torque during uncon-
strained locomotion in communities can be beneficial for preventing
and managing conditions like knee osteoarthritis57 or assessing
recovery progress after an ACL reconstruction surgery58. Moreover,
given the prevalence of work-related lateral epicondylitis (tennis
elbow)59 and occupational knee disorders60, tracking elbow and knee
torque while conducting physically demanding jobs could also help
facilitating better workplace ergonomics and preventing work-related
injuries.

In addition to its potential use in dynamic applications, our A-
mode-based torque estimation has the advantage of providingmuscle-
specific measurements. In the cycling test, we observed increased
torque estimations with pedaling resistance, but with different profiles
for RF and VL-based estimations (Supplementary Fig. S10). These
estimation profiles align with previously reported EMG activation
patterns of the RF and VL61,62. Specifically, activation/torque estimates
from the VL peak during the downstroke phase, whereas those from
the RF peak during the setup phase, which immediately precedes the
downstroke phase. This difference in estimated torque is likely due to
variations in muscle function, as the RF is responsible for both knee
extension and hip flexion, while the VL solely functions as a knee
extensor26. This demonstrated muscle specificity distinguishes our
ultrasound-based approach from other surface level measurements
like shearwave tensiometers, EMG,MMG, FMG, and soft strain sensors,
demonstrating its potential as a valuable tool for detailed studies of
muscle function and biomechanics16.

Driven by A-mode ultrasound’s muscle-specific measurements,
we identified that contributions of muscle thickness and joint angle
to joint torque estimation were closely associated with the under-
lying muscle architectures. We found that muscle thickness alone
sufficed to capture the overall deformation of a parallel muscle (e.g.,
the BB) and achieved good correlation with corresponding joint
torque (Supplementary Figs. S6a, S6b). This finding aligns with the
deformation behavior of parallel muscles, which thicken and widen
during contraction due to fascicle shortening21. In contrast, for a
pennatemuscle (e.g., the RF), muscle thickness alone was insufficient
for accurate joint torque estimation (Supplementary Figs. S6c, S6d),
consistent with prior findings using B-mode ultrasound50,63. The

insufficiency of muscle thickness alone occurs because pennate
muscles undergo both fascicle shortening and rotation, resulting in a
wide range of possible changes in thickness and width21,50,51. To cap-
ture the combined effect of changes in fascicle length and pennation
angle, we showed that both RF thickness and joint angle were
necessary for accurate knee torque estimation.

To describe the relationship of muscle thickness and joint
kinematics to joint torque, we used a simple 2nd order polynomial fit,
which offers advantages in model generalizability and transferability
due to its simple architecture64,65. Specifically, we showed in the
dynamometer tests that applying the quadratic fit to all contractions
yielded comparable results across different contraction speeds
(Figs. 2d and 4d) and types (concentric vs eccentric) (Figs. 2e and
4e). We further showed in the dumbbell curl and the outdoor loco-
motion tests that quadratic models trained using controlled con-
tractions can generate promising results in unconstrained dynamic
tasks (Figs. 3 and 5, Supplementary Fig. S8). In contrast, prior
A-mode ultrasound studies have primarily used more advanced
machine learning algorithms, such as deep neural networks, by
training them directly on the raw ultrasound data. Despite enabling
various classification applications39,41–43 and continuous joint
kinematics66 or static grip force44,45 estimation, these algorithms
often require substantial amounts of training data due to the large
number of tunable parameters within the model. In comparison, we
alleviated the data requirement by training the relatively simple
quadratic fit on the extracted muscle thickness, rather than on the
raw A-mode data. As an example, we trained the elbow torque esti-
mator for dumbbell curls using only 15 isokinetic contractions (5
passive, 5 concentric, 5 eccentric). In the future, we expect that
combining a feature extraction method, like the MBTA, with
advanced machine learning algorithms could enable more accurate
torque estimation, potentially by fusing multiple measurements
from the same muscle or leveraging measurements from different
muscles.

While A-mode ultrasound showed promise for joint torque
estimation during unconstrained dynamic activities, we note a few
limitations that future work should investigate. First, we used joint
torque, instead of muscle force, as ground truth. Given our muscle-
level measurements, we could expect improved performance with
muscle force as ground truth. However, forces of specific muscles
have been infeasible to directly measure non-invasively8 and require
complex computational models to simulate16,67. Second, our current
fit identification was conducted on an individual basis that required
lab-based equipment, such as a dynamometer or an instrumented
treadmill. Despite the promise of our generalized models (with less
than 5% additional NRMSEs compared to individualized models)
(Supplementary Table S1), developing a more accessible calibration
procedure, such as one based on body weight, could enhance prac-
ticality and improve estimation accuracy for daily use. Notably, such
a calibration procedure is a common need for non-invasive wearable
sensors, including the shear wave tensiometer13, soft strain
sensors25,68, and surface EMGs19,20. Third, while the MBTA demon-
strates potential for real-time implementation (Methods), current
torque estimation is conducted in post-processing. Future efforts
could focus on developing a centralized system to simultaneously
log ultrasound and IMU data and perform the torque estimation
algorithm in real-time. Lastly, our study focused primarily on
superficial muscles (e.g., BB and RF) and hinge joints (e.g., elbow and
knee). While the MBTA can track the thickness of deep muscles
(Supplementary Fig. S1), using deep muscle dynamics for estimating
joint torque, especially in more complex ball-and-socket joints,
remains interesting and unexplored. Despite these limitations, our
study presents a step towards using wearable A-mode ultrasound for
monitoring muscle and joint mechanical loads in various real-world
tasks and environments.
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Methods
Amplitude-mode ultrasound system
Four 5MHz SETs (Alpha 113-124-660, Waygate Technologies, Ger-
many)weremounted in a custom3Dprinted case (35mmby43mm) at
angles of 0°, 1.25°, 2.5°, and 3.75°. The choice of four transducers was
based on preliminary tests as this number provided a good balance
between capturing signals with sufficient echo strength and achieving
reasonable technical specifications including assembly size and frame
rate (90Hz). These transducers were worn on the target limb using a
compression band (Scosche, USA) (Fig. 1a). Thin layers of ultrasound
gel (Aquasonic, USA) were applied to SETs before donning. The
transducer assembly had a total mass of 35.1 g (excluding the trans-
ducer cables). Raw ultrasound data of the four SETs were collected
with an ultrasonic pulser/receiver (OPBOX, Optel, Poland) and a mul-
tiplexer (OPMUX, Optel, Poland) using the pulse echo mode. The
ultrasonic pulser operated as a short-circuit step pulser with pulse
voltage, pulse charging time, and pulse repetition frequency set to
240 V, 3.1 µs, and 360Hz (for 4 SETs), respectively. The receiver
recorded echoes up to a depth of 80mm with amplification gain,
analog band-passfilter, and sampling frequency set to 20 dB, 4–6MHz,
and 50MHz, respectively. 1540m s−1 was used as the speed of sound in
human tissues. For system wearability, we powered the ultrasound
instrument with a rechargeable battery pack (RRC2054, RRC Power
Solutions, Germany) and housed all electronics in a backpack (Fig. 5e).
The backpack had a total mass of 5.4 kg.

Muscle boundary tracking algorithm (MBTA)
Wedeveloped a customMATLAB (MathWorks,USA) algorithm to track
the time-series depth change of the target muscle boundary (Fig. 1d,
Supplementary Fig. S1). We first manually cropped the data from each
SET to the depth range containing only the muscle boundary of
interest (Supplementary Fig. S1b). The MBTA then identified the SET
with the optimal angle of incidence by averaging the peak echo
intensity across all time frames and selected the transducer (among
the 4 SETs) with the largest mean peak echo intensity. Once identified
for a given muscle, data from the same SET was used across all
experimental conditions.

Next, the cropped data from the selected SET were fed into a
brightness-based and a cross-correlation-based tracking method,
which were later fused to obtain the final tracking. The brightness-
based method performed a Hilbert transform on the raw ultrasound
data for envelope detection, applied a 2D box filter (2.5mm by
0.05 sec) for smoothing, and tracked the peak location of the
smoothed signal at each time frame. The brightness-based method
tracked the general movement of the muscle boundary but was sus-
ceptible to variations in ultrasound echo intensity, resulting in high-
frequency noise in the tracking (Supplementary Fig. S1c). These echo
intensity fluctuationsmay be frommotion induced soft tissue artifacts
or muscle fascicle rotation during contraction. The cross-correlation-
based method applied cross-correlation to the raw ultrasound data of
consecutive time frames and integrated the relative delays across all
time frames. The cross-correlation-based method produced smooth
tracking, but with low frequency drift (Supplementary Fig. S1d).
The drift resulted from errors accumulated during numerical integra-
tion. Finally, the MBTA summed the low-pass filtered (1.5 Hz) tracking
output from the brightness-based method with the high-pass filtered
(1.5Hz) tracking output from the cross-correlation-based method.
Combining the twomethods resulted indepth tracking thatwas robust
against high-frequency noises and the low-frequency drift (Supple-
mentary Figs. S1e, S1f).

Although the MBTA is currently implemented in post-processing,
its required computational steps are straightforward. The algorithm
operates with an average runtime of less than 0.3 milliseconds per
frame on a standard CPU (Intel Core i7-10750H @ 2.60GHz), show-
casing its potential for real-time use. To transition to real-time

implementation, further developments could involve pre-defining the
region of interest based on bodymeasures, such as weight and height,
replacing low-pass filters with the simpler moving average filters, and
implementing the algorithm on a field programmable gate array
(FPGA). Notably, the 2D box filter in the brightness-based method and
the low-pass and high-pass filters in the final fusion stepmay introduce
time delays in tracking. Therefore, it is important to optimize filter
parameters, like filter size and cutoff frequency, for specific applica-
tions to minimize these delays.

Lastly, muscle thickness was calculated by subtracting the depth
of the superficial muscle boundary from that of the deep boundary.
For eachparticipant,we used theMBTA tomeasure thedeepboundary
depth, while assuming the superficial boundary depth as a manually
measured constant. This assumption was used because both studied
muscles (BBandRF)were superficialmuscles,whichexhibitedminimal
depth changes in their superficial boundaries during contractions
(Supplementary Fig. S1a).

Experimental methods and data processing
Participants. Ten healthy adults (3 females and 7 males; age = 29.0 ±
3.7 years; mass = 70.6 ± 12.2 kg; height = 1.75 ± 0.10m; Supplementary
Table S3) participated in the dynamometer test. Five healthy adults (1
female and 4 males; age = 27.8 ± 2.4 years; mass = 76.8 ± 12.0 kg;
height = 1.79 ±0.12m; Supplementary Table S4) participated in the
dumbbell curl and treadmill locomotion tests. One healthy male
(age = 29 years; mass = 83 kg; height = 1.83m) participated in the
transducer placement, stationary cycling, and outdoor locomotion
tests. All participants provided written informed consent before par-
ticipation. The study was approved by the Harvard Medical School
Institutional Review Board (IRB #22086), and all tests were carried out
in accordance with the approved study protocol. The authors affirm
that the participant appearing in the photograph in Fig. 5 provided
written consent for its publication.

Dynamometer testing. Ten participants attended two isokinetic
dynamometer (HUMAC Norm, CSMi Solutions, USA) tests: an elbow
test (Fig. 2a) and a knee test (Fig. 4a). We evaluated the right arm and
the right leg for all participants. SETs were placed over the BB and RF
muscle belly to capture muscle deformation. For each test, partici-
pants performed seven repetitions each of passive, concentric, and
eccentric contractions at three speeds (60, 90, 120° s−1), totaling 63
repetitions per test (Supplementary Fig. S5). For both tests, the range
ofmotionwas set to 20°–110° of elbow/knee flexion,with0° defined as
full extension for both joints. Participants were instructed to fully relax
during passive motion and exert near-maximal effort during active
contractions. Tomitigate fatigue, participantswere given 1-minute rest
between active contraction trials and were allowed additional rest
whenever needed. Joint angles and torques were measured from the
dynamometer and collected using an external data acquisition unit
(DAQ; 10 kHz; PowerLab 8/35, AD Instruments, New Zealand). Ultra-
sound sync pulses (360Hz)were simultaneously recorded by theDAQ.
Joint angles and torques were resampled in post-processing to match
the frequency of ultrasound data for synchronization.

Joint torque, joint angle, andmuscle thickness data were low-pass
filtered using a fourth-order, zero-lag, Butterworth filter at 5Hz25.
Notably, torques measured by a dynamometer include both the
gravitational torque (from the weight of the limb and the dynam-
ometer attachment) and the biological torque from muscle
contraction69. To isolate biological torque changes, we first modeled
gravitational torque (torque measurements during passive contrac-
tions) as a sinusoidal function to joint angle and subsequently sub-
tracted this function from torque measurements in all passive and
active contractions. We segmented the corrected torque, angle, and
thickness data to the torque generation phase of active contractions
and to joint flexion and extension phases of passive motion. We then
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time-normalized these segmented data to account for variations in the
number of data points resulting from different contraction speeds
(Figs. 2b and 4b). For the generalized models, each participant’s joint
torque and muscle thickness data were normalized to their maximum
values to account for individual differences in muscle size and
strength. We used R2, RMSE, and NRMSE to evaluate the joint torque
estimation. Specifically, the NRMSE was calculated by dividing the
RMSE by the range of ground truth joint torque.

Dumbbell curl testing. Five participants attended the dumbbell curl
test. During calibration, the participant performed five repetitions
each of passive, concentric, and eccentric BB contractions at 90° s−1 on
the dynamometer following the same instructions as in the dynam-
ometer test (Fig. 2a). Subsequently, participants performed six
dumbbell curls each with no weight, a self-selected medium weight
dumbbell (e.g., 1.5 kg, 3 kg, or 5 kg), and a self-selected heavy weight
dumbbell (e.g., 3 kg, 7 kg, or 10 kg) on a bench with 30° incline. The
participantwore SETs on the right upper armover the BBbelly and two
wireless IMUs (Movella DOT, Movella, USA) on the lateral sides of the
right upper arm and forearm (Fig. 3a). Sensor placements were not
changed between the two parts of the test. Elbow angles were mea-
sured using IMUs and ground truth elbow torque was recorded from
the dynamometer during calibration. IMUmeasurements (120Hz) and
A-mode ultrasound were synchronized post hoc by simultaneously
recording an impact event using the SETs and an additional IMUplaced
directly over the SETs.

We processed the calibration data using the same approach as in
the dynamometer test and fitted a (MT, Ang)2 model using the IMU-
based elbow angle (see “IMU-based kinematics calculation and gait
segmentation”). During dumbbell curl validation, elbow angle and BB
thickness data were low-pass filtered at 5 Hz and fed into the (MT,
Ang)2 model for elbow torque estimation. The torque estimation was
segmented by peak elbow angle, time-normalized, and evaluated by
comparing to the calculation from a rigid body model (see “Dumbbell
curl rigid body model”).

Locomotion testing. Five participants attended the treadmill loco-
motion test. During the test, the participant walked and ran at five
speeds (walking: 0.75, 1.25, 1.75m s−1; running: 2.50, 3.00m s−1) on
three levels of slope (5.71°/10%, 0°, −5.71°/−10%). The participant per-
formed each task for 30 secondswith lower-limb kinematicsmeasured
using a motion capture (mocap) system (200Hz; Qualisys, Sweden)
and 3D ground reaction forces (GRF)measured using an instrumented
split-belt treadmill (2 kHz; Bertec, USA). The participant wore SETs on
the right leg over the RF belly and four wireless IMUs on lateral sides of
the right foot, shank, and thigh, as well as on the back of the pelvis
(Fig. 5a). A-mode ultrasoundwas synchronized with themocap system
using the DAQ.

Following the treadmill test, one participant proceeded to the
outdoor locomotion test. He kept the same placements of SETs and
IMUs, doffed the mocap markers, and donned the backpack (Fig. 5e).
The outdoor test contained two experiments. First, the participant
performed 15 steps of slow walking, fast walking, jogging, and running
on a level outdoor walkway. Then, the participant performed 15 steps
of downhill walking, uphill walking, downhill jogging, and uphill jog-
ging on an outdoor ramp inclined at 4.3° or 7.5% [measured using an
angle gauge (GemRed, China)]. Each experiment lasted
approximately 90 s.

We calculated knee, hip, and thigh angles using IMUs. During the
treadmill test, we performed inverse dynamics analysis using mocap
and GRF data to calculate ground truth knee torque (Visual3D, C-
Motion, USA). For both treadmill and outdoor tests, all data were low-
pass filtered at 10Hz and segmented to the stance phase of gait (see
“IMU-based kinematics calculation and gait segmentation”). We
obtained the quadratic fit using data from the treadmill test and

applied it to the outdoor test to demonstrate knee torque estimation
during outdoor locomotion tasks. We used IMU measured pelvis,
thigh, and shank angles as the kinematics inputs to the fitting model.
These inputs were used to account for the biarticular nature of the RF
muscle, whose geometry is affected by both the hip and knee joints.
Notably, hip angles were not considered during the dynamometer
tests because participants were secured to the chair with minimal
change in their hip angles.

Quadratic fit on muscle thickness and joint kinematics
The non-linear relationship between muscle deformation and force
production has been widely reported in literature27,48,50,70. Research in
muscle modeling has incorporated muscle geometric models to
complement force simulations. However, there remains a trade-off
between computational simplicity (e.g., constant thickness or area
assumptions) and the complete representation of muscle shape
changes (e.g., 3D finite element methods)16. Hence, it remains chal-
lenging to develop accurate and accessible biomechanicalmodels that
comprehensively capture the muscle’s complex 3D deformation dur-
ing contraction, not to mention the interactions with neighboring
muscles16. In practice, this challenge has led to a rather empirical
approach in defining the relationship between muscle deformation
measurements and joint torque estimates. Specifically, a spectrum of
models, including quadratic28, cubic25,70, exponential71, and even more
complex machine learning44–47 models have been suggested to
describe such relationship. In this work, we chose the quadratic fit,
mainly for its simplicity and interpretability, for describing the map-
ping from muscle thickness and joint kinematics to joint torque.

Dumbbell curl rigid body model
For the dumbbell curl test, wemodeled the forearmandhand as a rigid
rod with uniformly distributedmass and the dumbbell as a point mass
at the distal end of the rod (Supplementary Fig. S7). The torque from
elbow flexors, Telbow, can be expressed as

Telbow =
m0gL
2

sinθ+mgL sinθ+ Iα, ð1Þ

wherem0 is the total mass of the forearm and the hand,m is the mass
of the dumbbell, g is the gravitational acceleration, L is the distance
from the cubital fossa (elbow pit) to the center of the thirdmetacarpal
bone (center of the hand) at 0° wristflexion, θ is the angle between the
forearm and the line of gravity, I is the moment of inertia, and α is the
angular acceleration. L was directly measured from the participants,
m0 was calculated using the reported body segment weights72, θ was
measured using IMUs, and α was calculated by taking the second
derivative of θ. The moment of inertia of the forearm and hand was
calculated using

I =m0
L
2

� �2

+mL2: ð2Þ

IMU-based kinematics calculation and gait segmentation
The IMUs used in this work provided 3D orientation data, which were
generated using the manufacturer’s proprietary algorithms. However,
the susceptibility of IMU orientations to yaw drift is widely
documented73,74. To correct for drift, we assumed perfect hinge joints
for the elbow, knee, and hip. We also assumed our IMU placement
guaranteeing that one of its local coordinate axes perfectly aligned
with the joint axis74. With these assumptions, each IMU can measure
the angle of respective body segment (forearm, upper arm, pelvis,
thigh, shank, and foot) relative to gravity. Specifically, we measured
these segment angles by redefining the IMU global frame (with one
axis aligned with the joint axis and another pointed against gravity)
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and finding the angle between the local and the updated global frames
around the joint axis. Joint angles can thenbe calculatedby subtracting
the angles of two adjacent segments (e.g., hip angle = pelvis angle−
thigh angle, knee angle = thigh angle − shank angle).

During treadmill/outdoor locomotion tests, the stance phase of
gaitwas segmented anddefined as the periodbetweenheel-strikes and
subsequent toe-offs. Heel-strikes were identified by detecting the
timing of local maxima in foot angles, and toe-offs were identified by
detecting the timing of local minima in foot velocities that occurred
between consecutive heel-strikes.

Statistics
Statistical analyseswere performed to evaluate effects of joint velocity,
contraction type, model input, and treadmill locomotion condition
(walking vs running, slope level) on joint torque estimation. During
these analyses, we first performed the Shapiro–Wilk test to check data
normality. For normally distributed data, we used one-way repeated
measures analysis of variance (ANOVA) to evaluate the metric’s main
effect. For non-normally distributed data, we applied Friedman’s test
for main effect analysis. Once the main effect was found to be sig-
nificant, post-hoc analyses with Bonferroni correctionwere conducted
for multiple pairwise comparisons (two-tailed). For pairwise compar-
isons on normally distributed data (such as RMSEs for treadmill
walking versus treadmill running), we used the two-tailed two-sample
t-test. The level of statistical significance was set at p <0.05.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available within the
article and its supplementary files. Any additional requests for infor-
mation can be directed to, and will be fulfilled by, the corresponding
author. Source data are provided with this paper.

Code availability
All code for this work will be made available from the corresponding
author upon request.
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