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A Pathologically Friendly Strategy for Determining the
Organ-specific Spatial Tumor Microenvironment Topology in
Lung Adenocarcinoma Through the Integration of
snRandom-seq and Imaging Mass Cytometry

Xuqi Sun, Xiao Teng, Chuan Liu, Weihong Tian, Jinlin Cheng, Shuqiang Hao, Yuzhi Jin,
Libing Hong, Yongqiang Zheng, Xiaomeng Dai, Linying Wu, Lulu Liu, Xiaodong Teng,
Yi Shi, Peng Zhao, Weijia Fang, Yu Shi,* and Xuanwen Bao*

Heterogeneous organ-specific responses to immunotherapy exist in lung
cancer. Dissecting tumor microenvironment (TME) can provide new insights
into the mechanisms of divergent responses, the process of which remains
poor, partly due to the challenges associated with single-cell profiling using
formalin-fixed paraffin-embedded (FFPE) materials. In this study, single-cell
nuclei RNA sequencing and imaging mass cytometry (IMC) are used to
dissect organ-specific cellular and spatial TME based on FFPE samples from
paired primary lung adenocarcinoma (LUAD) and metastases. Single-cell
analyses of 84 294 cells from sequencing and 250 600 cells from IMC reveal
divergent organ-specific immune niches. For sites of LUAD responding well to
immunotherapy, including primary LUAD and adrenal gland metastases, a
significant enrichment of B, plasma, and T cells is detected. Spatially resolved
maps reveal cellular neighborhoods recapitulating functional units of the
tumor ecosystem and the spatial proximity of B and CD4+ T cells at
immunogenic sites. Various organ-specific densities of tertiary lymphoid
structures are observed. Immunosuppressive sites, including brain and liver
metastases, are deposited with collagen I, and T cells at these sites highly
express TIM-3. This study originally deciphers the single-cell landscape of the
organ-specific TME at both cellular and spatial levels for LUAD, indicating the
necessity for organ-specific treatment approaches.
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1. Introduction

Lung cancer is the leading cause of cancer-
related mortality worldwide, with lung ade-
nocarcinoma (LUAD) accounting for ap-
proximately 40% of the cases.[1] LUAD
is frequently diagnosed at an advanced
stage with extrathoracic metastases such
as in the brain and liver.[2] Despite cu-
rative resection, patients with early-stage
LUAD still suffer from distant metastases,
most of which occur within two years
of surgery.[3] The five-year overall survival
rate of patients with metastatic non-small
cell lung cancer (NSCLC) remains approx-
iamtely 20%.[4–6] In the past decade, im-
mune checkpoint inhibitors (ICIs), rep-
resented by programmed death-1 (PD-1)
blockades, have achieved promising effi-
cacy in metastatic NSCLC patients. How-
ever, the objective response rate is less than
50%.[7–9] Subgroup analyses revealed diver-
gent responses of different metastatic or-
gans to PD-1 blockades.[10–12] Specifically,
PD-1 blockade is less effective in liver

X. Teng
Department of Thoracic Surgery
The First Affiliated Hospital
Zhejiang University School of Medicine
Hangzhou 310003, China
W. Tian
Changzhou Third People’s Hospital
Changzhou Medical Center
Nanjing Medical University
140 Hanzhong Rd, Gulou, Nanjing, Jiangsu 210029, China
J. Cheng, Y. Shi
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases
The First Affiliated Hospital
Zhejiang University School of Medicine
Hangzhou 310003, China
E-mail: zjushiyu@zju.edu.cn

Adv. Sci. 2024, 11, 2308892 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2308892 (1 of 18)

http://www.advancedscience.com
mailto:xuanwen.bao@zju.edu.cn
https://doi.org/10.1002/advs.202308892
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:zjushiyu@zju.edu.cn


www.advancedsciencenews.com www.advancedscience.com

and brain metastases than in metastases at other anatomical
sites, such as lymph nodes and adrenal glands.[13,14] The poor
response leads to dismal survival, which indicates the unmet
need to understand the potential mechanism of organ-specific
responses to optimize treatments for metastatic lesions resistant
to immunotherapy.

The tumor microenvironment (TME) is a highly structured
ecosystem composed of tumor cells, immune cells, stromal cells,
and extracellular matrix.[15] Emerging evidence has revealed that
the TME thoroughly regulates the efficiency of immunotherapy
based on bulk RNA sequencing (RNA-seq) or single-cell RNA-
sequencing (scRNA-seq).[16–18] By integrating NSCLC single-cell
datasets, Salcher et al. uncovered that tissue-resident neutrophils
contributed to the failure of PD-L1 blockade treatment.[19] More-
over, NSCLC patients with different responses to PD-1 blockade
have distinct TME remodeling processes during immunother-
apy. Increased precursor-exhausted T cells and decreased aged
CCL3+ neutrophils were observed in responsive tumors, but
these trends were not detected in refractory ones.[20,21] The po-
sitioning of immune cells can also dictate their functions.[22]

Andrew et al. found that NSCLC patients with more baseline
cellular modules consisting of PDCD1+ CXCL13+ activated T
cells, SPP1+ macrophages, and IgG+ plasma cells have better re-
sponses to PD-(L)1 blockades.[23]

Previous scRNA-seq studies have mainly focused on the het-
erogeneity of primary lesions, whereas organ-specific immunity
against metastases has barely been explored. The multitudinous
interactions between cells and the extracellular matrix in the
TME shape the organ-specific milieu, which deeply influences tu-
mor response to immunotherapy.[24] Different response patterns
can be observed when classified by metastatic sites, even within
the same patient cohort.[11,25,26] However, current clinical guide-
lines hardly consider organ-specific treatment approaches due
to the lack of a comprehensive understanding of organ-specific
tumor ecosystems based on high-dimensional data. Although a
few studies have recently explored the TME of LUAD metastases
using scRNA-seq, they have only delineated the TME of brain
metastases.[27,28] In addition, primary and metastatic lesions were
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not paired in these studies, leading to potential inter-patient and
inter-tumoral heterogeneity. To date, the organ-specific TME of
LUAD has not been comprehensively elucidated, either at the cel-
lular or molecular level or in terms of spatial characteristics.

Depicting the organ-specific TME of LUAD at single-cell res-
olution is logistically and technically challenging due to the
lack of paired treatment-naïve surgical specimens for primary
and metastatic lesions. Systemic therapy is the standard first-
line treatment for patients with synchronous metastases and
multi-site tissue biopsies are not routinely performed. Obtain-
ing paired primary tumors and metachronous metastases can
be particularly challenging, as many patients receive treatments
at different hospitals and the surgical criteria for patients with
metachronous metastasis are extremely stringent. In this con-
text, formalin-fixed paraffin-embedded (FFPE) tissue sections are
the optimal modality for sample collection; however, they are
not suitable for conventional scRNA-seq. Recently, a droplet-
based high-throughput single-nuclei RNA sequencing method
has been developed that can capture full-length total RNAs with
random primers (snRandom-seq) from single cells in FFPE tis-
sue sections.[29] Furthermore, scRNA-seq cannot reveal spatial
topology owing to tissue dissociation, a limitation addressed by
imaging mass cytometry (IMC), which enables spatial phenotyp-
ing of the TME.

In this study, we dissected the cellular and spatial hetero-
geneity of the organ-specific TME in paired primary LUAD
and metastases in different organs at single-cell resolution, us-
ing snRandom-seq and IMC. The results unveiled the potential
mechanism for divergent responses to immunotherapy across tu-
mor lesions at different anatomical sites and paved the way for
organ-specific treatment paradigms.

2. Results

2.1. Single-Cell Landscape of Paired Primary LUAD and
Metastases in Different Organs

To characterize the organ-specific TME of LUAD at single-cell
resolution, we performed snRandom-seq on 14 treatment-naïve
FFPE tissue samples from paired primary LUAD (n = 7) and
metastases to the brain (n = 3), liver (n = 2), and adrenal
gland (n = 2) (Figure 1A). The unsupervised clustering analysis
classified the 84294 cells into nine clusters annotated with
canonical markers (Figure 1B). Each cluster was identified as a
broad cell type: B cells (1480 cells, marked with EBF1, BCL11A,
and BANK1); cycling cells (4079 cells, marked with MKI67 and
TOP2A); endothelial cells (8585 cells, marked with EGFL7, VWF,
ADAMTS1, and FLT1); epithelial cells (37314 cells, marked with
MUC1, MUC 16 and SFTPB); fibroblasts (5965 cells, marked
with FN1, COL1A1-2 and COL6A3); macrophages (11943 cells,
marked with CTSB, SPP1, and MRC1); mast cells (330 cells,
marked with CAP3 and KIT); plasma cells (7246 cells, marked
with IGHA1, IGHG1-3, and JCHAIN); and T cells (7124 cells,
marked with SKAP1, CD3E, and IKZF1) (Figure 1C). We calcu-
lated the inter-site and inter-patient proportions in each cluster
to characterize the organ-specific TME of LUAD (Figure 1D). In
general, the proportion of immune cells was lower in patients
with liver metastases. The proportions of B, plasma, and T cells
were higher in primary LUAD and adrenal gland metastases than
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Figure 1. High-resolution tumor microenvironment atlas of paired primary LUAD and metastases in the brain, liver, and adrenal gland depicted by
scRandom-seq. A) Overview of the design for snRandom-seq. FFPE samples from paired primary and metastatic lesions were collected for single-cell
nuclei transcriptomic sequencing. B) UMAP plot of major cell types from all the samples. C) The mean expressions of canonical marker genes for the
major clusters. D) The frequency of each cell cluster presented as a proportion of total cells in each sample. E) Tissue prevalence of each cell cluster
estimated by the Ro/e analysis. F–H) UMAP plots of macrophages, B and plasma cells, and T cells show distinct subclusters. Dot plots of expression
levels of classical markers for each subclusters.
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those in liver and brain metastases. Next, we performed the Ro/e
analysis to evaluate the tissue enrichment of each cell population
(Figure 1E). The Ro/e analysis was performed to quantify the en-
richment of cell clusters across different anatomical sites based
on the ratio of observed to expected cell numbers in each cluster,
where the expected cell numbers for each cluster in different
anatomical sites were obtained using the chi-squared test.[30]

Plasma and B cells were preferentially enriched in adrenal gland
metastases, and mast cells were relatively enriched in primary
LUAD. Cycling and endothelial cells were preferentially enriched
in brain and liver metastases, respectively.

The inter-site heterogeneity of the immune microenviron-
ment stimulated a deeper investigation of major immune cell
types. Therefore, we re-clustered the macrophages, B and plasma
cells, and T cells separately. The expressions of canonical mark-
ers for each sub-cluster are presented as dot plots (Figure 1F–H).
We identified four macrophage subclusters defined as AFF3+,
C1QB+, MRC1+, and SPP1+ macrophages, which have also been
identified in previous studies.[31–33] (Figure 1F). B and plasma
cells clustered into B cells, IgA-plasma, and IgG-plasma cells
(Figure 1G). T cells were categorized into activated, CD28+, cy-
totoxic, exhausted, ICOS+, and memory subsets (Figure 1H).

2.2. Organ-Specific Profiling of Macrophages, B and Plasma
Cells, and T Cells

As macrophages, B cells, plasma cells, and T cells constituted
the major proportion of the immune cells, we next explored the
organ-specific immune milieu of LUAD, mainly focusing on re-
clustered subsets of these cell populations. The distribution of
the four macrophage subsets varied across sites and patients, and
adrenal gland metastasis was associated with a lower frequency
of SPP1+ macrophages (Figure 2A,B). SPP1+ macrophages are
immunosuppressive cells that predict poor response to PD-
1 blockades and dismal clinical outcomes.[33] We further in-
vestigated the expression patterns and signaling pathways of
these macrophage subsets using the single sample gene set en-
richment analysis (ssGSEA) (Figure 2C). C1QB+ macrophages
showed heightened antigen processing and presentation activ-
ities, and AFF3+ macrophages showed enriched pathways re-
lated to the type I interferon response. MRC1+ macrophages
showed enrichment of IL6-STAT3 signaling and IFN-𝛾 response
pathways, consistent with previous reports.[34,35] Referring to the
signature gene sets of the M1 and M2 polarization states, we
found that MRC1+ macrophages exhibited a higher enrichment
of M2 signatures, with particularly high expression of CSF1R
and F13A1 (Figure 2D). As is known, CSF1R is closely associ-
ated with the differentiation and maintenance of tissue-resident
macrophages (TRM).[36,37] We then calculated TRM scores for
each subset based on the core gene signatures, including TIDM4,
LYVE1, FOLR2, CCR2, and MHC-II, as previously described.[38]

As shown in Figure 2E, the MRC1+ macrophages had the highest
TRM scores. Because the enrichment of MRC1+ macrophages
was comparable across sites, we can infer that the frequency
of TRMs in the TME was relatively constant across different
anatomical sites of LUAD, although specific subtypes might vary.
The organ-specific distributions of B and plasma cells were also
calculated, and IgG-plasma cells were less likely to be enriched in

brain and liver metastases (Figure 2F,G). Compared with B cells,
IgA- and IgG-plasma cells highly expressed IGH-related gene
sets (Figure 2H). Subsequent ssGSEA and GO analyses were per-
formed to explore the potentially enriched signaling pathways
and biological functions of the different subsets. IgA and IgG
plasma cells were enriched in the pathways related to the circulat-
ing immunoglobulin complex. B cells showed the enrichment in
B cell receptor-related signaling pathways and heightened posi-
tive regulation of B cell activation (Figure 2I,J). These findings
are consistent with the recognized functions of B and plasma
cells, which present tumor antigens and produce tumor antigen-
specific antibodies respectively.[39]

We also delineated the inter-site and inter-patient distributions
of T cell subsets, and Ro/e analysis was performed to resolve the
organ-specific enrichment of each subset (Figure 2K,L). We then
investigated the variations in the expression patterns and signal-
ing pathways among these T-cell subsets (Figure 2M). Memory
T cells highly expressed IL7R and CCR7. Cytotoxic T cells ex-
pressed high levels of GNLY, a cytotoxicity marker. The activated
and ICOS+ subsets highly expressed CD69 and ICOS, respec-
tively, and were enriched in the T cell activation pathway. CTLA4
was specifically expressed in the exhausted subset. ssGSEA was
performed to explore the metabolic characteristics of these T-
cell subsets (Figure 2N). Oxidative phosphorylation (OXPHOS)
was the top-scoring pathway in the activated subset, consistent
with previous findings that decreased OXPHOS expression can
dampen the anti-tumor functions of CD8+ T cells.[40,41] CD28+

and cytotoxic subsets were validated to have enriched pathways
for inositol and pentose phosphate metabolism respectively.[42–44]

Consistent with previous studies, we found the exhausted sub-
set was enriched in pathways related to glycolysis and fatty acid
metabolism.[44–46] The ICOS+ subset was associated with glycol-
ysis and fatty acid biosynthesis.[47] The memory subset had in-
creased ascorbate metabolic activity.[48] Collectively, these find-
ings further confirmed the distinct architectures of the immune
microenvironment and the diverse phenotypic states of immune
cells across different sites of LUAD at high resolution.

2.3. Single-Cell Analysis for Organ-Specific Spatial Infiltrations in
the TME

The cell composition of the organ-specific LUAD TME was de-
picted by scRandom-seq analysis. To further decipher the spa-
tial topology of the organ-specific TME, we used a 40-marker
IMC to explore the spatial distribution of immune cells in the
same patients (Figure 3A). We stained the specimens with a 40-
plex antibody panel targeting various types of cells and immune
checkpoints and then acquired high-dimensional histopatholog-
ical images for each specimen exhibiting typical structural mark-
ers such as pan-cytokeratin (Pan-CK) for epithelial cells, col-
lagen I, and immune cell markers like CD20 and CD3 for B
and T cells, respectively (Figure 3B,C). High-resolution images
were processed to resolve the TME (Figure 3D). To improve im-
age quality, we preprocessed the scanned images after IMC be-
fore single-cell segmentation, which consisted of compensation,
denoising, and contrast enhancement according to published
methods.[49–51] As shown in Figure 3E, the image quality was sig-
nificantly improved after preprocessing. We then examined the
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Figure 2. Diversity of macrophages, B and plasma cells, and T cells in the LUAD TME of different anatomical sites. A) The frequencies of the macrophage
subclusters in each sample. B) Tissue prevalence of each macrophage subcluster estimated by the Ro/e analysis. C) The potential biological functions and
relevant signaling pathways of the four macrophage subclusters were evaluated by the ssGSEA according to the hallmark gene sets. D) The enrichment
of M1- and M2-macrophage-related pathways in the four macrophage subclusters. E) Half violin plots showing the tissue-resident macrophage scores
of the subclusters. F) The frequencies of the B and plasma cell subclusters in each sample. G) Tissue prevalence of each B and plasma cell subcluster
estimated by the Ro/e analysis. H) The volcano plots show differently expressed genes of the IgA- and IgG-plasma cells compared to the B cells. I,J)
The potential biological functions and relevant signaling pathways of the B and plasma cell subclusters were evaluated by the GO and ssGSEA analyses
according to the hallmark gene sets. K) The frequencies of the T cell subclusters in each sample. L) Tissue prevalence of each T cell subcluster estimated
by the Ro/e analysis. M) The expression of canonical markers and relevant signaling pathways of the six T cell subclusters were evaluated by the ssGSEA
based on hallmark gene sets. N) Dot plots of median metabolic pathway scores of the six T cell subclusters.
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Figure 3. The imaging mass cytometry (IMC) technique reveals the spatial topology of metastatic LUAD TME at a single-cell level. A) Schematic of
the IMC pipeline applied to FFPE tissue samples from paired primary and different metastatic lesions. B) Single color staining of each marker. The
antibody panels are listed in Table S3 (Supporting Information). C) Panel of all the markers used in the IMC. D) Regions of interest for IMC to dissect
organ-specific TME. E) The example of one paired raw IMC image and preprocessed image. F) Representative IMC images and corresponding H&E
staining images in each anatomical site. Scale bars, 100um. Pan-CK (cyan), collagen I (blue), and CD31 (red) were used to depict the structure of LUAD.
Pan-CK (cyan), CD20 (yellow), and CD3 (magenta) revealed the distribution of B and T cells in the LUAD. CD11b (green), CD163 (blue) and CD68 (red)
characterized the resident and inflammatory macrophages. G) The correlation heatmap of the staining markers in the IMC.
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distinct organ-specific spatial topology of LUAD. Pan-CK+ epithe-
lial cells, CD31+ endothelial cells, and deposited collagen I were
clearly present in the scanned images, which was consistent with
their spatial distribution in the corresponding hematoxylin and
eosin (H&E) staining images (Figure 3F). Immune cells, such
as T cells (CD3+) and B cells (CD20+), were mainly distributed
in the tumor stromal area. Inflammatory (CD68+ CD11b+) and
resident (C1QC+ CD163+ CD68+ CD11blow) macrophages were
also clearly characterized using IMC (Figure 3F). The cells and
components were further segmented using a connectivity-aware
segmentation method.[52,53] The expression of each marker was
quantified and converted to an expression matrix. A correlation
heatmap of the staining markers is presented in Figure 3G.
Strong correlations were detected between CD20 and CD45 or
CD45RO.

IMC images were segmented into 250 600 cells, which were
clustered into 23 distinct immune cell clusters, along with en-
dothelial cells, epithelial cells, smooth muscle cells, lineage-
negative cells, and collagen I (Figure 4A; Figure S1A,B, Support-
ing Information). Theses cell clusters were annotated according
to the expression of canonical markers, and the average expres-
sion of lineage markers for each cluster is shown in Figure 4B
(Table S1, Supporting Information). The lineage-negative cluster
contained cells that could not be defined as a particular cell type.
A single meta-cluster could consist of multiple types of cells due
to the close interaction of neighbor cells and the limited resolu-
tion of IMC such as regulatory T cells (Tregs) and inflammatory
macrophages (InfMac). The limited resolution of IMC occurs
mainly in regions with high cell densities, leading to the detection
of overlapping markers. This artifact persisted throughout subse-
quent analyses and could not be overcome by increasing the res-
olution of IMC. A similar marker overlap also exists in multiplex
immunohistochemistry imaging despite having a higher resolu-
tion limit. However, such an overlap likely signified the close in-
teraction of neighboring cells and did not impede the conclusions
drawn in this study. The proportion of each cluster relative to the
total number of cells was calculated and plotted (Figure S1C, Sup-
porting Information). Resident macrophages (ResMac), memory
CD4+ T, memory CD8+ T, and B cells were the top four immune
cell populations. The clusters were assigned to each specimen.
The fractions of each cluster in all the specimens are presented
as histograms (Figure S1D, Supporting Information). These clus-
ters were distributed divergently across different anatomical sites
and patients (Figure S2A–D, Supporting Information). Moreover,
the differential patterns of these clusters between primary and
metastatic lesions varied across individuals, even in those with
the same type of metastatic lesion (Figure S2E, Supporting Infor-
mation). In addition, moderately differentiated LUAD had higher
proportions of ResMacs, clusters of Tregs and InfMacs, B cells,
memory CD4+ T cells, and clusters of memory CD4+ T and B
cells than poorly differentiated LUAD (Figure S2F, Supporting
Information).

Ro/e analysis was performed to quantify the organ-specific en-
richment of these clusters (Figure 4C). Cytotoxic CD8+ T cells,
proliferative CD4+ T cells, naïve CD4+ T cells, B cells, neu-
trophils, clusters of memory CD4+ T and B cells, monocytes, and
PD-1+ CD4+ T cells were preferentially enriched in adrenal gland
metastases. Clusters of dendritic cells (DCs) and epithelial cells,
endothelial cells, smooth muscle cells, TIM3+ CD4+ T cells, and

clusters of Tregs and InfMacs were enriched in brain metastases.
Liver metastasis showed enrichment of the cluster consisting of
neutrophils and epithelial cells. Moreover, collagen I tended to be
deposited in the brain and liver metastases. We also evaluated and
compared the expression levels of these markers across different
metastatic anatomical sites. The expression levels of vimentin,
CD45, CD20, TIGIT, collagen I, and C1QC were significantly
different across the four distinct anatomical sites (Figure 4D).
The organ-specific expression levels of exhausted T-cell markers
are shown in Figure 4E. T cells in the adrenal gland metasta-
sis showed significantly higher PD-1 expression. In contrast, the
brain and liver metastases expressed higher levels of TIM-3. We
further compared the frequencies of each cluster among different
anatomical sites (Figure S3, Supporting Information). In general,
the distribution patterns of cell clusters and stromal matrices
could be divided into two categories. Specifically, a similar ten-
dency was observed in primary lung and adrenal gland metastatic
lesions, whereas brain and liver metastases had similar immune
milieu. The primary lung and adrenal gland metastatic lesions
had significant enrichment of B cells and the cluster of memory
CD4+ T and B cells, and the primary LUAD also had a higher
frequency of TNF-𝛼+ CD4+ T cells. In summary, we spatially re-
solved the organ-specific architecture of the TME in LUAD us-
ing the 40-marker IMC and further validated the findings of the
snRandom-seq analysis.

2.4. Cellular Neighborhoods Revealing the Organ-Specific
Immune Spatial Topology

Studies have highlighted that complex interactions among dif-
ferent cells deeply influence tumor biology.[54,55] Thus, we per-
formed a regional cellular neighborhood analysis to reveal multi-
cellular structures within the LUAD at different anatomical sites.
We defined the cell neighborhood (CN) as the nearest 20 cells
to the center cell (Figure 5A). To visualize organ-specific cell in-
teractions and functional units in the TME of LUAD, network,
Voronoi, and CN patch plots were constructed for each IMC
image (Figure 5B). A total of 15 CNs were identified and an-
notated based on the major cell types (Figure 5C). The cellu-
lar compositions of these CNs fully recapitulated the architec-
ture of the TME, including epithelial-cell enriched spots with
co-existence of DCs (CN11) or collagen I (CN9), two immune
hotspots with enrichment of B cells and memory CD4+ T cells
(CN2 and CN12), ResMacs-enriched (CN1), Tregs and InfMacs-
enriched (CN3), CD4+ T cell-enriched with (CN8) or without
(CN4 and CN10) co-existence of CD8+ T cells, and a CN mainly
composed of lineage-negative cells (CN14). The spatial topology
of IMC was represented by CN patch plots, with various CNs in-
dicated by different colors (Figure S4, Supporting Information).
As shown in Figure 5B, the spatial cell interactions and CN func-
tional units presented in the network, Voronoi, and CN patch dia-
grams matched well with the IMC images at each LUAD anatom-
ical site.

The distribution of each CN across different anatomical sites
of LUAD and patients is presented in histograms (Figure 5D).
Next, we compared the enrichment of each CN across differ-
ent anatomical sites of LUAD (Figure 5E). The frequencies
of CN2 and CN12, both of which were enriched with B and
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Figure 4. The divergent organ-specific TME of LUAD detected by IMC techniques. A) The UMAP plots for major clusters and T cell subsets based on
single-cell data of 250 600 cells from IMC images. B) The heatmap presents the normalized expression levels of indicated markers for each cluster. C)
Tissue prevalence of each cluster on IMC images estimated by the Ro/e analysis. D) The heatmap of scaled marker expressions in each specimen from
different metastases. E) The expression levels of exhausted markers on T cells in each anatomic site of LUAD.
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Figure 5. Tissue neighborhood analysis reveals organ-specific compositions of cellular neighborhoods (CNs). A) Schematic demonstrating the identi-
fication of CNs. The CN was defined based on the center cell and its nearest 20 cells. B) Representative Network, Voronoi, and CN diagrams of TME in
the four anatomical sites of LUAD with the corresponding IMC images. C) Identification of 15 distinct CNs from the 27 cell clusters along with collagen
I and their corresponding abundances in each CN. D) The frequency of each CN presented as a proportion in each sample. E) The distribution of each
CN across different anatomical sites of LUAD based on IMC results. The Wilcoxon rank-sum tests were adopted to evaluate the statistical significance.
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memory CD4+ T cells, were significantly higher in primary
lung and adrenal gland metastatic lesions than in brain and
liver metastases. Moreover, brain and liver metastases showed
significant enrichment in CN9 (collagen I and epithelial cells
enriched). The distribution patterns of CNs in the primary and
metastatic lesions within one patient varied according to the type
of metastasis (Figure S5A,B, Supporting Information). When
classified by the type of metastases, we observed that CN2 and
CN12 (B and memory CD4+ T cells enriched), CN4(CD4+ T cells
enriched), CN8 (CD4+ and CD8+ T cells enriched) and CN13
(monocytes and neutrophils enriched) were mainly from the
adrenal gland metastases (Figure S5C, Supporting Information).
The CNs with enrichment of PD-1+ T cells (CN4 and CN8) are
mainly enriched in the adrenal gland metastasis. Furthermore,
the landscape of CNs varied among the LUAD patients with
metastases to different organs (Figure S5D, Supporting Infor-
mation). The organ-specific spatial topologies of LUAD dissected
by CN analysis were consistent with the diversity revealed by
snRandom-seq and IMC images. Adrenal gland metastases had
the highest enrichment of B and CD4+ T cells, whereas these
immune cells and their corresponding functional units were
relatively absent in brain and liver metastases.

2.5. Organ-Specific Enrichment of Tertiary Lymphoid Structures

The concomitant enrichment of B and CD4+ T cells stimulated
our attention to the tertiary lymphoid structure (TLS). We then
performed patch analysis to identify TLS-like structures in the
IMC images (Figure 6A; Figure S6, Supporting Information).
The densities of TLS-like structures in the TME varied across dif-
ferent anatomical sites in LUAD. Adrenal gland metastases had
the most abundant TLS-like structures, followed by primary lung
tumors, whereas no TLS-like structures were detected in brain
metastases. To further dissect the composition of the TLS-like
structures, we calculated the proportion of cell clusters in these
TLS-like structures. B cells were the most common cell type in
the TLS-like structures, which was conserved across the TLS-like
structures at different sites. Memory CD4+ and CD8+ T cells,
and the cluster of memory CD4+ T and B cells also accounted
for substantial proportions (Figure 6B,C). The distribution of cell
clusters was similar in the TLS-like structures across different
sites, indicating the preserved essence of the TLS-like structure
in primary and metastatic LUAD (Figure S7, Supporting Infor-
mation). To validate these results, we constructed another cohort
of 43 patients with metastatic LUAD. To detect TLS at different
anatomical sites of LUAD based on surgical samples, H&E, im-
munohistochemistry (IHC) (CD3, CD8, CD20, and CD21), and
multiplex immunofluorescence (mIF) staining (including CD3,
CD8, CD20, CD21, and DAPI) were simultaneously performed
for each specimen (Figure 6D; Figure S8, Supporting Informa-
tion). We validated that the TLS was significantly more enriched
in primary LUAD and adrenal gland metastases than in brain
and liver metastases (Figure 6E). We further evaluated the expres-
sion levels of exhausted T-cell markers in TLS-like structures and
found that the level of TIM-3 was markedly higher in liver metas-
tases (Figure 6F). Taken together, snRandom-seq revealed diver-
gent enrichment of B, plasma, and T cells across different sites
of LUAD, and the spatial proximity of these cell clusters was de-

tected by IMC, which was further validated by varying densities
of TLS in different anatomical sites based on H&E, IHC, and mIF
staining.

2.6. Cell Interactions at Spatial and Molecular Levels

To explore the mechanisms underlying the organ-specific TME,
we performed a regional correlation analysis to distinguish
spatial interaction and avoidance pairs in the LUAD topology
(Figure 7A). The B cells interacted frequently with the memory
CD4+ and CD8+ T cells, the cluster of memory CD4+ T and B
cells, TIM-3+, proliferative, and CD127+ CD4+ T cells. Avoid-
ance patterns were observed between these cell types and the
epithelial cells (Figure 7B). These spatial interaction modes to
some extent also confirmed the existence of TLS, an ectopic lym-
phoid organ composed of B cells, T cells, and myeloid DCs.[56]

Next, we performed a cell-cell interaction analysis to investigate
the communications among major cell types (Figure 7C). We fo-
cused on the cellular communications among the major immune
cell types, including B cells, macrophages, plasma cells, and T
cells (Figure 7D). Interactions between macrophages and other
cell types were mediated mainly by the SPP1 ligand. In addition,
TGF-𝛽-related signaling pathways were the dominant mediators
of cellular communications among B cells, macrophages, and T
cells; however, these signaling pathways were barely involved in
the interactions of plasma cells.

TGF-𝛽 is recognized as the dominant mediator of the immuno-
suppressive microenvironment.[57] We then performed network
centrality analysis to explore the intercellular communication
network for TGF-𝛽 signaling (Figure 7E). B cells, macrophages,
and T cells regulate each other through TGF-𝛽 signaling path-
ways, and macrophages could be the gatekeepers of these cell-cell
communications. The TGF-𝛽 produced by macrophages can sup-
press T cell responses, and the TGF-𝛽 antibody could restore T
cell cytotoxicity.[58] Activated B cells could also impair Th1 immu-
nity or cause anergy of CD8+ T cells by expressing TGF-𝛽.[59,60]

The fibroblast was also the major source of TGF-𝛽 ligands act-
ing on immune cells, especially on the macrophages. These find-
ings are consistent with known sources of TGF-𝛽, which mainly
include cancer-associated fibroblasts, myeloid cells, and cancer
cells.[61–63] In summary, these results suggested the complex and
diverse communication across B cells, macrophages, T cells, and
other stromal cells, among which the TGF-𝛽-related signaling
pathway was a vital mediator.

3. Discussion

Despite the recognized associations between metastases at dif-
ferent sites and clinical outcomes, current treatment guidelines
barely incorporate organ-specific treatment paradigms, owing to
the lack of a comprehensive understanding of site-specific behav-
iors. In the present study, we originally deciphered the heteroge-
neous atlas of the TME in paired primary LUAD and metastases
in different organs at single-cell resolution while preserving the
architecture to depict organ-specific spatial topology. We identi-
fied various compositions of major immune cells and different
molecular interaction patterns in the TME of LUAD at four differ-
ent anatomical sites, including the lung, brain, liver, and adrenal
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Figure 6. Divergent densities of the tertiary lymphoid structure (TLS) in different anatomical sites of LUAD. A) Representative patch diagrams of the
TLS-like structure in the four anatomical sites of LUAD. Each color represents one TLS-like structure. B) The frequencies of each cell cluster identified
from IMC images in the TLS-like structures in each sample. C) The frequencies of T-cell and B-cell-related clusters identified from IMC images in the
TLS-like structures in each sample. D) The presence of TLS identified by the H&E staining and multiplex immunofluorescence (mIF) staining of CD3,
CD8, CD20, and CD21. E) Densities of TLS in different anatomical sites of LUAD from the validation cohort. The P value was estimated by the Wilcoxon
rank-sum test. F) The expression levels of exhausted markers on T cells in TLS-like structures in each anatomic site of LUAD.
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Figure 7. Spatial and molecular cellular communication network in the TME of LUAD. A) Schematic of spatial cell-cell interaction analysis. The interaction
patterns could be classified into the interaction pattern and avoidance pattern. B) Neighborhood analysis revealing the spatial cell interactions on IMC
images. Rows represent the centered cell type and columns represent other cell types surrounding the center cell type. C) Different numbers and strengths
of communications of the major cell types identified by the snRandom-seq analysis. D) Dot plots showing the intricate interactions in terms of specific
ligand-receptor pairs among the B cells, macrophages, plasma cells, and T cells. E) Hierarchical plots showing the inferred cellular communication
network for TGF-𝛽 signaling.
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gland. Furthermore, the IMC revealed divergent cellular spatial
positioning and interactions at these distinct anatomical sites.
Specifically, adrenal gland metastases exhibited enrichment of B
and T cells, which were also spatially gathered and further formed
TLSs, whereas brain and liver metastases had significantly more
deposited collagen I. In addition, we detected higher expression
of TIM-3 in brain and liver metastases, albeit with comparable ex-
pression levels of PD-1 across the four anatomical sites of LUAD.
Overall, this study revealed the potential mechanism for the dis-
tinct response patterns to PD-1 blockade in LUAD patients with
metastases at different sites, which indicates the necessity for
precise immunotherapy strategies or locoregional treatments for
specific metastatic sites, such as the brain and liver.

While cancers arising from different organs exhibit vary-
ing susceptibilities to immunotherapy, the effectiveness of im-
munotherapy can starkly differ among metastatic patients with
identical cancer types owing to anatomical differences in metas-
tases. Notably, patients with brain or liver metastases have worse
clinical outcomes owing to poorer responses to immunotherapy
or chemotherapy than those with metastases to other anatomical
sites, such as the lungs, lymph nodes, or adrenal glands.[10,13,14]

According to the “seed and soil” hypothesis, the intrinsic proper-
ties of tumor cells and specific niches of metastatic sites together
form a unique organ-specific metastatic TME.[64] Brain and liver
metastases are commonly associated with poor response to im-
munotherapy in various types of cancers, such as lung cancer
and melanoma.[13,65] With the development of high-throughput
scRNA-seq, the single-cell profile and therapy-induced evolution
of primary lung tumors have been extensively characterized.[66–68]

Although the underlying mechanisms of resistance to PD-1
blockade have been well elucidated in primary tumors, organ-
specific immunoregulation of metastases is underappreciated,
especially at the single-cell and spatial levels. The unique ecosys-
tem of metastatic LUAD has barely been elucidated, which is es-
sential for guiding organ-specific treatment approaches in the
context of divergent response patterns to ICIs among patients
with metastases at different sites. Elucidating the tumor organ-
specific immune context has been recognized as one of the top
ten challenges in cancer immunotherapy.[24]

Although divergent immune microenvironments have been
detected between brain metastases and paired primary LUAD,
current studies investigating the TME of metastatic LUAD
are mostly conducted at low resolution using bulk RNA or
whole-exome sequencing because of the challenges in acquir-
ing qualified samples from different metastatic sites for scRNA-
sequencing.[69,70] In addition, dissecting the intrinsic properties
of organ-specific TME requires treatment-naïve tissues because
systemic treatments can dramatically remodel the TME. Current
clinical guidelines recommend systemic treatment as the first-
line therapy for patients with metastatic lung cancer, and biopsies
for metastatic lesions are not routinely required when primary
LUAD has been pathologically confirmed. In this context, it is ex-
ceedingly challenging to acquire treatment-naïve paired primary
LUAD and metastases in different organs, not to mention the
requirement of fresh tissue samples in most scRNA-seq meth-
ods. FFPE tissue specimens are currently optimal candidates for
collecting these rare paired surgical samples. Nevertheless, the
isolation of single intact cells or nuclei and the extraction of RNA

from FFPE tissues remain challenging owing to issues such as
RNA cross-linking and degradation.

Recently, the development of snRandom-seq has enabled re-
searchers to profile single nuclei transcriptomes from FFPE tis-
sues at single-cell resolution.[29] Using this pathology-friendly
technique, we performed high-resolution analyses based on
FFPE tissue samples from paired treatment-naïve primary LUAD
and metastases in the brain, liver, and adrenal gland. Multiple
major cell types were identified, including B cells, cycling cells,
endothelial cells, epithelial cells, fibroblasts, macrophages, mast
cells, plasma cells, and T cells. The abundance of these cell types
varied across different anatomical sites of LUAD. The adrenal
gland metastases were infiltrated with more immune cells, espe-
cially B and plasma cells, whereas the brain and liver metastases
were less immunogenic but deposited more collagen I. Com-
pared with the considerable attention given to T cells in the im-
mune biology of lung cancer, the profiling of tumor-infiltrating
B and plasma cells is relatively understudied. Studies have re-
ported that intratumoral B and plasma cells are positively re-
lated to the response and survival of patients receiving PD-1
blockade in various cancers, such as NSCLC and melanoma.[71,72]

Since several studies have reported that adrenal gland metas-
tases and primary lung tumors response better to PD-1 block-
ade than brain and liver metastases, we can infer that different
densities of B and plasma cells in these anatomical sites could
substantially contribute to divergent organ-specific responses to
immunotherapy.[10,13,14] According to the results of the Ro/e anal-
yses, the disparity in plasma cell enrichment between the adrenal
gland metastases and brain or liver metastases was more sig-
nificant than the difference in B cell enrichment. Plasma cells
have a stronger predictive association with immunotherapy re-
sponse than B cells.[67,71] Therefore, the plasma cell signature
may be a precise biomarker for predicting the efficiency of the
PD-(L)1 blockade. We also identified a tissue-resident subset
of macrophages, MRC1+ macrophages, which highly expressed
CSF1R and F13A1 and were enriched in the TME of LUAD. The
T cell-dependent release of CSF-1 can increase the secretion of
granulin from macrophages and cause adaptive resistance to PD-
1 blockade, indicating the potential application of CSF-1 blockade
to restore anti-tumor responses.[73,74] It is well recognized that
the TGF-𝛽 signaling pathway acts as a major suppressor of both
innate and adaptive immune responses in the TME.[57] Using
cell-chat analyses, we detected that the TGF-𝛽 signaling pathway
was the dominant mediator for the cellular interactions among B
cells, macrophages, and T cells, and the fibroblast was the major
source of TGF-𝛽 ligands.

In addition to the molecular and cellular composition of
the TME, spatial distributions, and neighborhood communica-
tions constitute distinct immune niches and are correlated with
immunotherapy responses.[75] However, previous studies have
barely investigated the spatial topology of the TME in differ-
ent anatomical sites of LUAD at a single-cell resolution. In this
study, we used a 40-marker IMC to address this issue. Com-
pared to brain and liver metastases, primary lung tumors and
adrenal gland metastases exhibited significant enrichment in B
cells and memory CD4+ T cells. Additionally, the latter were
enriched in proliferative CD4+ T and cytotoxic CD8+ T cells.
Neighborhood analysis successfully reclassified these cells into
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15 distinct CNs, capable of recapitulating organ-specific TME.
The proximity between B cells and memory CD4+ T cells demar-
cated CN2 and CN12, which were significantly enriched in pri-
mary lung sites and adrenal gland metastases. The presence of B
cell-rich niches indicates the potential formation of TLS, where
B cells can improve antigen presentation and release tumor-
specific antibodies.[56] The patch analysis in this study also de-
tected the most abundant TLS-like structures in adrenal gland
metastases, which was further validated in another LUAD co-
hort. TLSs are associated with a better response to immunother-
apy and prolonged survival in various tumor types.[76] However,
previous studies have mainly evaluated the densities of TLSs at
the primary tumor site, and it remains unclear whether the densi-
ties differ between primary and metastatic tumors. In the present
study, we initially evaluated the organ-specific densities of TLSs
and found different enrichments of TLSs in the surgical tissue
samples from paired primary LUAD and metastases in different
organs, including the brain, liver, and adrenal gland. Consistent
with previous reports, metastases responding better to the PD-1
blockade had higher densities of TLSs.[71]

The immune checkpoint therapy, represented by the PD-1
blockade, has demonstrated efficacy against metastatic lung can-
cer. However, patients with brain or liver metastases respond
poorly to PD-1 blockade therapy. In the present study, we detected
that the brain and liver metastases expressed higher levels of
TIM-3, another common T cell inhibitory receptor. Studies have
found that high TIM-3 expression serves as a specific marker for
highly dysfunctional or terminally exhausted T cells and indicates
a poor prognosis in cancer patients.[77,78] Blocking TIM-3 alone
or in combination with PD-(L)1 blockade can enhance the effi-
ciency of anti-tumor immunotherapy.[77,79] In addition, upregu-
lation of TIM-3 is associated with resistance to PD-1 blockade in
NSCLC patients.[80] These preclinical findings were further vali-
dated in the clinical trial, where the combination of anti-TIM-3
and anti-PD-1 has demonstrated good efficacy in patients pre-
viously resistant to PD-1 blockades.[81] Thus, the low density of
TLSs might not be the only reason for the poor response to im-
munotherapy in patients with brain or liver metastases, and the
co-expression of multi-inhibitory receptors is another essential
issue. Moreover, phenotypic differences in TLS characterized by
different expression levels of immune checkpoints have diver-
gent effects on the prognosis of cancer patients.[82] Similarly, we
also detected the upregulation of TIM-3 in the T cells of TLSs in
liver metastases, which could be another potential mechanism
underlying the poor response to immunotherapy. Our results in-
dicate that dual blockade of PD-1 and TIM-3 may be a suitable
treatment modality for LUAD patients with brain or liver metas-
tases. Further subgroup analyses of the ongoing clinical trials
(NCT03708328 and NCT04931654) will inspect this hypothesis.

This study had several limitations. First, the selected regions
of interest (ROIs) for each specimen were used for IMC, and
whether these ROIs could represent the heterogeneous organ-
specific TME needed to be validated. Thus, we selected two ROIs
for each FFPE specimen by the experienced pathologist, mainly
focusing on the regions with the most abundant immune cell
infiltration. Moreover, the sequencing data from snRandom-seq
captured the transcriptome data from intact specimens, which
compensated for the issue of the representativeness of IMC. Sec-
ond, owing to the limitation of snRandom-seq, it was difficult

to classify CD4+ and CD8+ T cells as both markers are highly
expressed in the cell membrane rather than in the nucleus. To
solve this issue, we used IMC to further characterize the spa-
tial topology of the T cell subpopulations. Third, the sample size
was limited owing to the formidable challenge of obtaining sur-
gical specimens from treatment-naïve paired primary LUAD and
metastases. We dissected the single-cell profile of the TME at four
different anatomical sites of LUAD at both cellular and spatial lev-
els using snRandom-seq and IMC. Biopsied tissue samples are
usually insufficient for maintaining the homogeneity of the tis-
sue samples used in these two technical methods. Moreover, the
recommended first-line treatments for metastatic lung cancer pa-
tients are systemic therapies that can remodel the tumor’s im-
mune microenvironment. Thus, acquiring sufficient treatment-
naïve tissue samples for high-resolution analyses by surgical re-
section is extremely challenging, not to mention paired primary
LUAD and metastases at different anatomical sites. Owing to the
limited availability of samples, we were unable to proceed with
paired testing of primary and metastatic lesions in this study. Fur-
ther collection of surgical specimens is necessary to investigate
the inter-lesion immune heterogeneity between paired primary
and metastatic lesions. In addition, more samples are needed
to investigate the impact of differentiation status on the spatial
topology of LUAD. Further validation is also warranted in the co-
horts receiving single or dual ICIs with sufficient baseline tissue
samples from different anatomical sites.

In conclusion, this study revealed the heterogeneous organ-
specific TME context in LUAD patients through a pathologically
friendly strategy based on FFPE samples, not only in terms of
cell types and communication but also in terms of spatial dis-
tributions and neighborhood interactions. These findings high-
light the necessity for considering the anatomical sites of LUAD
metastases when developing clinical treatment approaches.

4. Experimental Section
Patients and Samples: The paired primary lung tumors and brain, liver,

or adrenal gland metastases were collected from seven LUAD patients re-
ceiving surgery at the First Affiliated Hospital, Zhejiang University School
of Medicine (FAHZU). The clinical characteristics of these patients are
presented in Table S2 (Supporting Information). All surgical specimens
analyzed in this study were treatment-naïve. The tissue samples for
scRandom-seq and IMC were acquired from the tumor area. To validate
the organ-specific enrichment of TLS, surgical specimens were collected
from different anatomical sites in another LUAD cohort, including the
lungs (n = 13), brain (n = 12), liver (n = 7), and adrenal glands (n =
11). This study was approved by the Ethics Committee of FAHZU and
was implemented in accordance with the standards of the Declaration of
Helsinki (ethical number: IIT20230718A). Informed consent was obtained
from all the enrolled patients or their immediate family members.

SnRandom-Seq: SnRandom-seq was performed as previously
described.[29] The VITAcruizer Single-Cell Preparation System V1.0 (M20
Genomics) was used for droplet generation, single-cell encapsulation,
and nucleic acid capture. The VITApilote High-Throughput Eukaryotic
Single-Cell Transcriptome (Paraffin) Kit (M20 Genomics) was used for
pre-sequencing sample processing, single-cell RNA library construction,
and purification. The constructed single-cell RNA library containing P5
and P7 primers was subsequently sequenced on the NovaSeq 6000
sequencing platform (Illumina). The default parameters of the STAR
software were adopted to align the FASTQ file with the human refer-
ence genome (GRCh38). For each sample, gene-barcode matrices were
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generated by tallying the unique molecular identifiers (UMIs) and re-
moving non-cell-associated barcodes. Finally, the barcoded cells and
their corresponding gene expression counts were merged to form a
comprehensive gene barcode matrix.

SnRandom-seq Data Analysis: Quality control and integration were
performed using the “Seurat” R package (version 4.4.0).[83] Several steps
were taken to filter out poor-quality data. First, the genes covered by fewer
than three cells were removed. Next, cells expressing < 500 or > 5000
genes and those containing < 400 or > 25 000 UMIs were filtered to ex-
clude barcodes associated with empty partitions or doublet cells. Addi-
tionally, scDblFinder was utilized with default parameters to remove those
with doublets and multiplets.[84] Cells with mitochondrial content >15%
were also removed. To integrate and embed the single cells from differ-
ent individuals into a shared low-dimension space, the integrated analy-
sis was utilized in the Seurat v4 function “‘IntegrateData”’ which allowed
us to perform batch effect correction and normalization. After generat-
ing the integrated matrix, an unsupervised graph-based clustering algo-
rithm was employed to cluster single cells using their expression, which
was implemented in Seurat. The default parameters of Seurat were used
unless specified otherwise. The UMI count matrix was normalized using
the “NormalizeData” function with default parameters. Subsequently, a
natural-log transformed normalized gene expression matrix was used to
identify 2000 highly variable genes via the “FindVariableFeatures” function
with the “vst” method. These 2000 variable genes were then employed
to cluster all cell types. Subsequently, 20 principal component analyses
(PCA) were applied to the dataset to reduce dimensionality, after regress-
ing the number of UMIs (counts). Finally, the “‘FindClusters”’ function
was used on 20 PCs with a resolution of 1.2 to perform the first-round
cluster, and each cluster was annotated by known markers. Nonlinear di-
mensional reduction was performed using the Uniform Manifold Approx-
imation and Projection (UMAP) method. To characterize each cluster, we
utilized the “‘FindAllMarkers”’ procedure in Seurat. This method identifies
markers based on log fold changes (FC) of mean expression and employs
the Wilcoxon Rank-Sum test by default (with parameters set as min.pct =
0.25 and logfc.threshold = 0.25). Feature genes along with known lineage-
specific markers were used for the cluster annotation. The “clusterProfiler”
package (version 4.10.0) was utilized to conduct Gene Ontology (GO)
analysis.[85] The “GSVA” package (version 1.50.0) in R software was uti-
lized to calculate the ssGSEA score for each gene set.[86] To investigate the
cell-cell interactions, the ligand and target gene pairs were explored using
the “cellchat” package (version 1.6.1) in R software.[87]

IMC and Downstream Analysis: The ROIs for IMC were selected on
the H&E slides by the experienced pathologist according to the same cri-
teria, specifically focusing on the regions with the most abundant immune
cell infiltration. After obtaining paraffin specimens from the enrolled pa-
tients and performing serial sectioning, one of the sections underwent
H&E staining. Subsequently, the pathologist identified two regions infil-
trated with the most abundant immune cells based on the pathological
morphological structure revealed by the H&E staining. When observed un-
der the light microscope at 400× magnification, numerous small clusters
of predominantly blue-stained cells were clearly visible, ranging from 1000
to 7000 square micrometers, indicating primarily lymphocytic infiltration.
These immune cells were observed both at the periphery of the tumor tis-
sue and within the tumor. Multiplexed images of the ROIs were obtained
using the Hyperion Imaging System (Fluidigm). The ROIs were captured
as square areas with a 400 Hz laser intensity. The acquired raw data were
then pre-processed according to the following steps: spillover signal com-
pensation, image denoising, image contrast enhancement, and cell seg-
mentation. The methods described above were based on a previously pub-
lished study.[88] A connectivity-aware segmentation method was adopted
for the segmentation of individual cells or components in various chan-
nels of IMC images.[88] For cell segmentation, we used the region props
function in MATLAB to identify connected components within the image.
In the case of other membrane channels, artifacts were eliminated if their
distance from the nearest nucleus centroids exceeded 15 pixels. Marker
expression was normalized to the 99th percentile for each channel. The
“Harmony” package (version 0.1.0) was used to correct batch effects. The
“Rphenograph” (version 0.99.1) with 100 nearest neighbors was used for

cell clustering. The cluster means were presented by a heatmap and were
utilized for annotation. The “imcRtools” package (version 1.0.2) was used
for downstream analysis. The CN of each cell was determined by identi-
fying the 20 nearest neighboring cells based on the Euclidean distance.
These neighbors were then clustered using K-means clustering (k = 15)
based on the 27 cell clusters, along with collagen I. The K-means algo-
rithm can efficiently cluster data points into groups based on similarity
to provide insights into the underlying patterns, demonstrating faster ex-
ecution times than hierarchical and model-based clustering methods.[89]

The CNs were validated by overlaying the Voronoi diagrams on the cor-
responding original IMC images. To explore spatial cell-cell interactions,
the permutation test method from the “imcRtools” package (version 1.0.2)
was employed to assess the interactions/avoidances between different cell
clusters within each CN.[90] The permutation test could be used to com-
pare pairwise interactions between and within cell phenotypes to a ran-
dom distribution. The comparison to a matched randomized tissue for
each individual image controls both the distinct connectivity and specific
cell types in that tissue.[91]

H&E Staining: Tumor tissue sections (4 μm) were deparaffinized with
xylene and rehydrated with graded alcohol. The sections were then rinsed
three times with PBS and stained with hematoxylin for 30 min at room
temperature. After washing with PBS, the sections were immersed in am-
monia water to transform the nuclei form red to blue-purple. The tissue
slides were washed with 75% alcohol for two minutes. The cytoplasm was
stained with eosin for one hour at room temperature. The sections were
mounted after displacing anhydrous alcohol with xylene. A light micro-
scope (Leica) was used to examine the sections and Image-Pro Plus soft-
ware (version 6.0) was used for image analysis.

IHC Staining: Primary and metastatic LUAD tissues were fixed with
4% paraformaldehyde and embedded in paraffin. Tissue blocks were cut
at 4-μm thickness into four consecutive sections for IHC staining. Tissue
sections were subsequently deparaffinized, and heat-induced antigen re-
trieval was performed using Leica Epitope Retrieval 2 solution at 100 °C
for 20 min. The tissue slices were blocked for 10 min at room temper-
ature using a Leica blocking solution. The sections were incubated with
primary antibodies against CD3 (1:200, Abcam), CD8 (1:100, Invitrogen),
CD20 (1:100, Origene), and CD21 (1:200, SinoBiological) at room temper-
ature for 25 min. Subsequently, LUAD tissue samples were treated with
a peroxidase-conjugated (HRP) secondary antibody (#DS9800, Leica) for
10 min. The Bond Polymer Refine detection system was used for visual-
ization. All procedures were performed using an automated immunohisto-
chemistry instrument (BOND RX, Leica). Slides were dehydrated, cleared,
and covered with coverslips. The sections were scanned at 20× magnifi-
cation using a Pannoramic 250 FLASH tissue imaging system (3D HIS-
TECH).

mIF Staining: mIF was conducted by staining 4-μm-thick FFPE whole
LUAD tissue sections using standard primary antibodies sequentially and
paired with tyramide system amplification (TSA) 5-colors kit (H-D110051-
50T, Yuanxibio). For subsequent rounds of staining (rounds two to five),
the slides were washed in TBST buffer and then transferred to a preheated
EDTA solution (90 °C) for heat processing using a microwave at 20% max-
imum power for 15 min. After cooling to room temperature in the same
solution, the slides were incubated with an anti-CD3 antibody (1:200, Ab-
cam) for 60 min, followed by treatment with an HRP secondary antibody
(#DS9800, Leica) for 10 min. Subsequently, labeling was performed for a
strictly observed 10 min using TSA 480 according to the manufacturer’s
instructions. Throughout the process, the slides were washed with Tris
buffer. The same procedure was repeated for the subsequent antibod-
ies and fluorescent dyes in the following order: anti-CD8 (1:100, Invitro-
gen)/TSA 520, anti-CD20 (1:100, Origene)/TSA 570, and anti-CD21 (1:200,
SinoBiological)/TSA 620. Each slide was washed with distilled water and
manually cover-slipped. Nuclei were stained with DAPI Solution (Thermo
Fisher Scientific, 62248) at 2 mg mL−1 for 10 min, washed in distilled wa-
ter, and coverslipped manually. The slides were air-dried and scanned at
20× magnification using a Pannoramic 250 FLASH tissue imaging system
(3D HISTECH).

Statistical Analysis: Statistical analyses were conducted using the R
software (version 4.04). The appropriate statistical tests were selected
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based on data distribution and variability characteristics. Statistical sig-
nificance was evaluated using the Kruskal–Wallis test, one-way analysis
of variance (ANOVA), and Student’s t-test. One-way ANOVA was used to
compare continuous variables with a normal distribution across multiple
groups, while the Kruskal–Wallis test was employed to compare continu-
ous variables with a non-normal distribution among multiple groups. Fur-
thermore, paired-sample t-tests were used to assess differences in con-
tinuous variables between the two groups. Data are presented as mean
± standard deviation. Statistical significance was defined as p < 0.05, de-
noted as *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.001.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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