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SUMMARY

Current studies in early cancer detection based on liquid biopsy data often rely on off-the-shelf models
and face challenges with heterogeneous data, as well as manually designed data preprocessing pipelines
with different parameter settings. To address those challenges, we present AutoCancer, an automated,
multimodal, and interpretable transformer-based framework. This framework integrates feature selec-
tion, neural architecture search, and hyperparameter optimization into a unified optimization problem
with Bayesian optimization. Comprehensive experiments demonstrate that AutoCancer achieves accu-
rate performance in specific cancer types and pan-cancer analysis, outperforming existingmethods across
three cohorts. We further demonstrated the interpretability of AutoCancer by identifying key gene mu-
tations associated with non-small cell lung cancer to pinpoint crucial factors at different stages and sub-
types. The robustness of AutoCancer, coupled with its strong interpretability, underscores its potential
for clinical applications in early cancer detection.

INTRODUCTION

According to the latest report1 from the International Agency for Research on Cancer (IARC), cancer is the leading cause of premature deaths

worldwide. The Office of the National Statistics highlights the importance of early detection for improved survival rates.2 As a potential so-

lution, liquid biopsy, a non-invasive technique involving the sampling of non-solid specimens,3,4 offers the possibility for early cancer detec-

tion and longitudinal tracking. This technique analyzes circulating tumor cells (CTCs), extracellular vesicles (EVs), cell-free DNA (cfDNA), and

circulating tumor DNA (ctDNA) from fluids like blood, urine, and saliva. Despite its promise, early cancer screening based on liquid biopsy

remains as an emerging field with research questions to be addressed.

Firstly, the diversity of liquid biopsy components contributes to data complexity, heterogeneity, poor annotation, and unstructured na-

ture.5,6 However, the standardization and unification of features are challenging due to the inherent data multimodality, such as methylation,

single nucleotide variants (SNVs), copy number variations (CNVs), protein levels,7,8 and even other data types such as fragmentomics and

multiple analytes.6,9 Secondly, biomarker selection is a formidable challenge due to the multifaceted and intricate mechanisms underlying

cancer progressions.10 Given the massive analytes with over 20,000 genes and more than 50,000 protein isoforms, identifying cancer-related

biomarkers presents a huge feature selection challenge. Thirdly, the development of automated workflow is crucial for achieving rapid and

accurate analysis in cancer detection.11,12 Such workflow can minimize human intervention and lower the technical barriers of machine

learning for non-specialist medical practitioners. Lastly, interpretability is essential for the successful integration of deep learning models

into clinical practice.5,13 Ensuring these models with interpretabilities allows medical professionals to understand the underlying decision-

making processes and validate the detections.

Computational approaches, including statistical analysis, traditional machine learning, and deep learning, show promises in identifying

cancer-specific signatures from liquid biopsies. Statistical analysis select relevant biomarkers with strong correlations to target (outcome)

variables (such as disease status or phenotypes) from large-scale medical data and determine the thresholds for these biomarkers,

enabling cancer detection or analysis based on liquid biopsies.14–16 These methods efficiently handle large-scale data, but their effective-

ness depends on data quality, as biased data can lead to inaccurate results. Traditional machine learning algorithms, including linear

models, decision trees, and SVMs, are frequently employed for early cancer detection due to their simplicity and robustness. Notable ap-

plications include lung-CLiP,17 which combines multiple algorithms to estimate cancer likelihood from blood cfDNA using multigenomic

features, GEMINI,18 which employs logistic regression to analyze early-stage genome-wide mutational profiles of cfDNA, and

CancerSEEK,19 which uses logistic regression and random forest to classify cancers based on ctDNA mutations and protein biomarkers.
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Machine learning techniques are also emerging in the analysis of other liquid components, such as extracellular vesicles.20,21 In the field of

fragmentomics, the methods such as DELFI9,22 have demonstrated the feasibility in recognizing fragmentation patterns for early cancer

detection. Liu et al.23 developed an Adaptive SVM to enhance early cancer screening accuracy based CNVs and fragmentomics. Deep

learning-based methods have shown potential in early cancer detection. Wong et al.24 constructed and introduced AnDE classifiers based

on blood test records from 1,817 patients for cancer detection. Li et al.25 introduced DISMIR, a model integrating Convolutional Neural

Networks and Long Short-Term Memory (LSTM) to differentiate whether a sequencing read originates from cancerous or normal tissue. Li

et al.26 developed cfSort, a neural network-based model designed to quantify tissue composition in cfDNA using a supervised approach.

Deep learning methods offer advantages such as high accuracy and the ability to model complex patterns in large datasets, suggesting a

potential area for exploration further.

In consideration of the challenges, we propose AutoCancer, an automated, multimodal, and Transformer-based framework that is both

interpretable and versatile. By integrating feature selection (FS), neural architecture search (NAS), and hyperparameter optimization (HPO)

within a unified workflow, AutoCancer addresses the need for human intervention in deploying early cancer detection models and provides

the related users with a simplified pipeline. We demonstrate the efficacy of AutoCancer in facilitating the early detection of specific cancer

types as well as pan-cancer analysis. Furthermore, we leverage the interpretability of AutoCancer to pinpoint key gene mutations associated

with non-small cell lung cancer (NSCLC). Our findings concur with the genemutations reported in existing literature and reveal mutations and

mutation pairs that may be relevant to specific tumor stages and subtypes. By harnessing the state-of-the-art deep learning techniques and

incorporating multimodal data sources, we hope that this work adds significant values to ongoing efforts in early cancer research, providing a

valuable tool for both clinicians and biomedical researchers. The source code of AutoCancer is publicly available at https://github.com/

ElaineLIU-920/AutoCancer.git.

RESULTS

Overview of AutoCancer

Figure 1A presents an overview of AutoCancer, a versatile framework that integrates automated deep learning, disease diagnosis, gene

screening, and gene pair discovery into a comprehensive framework for early cancer detection. This framework is designed to handle multi-

modal inputs and is capable of simultaneously performing feature selection (FS) and neural network design (incorporatingNAS andHPO). The

attention mechanism within AutoCancer plays a crucial role in enhancing its functionality. By leveraging this mechanism, attention scores can

be utilized to identify geneswith significant contributions to cancer detection. Additionally, the Transformer, as a context-awaremodel, allows

for the deep examination of gene pair interactions, providing insights into the unique roles of co-mutated gene pairs underlying the complex

processes within cancer development.

Figure 1B illustrates the workflow of AutoCancer. In the specific early cancer detection task of NSCLC, the employed features of sam-

ples are heterogeneous data. During the FS process, essential features are extracted from the original input, ensuring that only the most

relevant information is retained. These selected features are then introduced into an automatically designed Transformer block, where

they undergo a feature fusion process. This step effectively combines distinct features, enabling the model to capture complex relation-

ships and patterns within given data. After feature fusion, the feature embeddings are incorporated into an automatically designed

multilayer perceptron (MLP) block, which is responsible for executing cancer detection. Bayesian optimization (BO) is employed to

co-optimize the processes of FS and neural network design by maximizing the model performance and minimizing the fraction of

selected features. Such optimization stratgey streamlines the model development process and ensures robust performance in cancer

detection tasks.

AutoCancer enables effective early cancer detection

In this study, we initially evaluated the performance of AutoCancer and the state-of-the-arts (SOTA) method, Lung-CLiP17 on an NSCLC data-

set. As shown in Table 1, our proposed AutoCancer significantly outperformed Lung-CLiP by improving the accuracy from 0.780 to 0.833 on

the in-sample test set. Furthermore, we evaluated the performance of our model on a completely independent external cohort, referred as

the out-of-sample test set, to ensure its effectiveness and generalizability. AutoCancer outperformed Lung-CLiP by improving the accuracy

from 0.656 to 0.703 on this independent test set. This comparison was performed under ten repetitions, each with a randomdata splitting and

parameter initialization. Previously, Lung-CLiP achieved the best performance for early cancer detection on the dataset by integrating five

conventional machine learning classifiers and analyzing the features after conducting complex statistical scoring. It is worth noting that

the Lung-CLiP model normalized the prediction likelihood across the entire test set after obtaining the final prediction result. In contrast,

ourmodel does not utilize the information of the test set before reporting its performance, yet it still demonstrates better results across almost

all metrics, as tabulated in Table 1 and Figures 2A and 2B.

To validate the performance of AutoCancer on the detection of NSCLC further, we conducted a comprehensive comparison with several

baseline methods, including bi-directional LSTM (Bi-LSTM),27 MLP, Extra Trees,28 Random Forest,29 stochastic gradient descent (SGD),30

gradient boosting,31 SVM,32 AdaBoost,33 and Gaussian process.34 In order to ensure a fair comparison between AutoCancer and other clas-

sifiers, we applied HPO on each method. The comparative results are presented in Figure 2C, which clearly demonstrates that AutoCancer

significantly surpasses traditional methods in terms of accuracy, PR-AUC, and ROC-AUC. It is worth noting that the performance of these

learning methods is varied along with the chosen metric of interest; for instance, Extra Trees was ranked second when accuracy was selected

as the metric of interest; gradient boosting was ranked second when PR-AUC was chosen; and AdaBoost was ranked second in terms of
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Figure 1. Overview of the AutoCancer methodology

(A) Functional specifications of AutoCancer.

(B) Workflow steps of AutoCancer.
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ROC-AUC. In contrast, AutoCancer consistently maintains superior and stable performance across all metrics, achieving the best results with

relatively small variances. The comparison results reveal that the performance of conventional methods is not satisfactory, as the average ac-

curacy is mostly around 0.6.

Subsequently, we tested the performance of AutoCancer against SOTA methods DELFI and GENIMI using the LUCAS cohort. This lung

cancer dataset, consisting of over 500 features, served as a stringent test for AutoCancer’s FS capabilities. As demonstrated in the LUCAS

cohort study (Figure 2D), AutoCancer exhibited exceptional performance compared to DELFI and GENIMI. In terms of PR-AUC, precision,

accuracy, and ROC-AUC, AutoCancer outperformed both methods with 0.861, 0.809, 0.764, and 0.843, respectively. While DELFI displayed

amarginally higher recall rate (0.697 vs. 0.690), it fell short in othermetrics compared to AutoCancer. These results clearly illustrate the robust-

ness of AutoCancer’s FS capabilities, even when handling datasets with over 500 features.

Finally, we evaluated the performance of AutoCancer against SOTAmethods DELFI and ASVM using the pan-cancer cohort. As depicted in

Figure 2E, although AutoCancer’s recall is lower, its overall accuracy and ROC-AUC remain competitive when compared to both ASVM and

DELFI. In terms of precision and PR-AUC, AutoCancer surpasses both ASVM and DELFI, with 0.911 (precision) and 0.937 (PR-AUC), compared

to 0.852 (precision) and 0.928 (PR-AUC) for ASVM, and 0.846 (precision) and 0.913 (PR-AUC) for DELFI. This enhanced performance allows for

more accurate identification of cancer cases, thereby minimizing the need for subsequent diagnostic procedures for patients. Furthermore,

AutoCancer’s robust interpretability distinguishes it from these two SOTA methods, offering an additional advantage in the field of cancer

detection.
iScience 27, 110183, July 19, 2024 3



Table 1. Performance comparison of AutoCancer and Lung-CLiP

Metric

In-sample test set Out-of-sample test set

AutoCancer Lung-CLiP AutoCancer Lung-CLiP

Accuracy 0.833 G 0.015 0.780 G 0.020 0.703 G 0.007 0.656 G 0.006

ROC-AUC 0.915 G 0.014 0.871 G 0.017 0.761 G 0.002 0.731 G 0.003

PR-AUC 0.959 G 0.007 0.928 G 0.011 0.812 G 0.004 0.786 G 0.003

Precision 0.930 G 0.011 0.861 G 0.021 0.738 G 0.002 0.640 G 0.008

Recall 0.803 G 0.020 0.792 G 0.020 0.620 G 0.011 0.684 G 0.007

*mean G s.d under 10 repeats with different random seeds.
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These comprehensive comparisons not only highlight the effectiveness of AutoCancer but also demonstrate its robustness and consis-

tency in performance, further solidifying its potential as a reliable tool for early cancer detection.

Analysis of data modality and feature selection results

To demonstrate the importance of integrating multiple data modalities and explore the potential benefits of multimodal approaches in can-

cer detection, we conducted two modality ablation experiments on LUCAS and NSCLC cohorts with different combinations of data

modalities.

In the first experiment, as illustrated in Figure 3A, the performance of models with different combinations of data modalities (mutational,

mutational+clinical, mutational+Fragmentome, andmutational+Fragmentome+clinical) are varied substantially in the LUCAS cohort. Specif-

ically, the model incorporating all three modalities (Mutation+Fragmentome+Clinic) demonstrated the highest accuracy, F1 score, PR-AUC,

and ROC-AUC, indicating the advantages of multimodal data integration. The results suggest that combining genetic mutation information

with fragmentomic data and clinical data can lead to amore comprehensive understanding of the underlyingmechanisms, thereby improving

the model’s ability to detect NSCLC. Moreover, the standard deviation of models with more data modalities was generally lower than those

with fewer modalities, suggesting that the integration of multiple data sources not only enhances the performance but also contributes to the

stability and reliability in model performance.

In the second experiment, there was a noticeable difference in performance between a single modality and two modalities in the NSCLC

cohort. As illustrated in Figure 3B, the models incorporating both SNV and clinical data consistently outperformed those solely utilizing SNVs

across all metrics. This indicates that the inclusion of clinical data with SNVs improves themodels’ performance in NSCLC detection. Similarly,

the standard deviation of the models with both SNVs and clinical data is lower than those with SNVs only for all metrics, suggesting that the

former provides stable and reliable performance.

These results underscore the importance of multimodal approaches in cancer detection. By integrating different data modalities, such as

genetic mutations, fragmentomic data, and clinical data, we can leverage the complementary information to enhance the accuracy, reliability,

and robustness of cancer detection models. This highlights the potential of such integrative approaches in improving early cancer detection

and personalized treatment strategies.

Upon analyzing the results of multiple FS iterations for theNSCLC cohort, we observed that among all 1D features of the input, the number

of SNVs (numSNV ) was consistently chosen, while other 1D features such as CNVs, plasma cfDNA concentration, and age were often excluded.

We further investigated the differences between these features in non-small cell lung cancer and normal samples, as depicted in Figure 3C.

Our analysis revealed that, although some of the unselected 1D features also exhibit statistical significance, the feature numSNV stands out as

the most significant among them as ranked by p-value. This observation provides evidence, to a certain extent, that the features selected by

AutoCancer are reliable and effective in distinguishing non-small cell lung cancer from normal samples. The results also underscore the capa-

bility of the proposed framework to identify and prioritize relevant features, thereby reducing the dimensionality of the input and potentially

enhancing the performance of subsequent analyses.

Evaluation of framework components and optimization robustness

Figure 4A and Table 2 present an ablation study comparing two settings derived from theAutoCancer framework: Feature Selection (FS) com-

bined with NAS (as in Table 3) and HPO, and NAS combined with HPO alone. The table displays the mean and standard deviation of several

evaluation metrics across 10 repetitions with different random seeds. The FS+NAS+HPO approach consistently outperforms the NAS+HPO

approach on both in-sample and out-of-sample test sets. In particular, FS+NAS+HPO attains higher accuracy, with the means of 0.833 and

0.703 on the two test sets, as opposed to 0.723 and 0.643 from NAS+HPO. Likewise, the ROC-AUC and PR-AUC metrics exhibit substantial

improvement with FS+NAS+HPO, presenting themeans of 0.915 and 0.959 on the in-sample test set, and 0.761 and 0.812 on the out-of-sam-

ple test set. In contrast, NAS+HPO yields the means of 0.860 and 0.930 for ROC-AUC and PR-AUC on the in-sample test set, and 0.714 and

0.749 on the out-of-sample test set. Moreover, FS+NAS+HPOalso demonstrates superior performance in terms of precision and recall. These

findings demonstrate that incorporating FS into the NAS and HPO process significantly enhances model performance across various evalu-

ation metrics, indicating that FS+NAS+HPO is a more effective method for automated deep learning deployment.
4 iScience 27, 110183, July 19, 2024
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Figure 2. Comparison of AutoCancer and SOTA in terms of different metrics

(A) Comparison with Lung-CLiP on the in-sample test set for NSCLC.

(B) Comparison with Lung-CLiP on the out-of-sample test set for NSCLC.

(C) Comparison with nine optimized methods on the out-of-sample test set of NSCLC.

(D) Comparison with GENIMI and DELFI on the test set for LUCAS cohort.

(E) Comparison with DELFI and ASVM on the test set for pan-cancer cohort. n = 10 repeats with different random seeds for data splitting andmodel initialization.

The error bars indicate mean G s.d.
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Figure 3. Data modality ablation and feature selection results

(A) Bar charts of modality ablation experiment on LUCAS cohort.

(B) Bar charts of modality ablation experiment on NSCLC cohort. n = 10 repeats with different random seeds for data splitting and model initialization. The error

bars indicate mean G s.d.

(C) Violin plots on the statistical differences in 1D features between non-small cell lung cancer and normal samples.
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To explore the benefits of adopting the Transformer as a fusion module, we conducted an experiment comparing the performance of

Transformer-based feature fusion with different basic vector operations (addition, dot product, and subtraction) for NSCLC detection. This

experiment aimed to assess whether these simpler methods, which are computationally less demanding, could provide comparable or

even better performance than the Transformer-based method. The results of this experiment are visualized in Figure 4B, demonstrating

that the Transformer-based feature fusion method consistently outperforms the other three vector operations across all metrics. Specif-

ically, the Transformer-based method achieved an accuracy of 0.703, which is notably higher than the accuracies obtained by the dot prod-

uct (0.660), subtraction (0.588), and addition (0.569) methods. Similar trends can be observed for the F1 score, PR-AUC, and ROC-AUC

metrics, further emphasizing the performance of the Transformer-based approach as depicted in Figure 4B. These results highlight the

effectiveness of the Transformer-based feature fusion method in the context of NSCLC detection. By leveraging the representation

learning capabilities of the Transformer architecture, the proposed method can lead to good performance in distinguishing cancerous

cases from control cases.

In Figure 4C, we present the evolution process of the objective function values under different experimental settings, revealing the conver-

gence behavior of BO. Upon observing Figure 4C, it is evident that the objective function values experience a rapid decrease during the initial

few calls. Subsequently, the rate of reduction gradually slows down, with the objective function values eventually stabilizing at around 0.8. The

depicted trends demonstrate the ability of BO to converge under different conditions, highlighting its robustness and adaptability in opti-

mizing the objective function. Furthermore, the rapid initial decrease in the objective function values suggests that BO can efficiently identify

promising regions in search space, thus contributing to the overall effectiveness of optimization.

Key gene mutation associated with non-small cell lung cancer

It is important to consider that each patient’s single nucleotide variant (SNV) length varies. Lung-CLiP transformed informative SNV

features into a numerical score. Consequently, the contribution of these features to the final prediction of cancer or normal status

cannot be observed directly in the Lung-CLiP model. This limitation highlights the necessity for our subsequent interpretability anal-

ysis of the AutoCancer model, which aims to provide a more transparent understanding of the feature contributions and prediction

process.

For the non-small cell lung cancer dataset utilized in this study, the Transformer block optimized by the AutoCancer framework comprises

four heads. By visualizing the attention matrix of each head (Figure S1), we observed that Head 1 and Head 4 jointly focus on the interactions

between genes, while Head 2 and Head 3 primary focus on the relationships between the number of SNVs for each gene. We calculated the

attention scores of mutations for all patients to identify the top 50 genetic mutations associated with non-small cell lung cancer. The attention

relationships between these top 50 genes are illustrated in Figure 5A, where the horizontal axis coordinate of the heatmap arranges the genes

in descending order based on their attention scores. Notably, our analysis identified several well-studied genes associated with NSCLC, such

as TP53, ARID1A, FGFR1, PIK3CA, KRAS, ALK, CDKN2A, NF1, and others.35–42 Additionally, we revealed a few reported but not widely

confirmed potential genes, including top-ranking FAT3, FAM135B, ZNF536, SLC8A1, and others.43,44 These findings underscore the

AutoCancer framework’s potential to uncover novel genetic factors, contributing toNSCLCdevelopment and progression, warranting further

investigation in future studies.

We performed functional enrichment analysis on the top 50 genes and identified the relevant pathways associated with NSCLC, as pre-

sented in Figure 5B. Our model pinpointed several KEGG pathways (Figure 5B, first panel). Some of them are evidently involved in cancer,

such as ‘non-small cell lung cancer’, ‘central carbon metabolism in cancer’, ‘proteoglycans in cancer’, and ‘microRNAs in cancer’. We also

identified other validated pathways associated with NSCLC, such as the Ras signaling pathway, a well-established oncogenic pathway regu-

lating cell proliferation, differentiation, and survival.45,46 Aberrant activation of this pathway, often due tomutations in the Ras family of genes,

has been implicated in lung cancer development and progression.47,48 The Ras signaling pathway also influences the EGFR pathway, which

contributes to the pathogenesis of various tumors, includingNSCLC.49 RAP1 is essential for cell growth and, in conjunctionwith cAMP, plays a

key mediating role in developing platinum resistance in NSCLC.50,51

TheWP terms (Figure 5B, second panel) link the top genes identified by our model (TP53, PIK3CA, KRAS, CDKN2A, and ALK) to non-small

cell lung cancer. In addition, TP53 network and DNA damage response (only ATM dependent)52 are also enriched.

TheGO:MF terms (Figure 5B, third panel) identified by our model includeMDM2/MDM4 family protein binding, glutamate-gated calcium

ion channel activity, and NMDA glutamate receptor activity. MDM2 and MDM4 proteins are known to be involved in the regulation of the

tumor suppressor p53,53 crucial for cancer prevention.54 Abnormalities in the binding and regulation of these proteins could contribute to

NSCLC development and progression.55 Furthermore, glutamate-gated calcium ion channels and NMDA glutamate receptors, although pri-

marily associated with the nervous system, have been implicated in regulating cell proliferation and apoptosis. Dysregulation of these chan-

nels and receptors has also been validated to influence lung cancer initiation and progression.56,57

Lastly, the HP terms directly link the top genes (TP53, PIK3CA, KRAS, and CDKN2A) identified by our model to the lung adenocarcinoma

and non-small cell lung carcinoma. This association further validates the potential relevance of our model’s findings to NSCLC development
iScience 27, 110183, July 19, 2024 7
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Figure 4. Evaluation of AutoCancer framework components and robustness of optimization

(A) Bar charts comparing ablation experiments with and without feature selection on the NSCLC dataset.

(B) Bar charts comparing Transformer-based fusion block with basic vector operations on the NSCLC dataset. n = 10 repeats with different random seeds for data

splitting and model initialization. The error bars indicate mean G s.d.

(C) Evolution process of the objective function under Bayesian optimization.
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and progression. More details about the pathways identified by AutoCancer are listed in Table S1. The identified pathways and functional

terms provide valuable insights into the molecular mechanisms behind NSCLC and may serve as potential therapeutic targets for future

research.
Key gene mutation across different stages and subtypes in NSCLC

As depicted in Figures 5C and S2A, among the top 20 most focused genes across the three stages of NSCLC, some top genes are shared by

different stages. FAT3 and TP53 are shared by all stages. ARID1A and GRIN2B are shared between Stage I and Stage II, while FAM135B and

ANK2 are shared between Stage I and Stage III. SPHKAP, ZNF536, and NPAP1 are shared between Stage II and Stage III. This observation

suggests that these shared genes may play crucial roles in the development and progression of NSCLC across different stages. However,

more attention is given to stage-specific genes. The details of stage-specific genes are listed in Table S2.

In stage I, our attention model shows particular interest in 14 genes. Three of these genes belong to the ZNF family, including ZNF521,

ZNF831, and ZNF423. As transcription factors, ZNFs comprise the largest family of sequence-specific DNA binding proteins, orchestrating a

wide range of differentiation, development, metabolism, apoptosis, autophagy, and stemness maintenance.58 Other genes also involve in

various biological processes, such as cell cycle regulation (CDKN2A), oxidative stress response (KEAP1), and cell adhesion (SLITRK3). The
8 iScience 27, 110183, July 19, 2024



Table 2. Ablation study results

Metric

In-sample test set Out-of-sample test set

FS+NAS+HPO NAS+HPO FS+NAS+HPO NAS+HPO

Accuracy 0.833 G 0.015 0.723 G 0.033 0.703 G 0.007 0.643 G 0.022

ROC-AUC 0.915 G 0.014 0.860 G 0.023 0.761 G 0.002 0.714 G 0.016

PR-AUC 0.959 G 0.007 0.930 G 0.013 0.812 G 0.004 0.749 G 0.007

Precision 0.930 G 0.011 0.872 G 0.037 0.738 G 0.002 0.707 G 0.044

Recall 0.803 G 0.020 0.723 G 0.076 0.620 G 0.011 0.600 G 0.077

*mean G s.d under 10 repeats with different random seeds.
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presence of these genes in Stage I suggests that their dysregulation may contribute to the initiation of tumorigenesis and early-stage NSCLC

development.

In stage II, our model infers that there are thirteen genes that should be focused. These genes are implicated in various cellular processes,

such as cell proliferation (NF1, RB1), cell adhesion (PCDH17, CDH10), and signal transduction (GRIN2A, EPHA6). Their presence in Stage II

may indicate a role in the progression of NSCLC from early to more advanced stages, possibly through promoting cell growth, invasion,

and metastasis.

For Stage III, thirteen genes of particular interest are reported by our model. These genes involve in more advanced stages of NSCLC,

contributing to processes such as cell survival (TP63, KRAS, PIK3CA), angiogenesis (FGFR1), and immune response (DCSTAMP). Their involve-

ment in Stage III NSCLC suggests that they may play a role in driving disease progression and resistance to therapy.

In Figures 5D and S2B, among the top 20 most focused genes in the three histological subtypes, TP53, FAT3, and FAM135B are shared by

all subtypes. This suggests that these genesmay play a crucial role in the pathogenesis of NSCLC, regardless of the cancer subtype. Based on

the descriptions in GeneCards, TP53 is a well-known tumor suppressor gene. FAT3 yields a higher mutation rate in NSCLC patients. On the

other hand, FAM135B are less studied and warrant for further investigation to understand their roles in NSCLC. ARID1A, FGFR1, and TP63 as

shared by adenocarcinoma and squamous cell carcinoma, indicating that these genes may be involved in common molecular pathways be-

tween these two subtypes. ARID1A is a chromatin remodeler, and its mutations have been linked to various cancers. FGFR1 is a receptor tyro-

sine kinase, and its aberrant activation has been implicated in tumorigenesis. TP63 is a member of the p53 family and plays a role in epithelial

development and differentiation. LRFN2 is shared by adenocarcinoma and large cell carcinoma, suggesting a potential role in the develop-

ment of these subtypes. LRFN2 is a synaptic adhesion molecule, and its function in cancer remains largely unknown. SPHKAP, LRFN5, and

CSMD3 are shared by squamous cell carcinoma and large cell carcinoma, indicating that these genesmay be involved in themolecular mech-

anisms common to these subtypes. The functions of these genes in cancer are not well understood and require further investigation. In addi-

tion to shared genes, our analysis also identified subtype-specific genes of interest. The details of subtype-specific genes are listed in

Table S3.

In adenocarcinoma, genes of particular interest include thirteen items. These genes are involved in various biological processes, such as

cell adhesion (PCDH17, CDH10), signal transduction (GRIN2A, GPR112), and cell migration (SLITRK3, LRRC7). Their presence in adenocarci-

noma suggests that their dysregulation may contribute to the development and progression of this specific histological subtype of NSCLC.

In squamous cell carcinoma, 12 genes are selected with particular interest. These genes are implicated in various cellular processes, such

as cell-cell communication (NRXN1, GRIN2B), signal transduction (TSHZ2, ZIC1), and cellular stress response (RNF216, LPPR4). Their presence

in squamous cell carcinomamay indicate a role in the development and progression of this histological subtype of NSCLC, possibly through

promoting cell growth, invasion, and metastasis.

For large cell carcinoma, genes of particular interest include thirteen items. These genes may be involved in various cellular processes,

such as cell cycle regulation (RB1, PTEN), cell migration (NAV3, KIF2B), and signal transduction (GPR158, DUSP27). Their involvement in large

cell carcinoma suggests that they may play a role in driving disease progression and resistance to therapy in this histological subtype of

NSCLC.

In Figures 5C and 5D, the top 20 gene mutations focused on by the model in different stages and histological subtypes of NSCLC are

presented, respectively. Interestingly, TP53, a widely focused and studied gene in cancer, is also a major focus of our proposed

AutoCancer. It is the primary gene considered by our model in any cancer stage and histological subtype. Nonetheless, the degree of atten-

tion varies, with an increased emphasis on TP53 as the stage advances. In different subtypes, the attention given to TP53 by the model is

comparable in adenocarcinoma and large cell carcinoma, while it is particularly concentrated on TP53mutations in squamous cell carcinoma.

As a tumor suppressor gene, TP53 plays a pivotal role in regulating cell cycle progression, apoptosis, and DNA repair.59

We further examined the top-ranking genes and their mutual focus across various stages and subtypes in Figures S2C and S2D. The visu-

alization of attention among these targeted gene mutations unveils a variety of focus patterns for each stage and subtype, emphasizing their

unique characteristics. By investigating the top 20most focusedgenes, we can uncover key biological pathways and networks in non-small cell

lung cancer, potentially identifying therapeutic targets and biomarkers for diagnosis and prognosis. In conclusion, our study of the top 20

most focused genes with SNV mutations in NSCLC stages and histological subtypes has revealed potential stage- and subtype-specific as
iScience 27, 110183, July 19, 2024 9



Table 3. The search space of network architecture

Decision variables Type NSCLC LUCAS Pan-cancer

Transformer dropout Real [1e-1, 0.3] [1e-1, 0.3] \

Number of encoder layers Integer [1, 5] [1, 2] \

Number of attention heads Categorical [2, 4, 6, 8] [2, 4] \

Dimension of each hidden Categorical [16, 32, 64] [2, 4, 6, 8] \

MLP dropout Real [1e-1, 0.3] [1e-1, 0.3] [1e-1, 0.3]

Number of MLP layers Integer [1, 5] [1, 5] [1, 5]

Learning rate Real [1e-4, 1e-1] [1e-4, 1e-1] [1e-4, 1e-1]

Patience Integer [1, 10] [1, 10] [1, 10]
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well as shared molecular mechanisms underlying disease development and progression. Further research on these genes’ functions and in-

teractions may offer valuable insights into NSCLC’s molecular basis and lead to the identification of diagnostic and therapeutic targets for

patients with different stages and histological subtypes of this disease.
Gene mutation combinations associated with NSCLC

Here, we discuss some of the notable gene pairs and their potential implications in lung cancer development and progression. Figure 6A

represents top 50 gene pairs associated with NSCLC that exhibit SNVs, as identified by AutoCancer in all patients. The information of these

gene pairs can be found in Table S4.

The AutoCancer has identified several gene pairs involving well-known cancer-related genes such as TP53, NF1, and CDKN2A. For

instance, TP53, a well-established tumor suppressor gene, is found in multiple gene pairs, including TP53-SPHKAP, TP53-FAM135B, TP53-

CDH10, TP53-ZNF423, TP53-TAS2R1, TP53-LPPR4, TP53-HTR5A, TP53-GPR158, and TP53-NPAP1. The frequent appearance of TP53 in these

pairs highlights its critical role in NSCLC. Similarly, the NF1 gene, a known tumor suppressor, is found in gene pairs NF1-ITGB3, NF1-GPR112,

and SLC8A1-NF1. This suggests a possible association between these genes and NSCLC, and further research into their functional roles and

interactions could provide valuable insights. The CDKN2Agene, another well-known tumor suppressor, appears in the CDKN2A-ARID1A and

ZNF521-CDKN2A pairs.

Another interesting observation is the presence of genes involved in synaptic transmission and neuronal signaling, such as GRIN2A and

LRRC7. The NPAP1-GRIN2A andNCKAP5-GRIN2A pairs suggest a possible association between neuronal signaling andNSCLC. The RIMS2-

LRRC7 and PEG3, ZIM2-LRRC7 pairs also hint at a potential link between synaptic transmission and cancer development.

Interestingly, the gene pairs PCDH17-FAT3, ZNF536-FAT3, and SLITRK4-FAT3 all involve the FAT3 gene. FAT3 is a member of the proto-

cadherin family, which plays a role in cell adhesion and signaling. This gene’s involvement in multiple pairs indicates its potential significance

in NSCLC, possibly through its role in tumor cell invasion and metastasis.

As depicted in Figures 6B and 6C, a diverse set of gene pairs is identified across various stages and subtypes of NSCLC. In the gene-pair

graph, the size of a node represents its degree, which indicates the number of edges connected to it. This measure also reflects the impor-

tance of a gene in a given context, as it demonstrates the frequency of a gene’s appearance among the top gene pairs. The central nodes of

each subgraph correspond to the three nodes with the highest degree. By examining Figures 6B and 6C, it is evident that each stage and

subtype displays unique combinations of gene pairs, and the central node genes differ accordingly. These distinctions underscore the

discrete molecular mechanisms involved in the development and progression of each NSCLC stage and histological subtype. Detailed infor-

mation regarding these gene pairs across different situations can be found in Tables S5 and S6.

In conclusion, the AutoCancer model has successfully identified several gene pairs with SNV mutations associated with NSCLC. Our anal-

ysis of these gene pairs has unveiled potential molecular mechanisms and therapeutic targets for this disease, thereby highlighting the intri-

cate genetic landscape of NSCLC and emphasizing the necessity for further investigation into these gene pairs and their functional conse-

quences in lung cancer development and progression.
DISCUSSION

To conclude, we introduce AutoCancer, an automated, interpretable, andmultimodal framework that utilizes metaheuristic optimization and

deep learning methodologies for early cancer detection. To the best of our knowledge, this is the inaugural application of the Transformer

model to liquid biopsy-based cancer detection, enabling our framework to handle both well-structured and heterogeneous data across

various dimensions. Furthermore, we consolidate FS, NAS, and HPO into a comprehensive optimization framework, concurrently addressing

these three challenges via BO.

The comparison between AutoCancer and SOTA methods highlights the performance of AutoCancer, indicating its potential to signifi-

cantly impact clinical applications. The identification of key gene mutations and their combinations associated with NSCLC, as well as the

pinpointing of crucial factors at different stages and subtypes, demonstrates the interpretability of AutoCancer. This interpretability is
10 iScience 27, 110183, July 19, 2024
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Figure 5. Key gene mutations identified by AutoCancer

(A) Attention matrix of top 50 focused gene mutations in all patients.

(B) Functional enrichment results of top 50 genes.

(C) Top 20 genes with highest attention scores inferred by our model across different stages.

(D) Top 20 genes with highest attention scores inferred by our model across different subtypes of NSCLC.
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Figure 6. Combination gene mutation associated with non-small cell lung cancer

(A) Top 50 gene pairs in all samples.

(B) Top 20 gene pairs in different stages.

(C) Top 20 gene pairs in different subtypes.
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essential for clinical applications, as it allows for a better understanding of the underlying biological mechanisms and the development of

targeted therapies.

A critical aspect of cancer research that warrants emphasis is the complex andmultifactorial nature of cancer etiology. Cancer arises from a

combination of genetic, epigenetic, and environmental factors that interact in intricate ways to drive disease progression. Consequently, it is

crucial for researchers to adopt amulti-omics ormultimodal approach in their investigations, integrating diverse data types such as genomics,

transcriptomics, proteomics, and metabolomics. AutoCancer’s ability to handle heterogeneous data inputs is aligned well with this perspec-

tive, highlighting its potential to contribute significantly to the field of cancer research.
Limitations of the study

One of the primary limitations in the development and validation of AutoCancer is the current scarcity of publicmultimodal liquid biopsy data.

This paucity of available data restricts the opportunities to comprehensively assess the full potential of our proposed framework and may

inadvertently lead to overfitting or underestimation of its performance. Additionally, the limited datamay not encompass the entire spectrum

of cancer types and stages, potentially hindering the generalizability of AutoCancer to a wider range of clinical scenarios. Addressing these

concerns and establishing secure data-sharing platforms will be essential for facilitating the advancement of AutoCancer and similar frame-

works. Despite these limitations, the development of AutoCancer represents a significant step forward in the field of cancer detection and

diagnosis. As more multimodal liquid biopsy data become available, it will be essential to further evaluate and refine AutoCancer, ensuring

its effectiveness and applicability in a broad range of cancer detection tasks. This will ultimately contribute to the development of more ac-

curate, efficient, and personalized diagnostic tools for cancer patients.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

NSCLC cohort Lung-CLiP https://doi.org/10.1038/s41586-020-2140-0

LUCAS cohort (fragmentome+clinic) DELFI https://doi.org/10.1038/s41467-021-24994-w

LUCAS cohort (mutation) GEMINI https://doi.org/10.1038/s41588-023-01446-3

Pan-cancer cohort ASVM https://doi.org/10.1093/bioinformatics/btab236

Software and algorithms

traditional machine learning models scikit-learn https://scikit-learn.org/stable/

Lung-Clip model Nature https://doi.org/10.1038/s41586-020-2140-0

DELFI Nature https://doi.org/10.1038/s41467-021-24994-w

GEMINI Nature Genetics https://doi.org/10.1038/s41588-023-01446-3

ASVM model Bioinfomatics https://doi.org/10.1093/bioinformatics/btab236

AutoCancer This paper https://github.com/ElaineLIU-920/AutoCancer.git
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to andwill be fulfilled by the lead contact, Prof. Ka-ChunWong (kc.w@cityu.

edu.hk).

Materials availability

This study did not generate new biological data.

Data and code availability

All relevant data are public data and also have been deposited on Github. The DOIs are listed in the key resources table. All original code has

been deposited at the Github and is publicly available as of the date of publication. DOIs are listed in the key resources table. Any additional

information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This paper analyzes existing, publicly available data. The study does not use experimental models typical in life sciences.

METHOD DETAILS

Datasets collection and splitting

The NSCLC cohort was collected from.17 The first dataset of NSCLC cohort, from which the in-sample test set is derived, consists of a discov-

ery cohort of 104 patients with early-stageNSCLCand 56 risk-matched controls from four cancer centers. The seconddataset, constituting the

out-of-sample test set, was collected from an independent institution, involving 46 patients with early-stage NSCLC and 48 risk-matched con-

trols. The data includes nine 1D clinical features and 37 features describing each SNV (the number of SNVs varied among patients; this finally

form 2D feature). The LUCAS cohort, consisting of genome-wide mutation, fragmentome, and clinical data, was collected from9 and.18 The

dataset includes 387 patients with lung cancer. The pan-cancer cohort, involving fragmentome, genome-wide CNV, and clinical data, was

collected from.22 The dataset comprises 423 patients across eight cancer types.

For all datasets, we employed k-fold nested cross-validation to partition the datasets. The inner cross-validation was used for selecting the

optimal model parameters, while the outer cross-validation was employed to evaluatemodel performance. The choice of k-value depends on

the selection in the original SOTA comparison methods: k = 5 for the NSCLC and LUCAS cohorts, and k = 10 for the pan-cancer cohort.

Model backbone

In our framework, we employ the Transformer encoder60 combined with a MLP as the backbone of AutoCancer. The Transformer block is

utilized to encode and integrate the multi-modal features, while the MLP block serves as a classifier.
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The Transformer is a context-aware architecture that incorporates attentionmechanisms61 to establish global dependencies. The encoder

of the Transformer consists of N identical layers, each containing a multi-head attention sub-layer and a position-wise feedforward network

sub-layer. Residual connections and layer normalization are applied around each sub-layer. We represent the 1D features as X1D ˛ Rdim1D and

the 2D features as X2D ˛Rdim1
2D

3dim2
2D . First, we project the 1D features onto the dimensions dim1D3dim2

2D using linear projection (LP) de-

noted by:

X1D
0 = LPðX1DÞ: (Equation 1)

Next, we concatenate X1D
0 and X2D along the second dimension denoted by:

X = ConcatenateðX1D
0;X2DÞ: (Equation 2)

The input embedding for the Transformer is then given by X ˛RL3denc . In this case, L = dim1D +dim1
2D and denc = dim2

2D . The

queries, keys, and values are intermediate representations obtained from inputs through linear transformations: Q = WQX, K = WKX ,

V = WVX . The regular bidirectional dot-product attention, a key component in the Transformer, has the following form, where A˛ RL3L

is attention matrix:

AttentionðQ;K ;VÞ = D� 1AV ;A = exp
�
QKT

. ffiffiffiffi
d

p �
;D = diagðA1LÞ: (Equation 3)

The feature embedding after applying Transformer is denoted as Xemb. By utilizing MLP, we obtained the final classification according to:

by = MLPðXembÞ: (Equation 4)

Finally, cross-entropy loss (Equation 5) was used to update the entire model based on supervisory signals:

Lðy; byÞ = �
XC
i = 1

yi logðby iÞ: (Equation 5)

Here, y represents the true label, by denotes the predicted probabilities, C is the number of classes, and yi and by i are the true and predicted

probabilities of class i, respectively.
Feature selection and neural network design via Bayesian optimization

Bayesian optimization (BO)62 is a probability based, highly efficient, and robustmetaheuristic optimization technique. Themain advantages of

Bayesian optimization are its ability to handle high-dimensional and complex functions, as well as its robustness to noise and uncertainty. In

our framework, Bayesian optimization implements the co-optimization of feature selection and neural network design. The search space of

features is all available features obtained from public datasets, and the search space of neural network design is listed in Table 3.

In this optimization problem, we minimize the fraction of selected features and maximize the model performance, as shown in the objec-

tive function (Equation 6).

min f ðFo;MoÞ = a
DðFoÞ
DðFÞ � bPðMoÞ (Equation 6)

Here, Fo is the denotation of optimized features, F is the original features, and Mo is the optimized model. The dimension of features is

denoted by Dð $Þ, and the performance metric of a model is denoted by Pð $Þ. a and b are the weights to balance the multi-objective opti-

mization problem of minimizing the fraction of selected features by DðFoÞ
DðFÞ and maximizing the model performance by � PðMoÞ. In this manu-

script, we set a and b to be 0.03 and 1, respectively. Here, assigning a small weight to a implies that the model is more inclined to impose a

minor penalty on redundant features. Our purpose of implementing Bayesian optimization is to find the optimal subset of features andmodel

architecture thatminimize Equation 6. Consequently, this optimization problem should be further formulated as Equation 7, where F�
o andM�

o

represent the optimal solution combination. �
F�
o;M

�
o

�
= argmin f ðFo;MoÞ (Equation 7)

Clearly, the exact functional form of this optimization problem is unknown, making it impossible to compute an analytical solution using

gradientmethods. For complex black-box optimization problemswith the aforementioned characteristics, Bayesian optimization serves as an

effective solution. This is because it relies on Bayes’ theorem to estimate the probability distribution of optimization objectives and decision

variables while actively selecting the most promising solutions based on the fitted results.

The core components of Bayesian optimization consist of a surrogate model and an acquisition function, which balances the trade-off be-

tween exploration and exploitation in the search for the global optimum. Specifically, this method seeks to optimize an unknown objective

function by constructing a probabilistic surrogate model that approximates the underlying function. The acquisition function focuses on re-

gions where the objective function is expected to yieldminimumvalues. In the iterative process of Bayesian optimization, the surrogatemodel

is updated with each new objective function evaluation, and the acquisition function is subsequently optimized to determine the next point to
iScience 27, 110183, July 19, 2024 17
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be evaluated. This iterative procedure continues until a predetermined stopping criterion is met, such as reaching a maximum number of

iterations or achieving a satisfactory level of convergence.

In AutoCancer, we adopt Gaussian processes63 as surrogate model. As the Gaussian process is a non-parametric model,64 it is less prone

to overfitting while possessing extensible flexibility.65

AGaussian process consists of a mean functionmðxÞ and a positive semi-definite covariance function kðx; x0Þ as Equation 8, wheremðxÞ =

E½f ðxÞ�, and kðx;x0Þ = E½ðf ðxÞ � mðxÞÞðf ðx0Þ � mðx0ÞÞ�.

f ðxÞ � GPðmðxÞ; kðx; x0ÞÞ (Equation 8)

For acquisition function, we utilize Expected Improvement66 to realize the active strategy for selecting the next evaluation point. LetD1:t =

ðx1; y1Þ; ðx2; y2Þ;.; ðxt ; ytÞ represents the observed set, xt represents the decision vector, yt = f ðxtÞ+ et represents the observation value, and

et represents the observation error. The acquisition (Equation 9) function is constructed from the posterior distribution obtained from the

observed dataset D1:t , and guides the selection of the next evaluation point xt+1 by maximizing it.

atðx;D1:tÞ =

8><
>:

ðc� � mtðxÞÞf
�
c� � mtðxÞ

stðxÞ
�
+ stðxÞf

�
c� � mtðxÞ

stðxÞ
�
; stðxÞ>0

0; stðxÞ = 0

(Equation 9)

In Equation 9, c� is the current optimal function value, fð $Þ is the standard normal distribution probability density function.
Biological analysis tools

For gene function without a citation in this paper, we referred https://www.genecards.org/. We implemented enrichment analysis on top-

ranked genes using the method on the g:Profiler67 Website https://biit.cs.ut.ee/gprofiler.
QUANTIFICATION AND STATISTICAL ANALYSIS

In this manuscript, Mann-Whitney-Wilcoxon tests (M.W.W. in figures, also known as rank-sum tests) were conducted to compare the differ-

ence between non-small cell lung cancer and normal samples.
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