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HydrogelFinder: A Foundation Model for Efficient
Self-Assembling Peptide Discovery Guided by Non-Peptidal
Small Molecules
Xuanbai Ren, Jiaying Wei, Xiaoli Luo, Yuansheng Liu, Kenli Li, Qiang Zhang, Xin Gao,
Sizhe Yan, Xia Wu, Xingyue Jiang, Mingquan Liu, Dongsheng Cao, Leyi Wei,
Xiangxiang Zeng,* and Junfeng Shi*

Self-assembling peptides have numerous applications in medicine, food
chemistry, and nanotechnology. However, their discovery has traditionally
been serendipitous rather than driven by rational design. Here,
HydrogelFinder, a foundation model is developed for the rational design of
self-assembling peptides from scratch. This model explores the self-assembly
properties by molecular structure, leveraging 1,377 self-assembling
non-peptidal small molecules to navigate chemical space and improve
structural diversity. Utilizing HydrogelFinder, 111 peptide candidates are
generated and synthesized 17 peptides, subsequently experimentally
validating the self-assembly and biophysical characteristics of nine peptides
ranging from 1–10 amino acids—all achieved within a 19-day workflow.
Notably, the two de novo-designed self-assembling peptides demonstrated
low cytotoxicity and biocompatibility, as confirmed by live/dead assays. This
work highlights the capacity of HydrogelFinder to diversify the design of
self-assembling peptides through non-peptidal small molecules, offering a
powerful toolkit and paradigm for future peptide discovery endeavors.
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1. Introduction

Driven by supramolecular interactions
(e.g., hydrogen bonding, hydrophobic in-
teractions, and electrostatic interactions),
peptides can self-assemble in water to
form ordered nanostructures, such as
nanofibers, which, in turn, form three-
dimensional networks, ultimately leading
to supramolecular hydrogelation.[1–5]

Supramolecular hydrogels resemble ex-
tracellular matrices in tissues in that they
both have a highly water content and
fibrils that function similarly to cytoskele-
ton. These properties have led to their
extensive study as emerging potential
biomaterials for tissue engineering,[6]

drug delivery,[7,8] cancer cell inhibition,[9,10]

regenerative medicine,[11] or antibacterial
applications.[12] Despite these advances in
supramolecular hydrogels,[13–18] designing
self-assembling peptides based solely on
molecular structure remains challenging
for chemists.[19]
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Numerous classic self-assembling molecules have been
discovered unintentionally rather than through rational
design.[20–23] For instance, Weiss et al.[23] serendipitously
found that cholesteryl 4-(2-anthryloxy) butyrate could form a
hydrogel while studying its photochemistry. Zhang et al. dis-
covered that a class of amphiphilic peptides derived from the
yeast protein, Zuotin, could self-assemble in physiological buffer
(e.g., Dulbecco modified Eagle’s medium) to form an “insoluble
macroscopic membrane”.[22,24] Similarly, Xu et al. observed that
Fmoc-D-Ala-D-Ala, an intermediate in peptide synthesis, could
form a hydrogel through hydrogen bonding and hydropho-
bic interactions.[25] Many other reports have also described
the unexpected discovery of peptides that can self-assemble
into hydrogels under various conditions.[23,26–28] However, the
rational design of self-assembling peptides using traditional
methods faces formidable challenges, particularly in accurately
modeling the intricate interactions between water molecules
and peptides, and achieving a delicate balance of hydrophilicity
and hydrophobicity.[29] These further complicate the design of
self-assembly peptides.

In response to these challenges, recent advancements
in machine learning have profoundly impacted fields such
as chemistry,[30,31] materials science,[32,33,34] and biomedical
research.[35–42] Machine learning, as an invaluable tool, has
become crucial in deciphering the complexities of peptide
self-assembly. For example, Sankaranarayanan et al.[43] have in-
geniously harnessed Monte Carlo tree search (MCTS) alongside
coarse-grained molecular dynamics (CGMD) simulations to dis-
covery novel pentapeptides. Wang et al.[44] have deftly combined
support vector machines (SVM) with CGMD to predict peptides
aggregation propensity (AP) and identify potent tetrapeptides.
Li et al.[45] have employed a robust deep learning framework,
along with CGMD, to predict the self-assembly properties of
a vast peptide library, successfully forecasting the AP of both
pentapeptides and decapeptides. Despite these advancements,
challenges persist in the application of machine learning to
peptide self-assembly discovery. Current methods rely on costly
CGMD simulations to derive AP values for peptides in training
sets, resulting in a time-consuming and labor-intensive process
with limitations in generalizing beyond the training data. More-
over, traditional machine learning approaches often focus solely
on amino acid sequences, neglecting the significant impact of
peptide modifiers on self-assembly processes within the vast and
diverse chemical space of peptides.

In this work, we propose HydrogelFinder, an innovative foun-
dation model comprising three key modules: HydrogelFinder-
mining for literature data mining, HydrogelFinder-GPT employ-
ing a deep generative model, HydrogelFinder-predict as a vir-
tual screening tool (Figure 1). This integrated system facilitates
the rational design, rapid production, and screening of self-
assembling peptides. To navigate the complex chemical space of
peptides and discover a diverse array of potential self-assembled
peptide candidates, we focus on the perspective of molecular
structure, rather than merely through amino acid sequences, to
delve into the self-assembly characteristics of peptides. Lever-
aging HydrogelFinder-mining, we construct a molecular library
comprising 2669 self-assembled molecules, encompassing both
peptides and non-peptidal small molecules. Non-peptidal small
molecules play a pivotal role in guiding the exploration of chem-

ical space and enhancing structural diversity. As a proof of con-
cept, utilizing HydrogelFinder-GPT with this comprehensive li-
brary as a training set, we identified 2000 compounds for screen-
ing, which yielded 111 previously unreported candidates. Exper-
imental characterization of 17 structurally diverse peptides from
this set revealed that nine peptides, ranging from 1–10 amino
acids in length, exhibited ability to self-assemble into hydrogels
with diverse properties. Notably, two randomly selected peptides
showed low cytotoxicity toward human cell lines. An additional
highlight is the identification of the shortest self-assembling
lipid-peptide compound documented to date that does not re-
quire a metal ion. This work establishes HydrogelFinder as a
highly effective foundation model for AI-based design and gen-
eration of self-assembling peptides.

2. Results and Discussion

2.1. Overview of HydrogelFinder

In pursuit of efficiently sampling structurally diverse self-
assembled peptides within the expansive chemical space, our ap-
proach comprises three integral modules. First, HydrogelFinder-
mining engages in literature mining to construct an effec-
tive and chemically diverse training dataset. Following this,
HydrogelFinder-GPT employs a deep generative model to model
the relationship between molecular structural features and aggre-
gation propensity, and HydrogelFinder-predict facilitates virtual
screening to evaluate candidates.

Specifically, HydrogelFinder-mining compiles a set of molecu-
lar graphs related to self-assembly, converting these images into
SMILES representations.[46] This process facilitates the construc-
tion of a HYDROGEL-POSITIVE training dataset, enhancing
chemical diversity with a collection of 1292 self-assembling pep-
tides and 1377 self-assembling small molecules, totaling 2669
entries (Figure 1A). Additionally, we establish a publicly acces-
sible self-assembling molecules database for the broader re-
search community at http://hydrogeldb.com. For the rational
generation of self-assembling peptide, we proposed an auto-
mated deep generative model, HydrogelFinder-GPT (Figure 1B).
This model, utilizing a transformer architecture, learns the
rules of self-assembly from molecule sequence strings.[47] Begin-
ning with pretraining on a comprehensive collection of Chembl
small molecules to grasp molecular grammar, the model under-
goes fine-tuning on an autonomously constructed HYDROGEL-
POSITIVE dataset (Table S2, Supporting Information). This fine-
tuning process refines the model’s understanding towards self-
assembly properties. Candidates generated by HydrogelFinder-
GPT undergo evaluation through HydrogelFinder-predict before
experimentational validation.

2.2. Generation of Self-Assembling Molecules by
HydrogelFinder-GPT

To evaluate the efficacy of self-assembling molecule generation
by HydrogelFinder-GPT, we conducted a comprehensive eval-
uation of the model’s performance based on validity, unique-
ness, novelty, and activity under various training strategies. The
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Figure 1. A) Workflow of the artificial intelligence framework for self-assembling peptide design and discovery. B) The general workflow for the design of
self-assembling peptide using HydrogelFinder-GPT C) We sampled molecules from the fine-tuned network, and performed high-throughput prediction
with the HydrogelFinder-predict to build a candidate library. We randomly selected 17 peptides from the candidate library, 9 of which can self-assembly
under specific conditions.
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Table 1. Performance of generative neural network (Figure 2A Data Supplement).

Metrics Pre-training W/O Self-assembling Small Molecule W/O Pre-training HydrogelFinder-GPT

Valid (↑) 100% 100% 100% 99.95%

Unique (↑) 99.95% 86.05% 97.40% 94.95%

Novel (↑) 99.62% 90.41% 94.87% 92.15%

Active (↑) 1.99% 72.05% 72.83% 73.98%

model-generated sequences were subjected to evaluation using
HydrogelFinder-predict, with the active rate, representing the ra-
tio of potential self-assembly, serving as a key metric. As shown
in Figure 2A, HydrogelFinder-GPT achieved the highest active
rate at 73.98%, surpassing other training strategies. Addition-
ally, HydrogelFinder-GPT exhibited impressive figures of 94.95%
uniqueness and 92.15% novelty, signifying its capability to pro-
duce de novo and valid molecules even after the finetuning pro-
cess (see details in Section 4.2 and Table 1).

Having established the model’s competence in generating
self-assembling molecules, we next investigated properties as-
sociated with gelation ability, such as hydrogen bond acceptors
(HBA) and donors (HBD), number of basic groups (nBase),
Ghose–Crippen LogKow (LogP), topological polar surface area
(TPSA), and molecular weight (Mol.wt),[48] these values were
determined through RDKit calculations. We randomly sampled
chemicals of the same size (2000 sequences) from both the
HYDROGEL-POSITIVE and HYDROGEL-NEGATIVE datasets,
plotting the distributions for each parameter (Figure S1, Support-
ing Information). The analysis revealed that the distribution of
de novo candidates for each property closely mirrored that of the
HYDROGEL-POSITIVE dataset, further substantiating the effec-
tiveness of HydrogelFinder-GPT in designing self-assembly-like
compounds (More details in the Supporting Information).

2.3. Exploration of Structurally Diverse Self-Assembling Peptides
by HydrogelFinder-GPT

To achieve structurally diverse self-assembling peptides, our
strategy involved the guidance of chemical space exploration us-
ing non-peptidal small molecules. To assess the diversity of candi-
dates generated by the model under different training strategies,
we employed the Tanimoto similarities as a metric (More details
in Methods). As shown in Figure 2B, HydrogelFinder-GPT gen-
erated candidates with a high diversity score of 0.803. This no-
table diversity is attributed to the incorporation of non-peptidal
small molecules during training, its removal resulted in a de-
creased diversity of the generated candidates to 0.757. Addition-
ally, we visualized the model output features using uniform man-
ifold approximation and projection (UMAP) plots.[49,50] As shown
in Figure 2C, the candidates generated by HydrogelFinder-GPT
exhibited a wider chemical space distribution compared to the
training set without small molecules. This result underscores the
significant enhancement in our model’s performance with the
addition of non-peptidal small molecules data to the training set.

As a proof of concept, we present the length and decora-
tion statistic for 111 peptide-based candidates. In Figure 2D,
our model demonstrated the ability to generate sequences with

lengths ranging from 1 to 14 amino acids, surpassing the length
of pentapeptides reported in previous studies[19,43–45,51] The Or-
ange bars represent the self-assembling peptides confirmed in
subsequent wet-lab experiments, while the green bars represent
those that did not exhibit self-assembly (details in Section 2.6).
Specifically, we highlight the successful self-assembly of nine
peptides, comprising amino acid sequences of seven distinct
lengths (Figure 2E). Notably, we reported the discovery of the
shortest self-assembling lipid peptide, gel 476, which comprises
only a single amino acid with a long alkyl chain.

2.4. Discovery of Self-Assembling Peptide Derivatives by
HydrogelFinder

An often-overlooked challenge in the development of self-
assembling peptides lies in understanding the influence of chem-
ical modification. To address this, we selected gel 476 and
gel 133 as case studies, representing successful instances of
self-assembling peptides with chemical modification identified
through our studies. In our study, we compared activity scores of
gel 476 and gel 133 with and without modification (obtained by
HydrogelFinder-predict and RDKit). Additionally, we scrutinized
a range of properties associated with gelation ability, as summa-
rized in Table 2. The results showed that a significant decrease
in the active rate, LogP, and molecular weight of the peptides af-
ter the removal of modification. This decline can be attributed
to the fact that these modifications can alter the hydrophilic and
hydrophobic nature of the peptides. For example, the addition of
9-fluorenylmethyl carbamate (Fmoc) group increases hydropho-
bicity, potentially facilitating the self-assembly of peptides under
certain conditions. Moreover, the modification group may intro-
duce new intermolecular interactions such as hydrogen bonding,
hydrophobic interactions, which are critical for the self-assembly.

To further demonstrate the model’s proficiency in discovering
structurally diverse self-assembling peptides, we computed the
Tanimoto similarities of gel 476 and gel 133 to the HYDROGEL-
POSITIVE dataset (Figure 3). The majority of compounds in the
training set exhibited substantially dissimilar from gel 476 and
gel 133, with mean Tanimoto similarities of 0.19 and 0.18, respec-
tively. This serves as additional evidence of HydrogelFinder’s abil-
ity to identify structurally diverse self-assembling peptides with
modification.

2.5. Evaluation of Gelation Behavior

As shown in Figure 1C, we next sought to experimentally val-
idate the performance of our AI method. To this end, we ran-
domly selected 17 peptides for synthesis, spanning a range of
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Figure 2. Performance evaluation of HydrogelFinder-GPT and chemical structures of self-assembling peptides. A) Performance comparison of generative
models with different training strategies over valid, unique, novel and active on generation task (Details see Section 4.2 and Table 1). B) The genera-
tive capacity of model structural diversity under different training strategies. C) UMAP visualization of the chemical space distribution of candidates
generated by HydrogelFinder-GPT and generated by training set without self-assembling small molecules. D) The statistical distributions of peptide-
based candidates. The peptide-based candidates have 111 sequences (blue), of which 9 molecules can self-assembly (Orange), while 8 molecules failed
(Green). E) Chemical structures and identification numbers (IDNs) of the nine peptides selected from the candidate library that are able to self-assembly.
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Table 2. Computational characterization and activity of peptides with and without modifiers.

Sequence Active LogP HBA HBD NBASE TPSA M.W

CH3(CH2)14-W 1 5.9809 2 3 0 82.19 414.288

W 0.703 1.1223 2 3 1 79.11 204.089

Fmoc-HW 1 4.1529 5 5 0 149.2 563.216

HW 0.003 0.5729 4 5 1 136.8 341.144

Figure 3. Structures of self-assembling peptides A) 476 and B) 133 with modification and corresponding distributions of Tanimoto similarities to
HYDROGEL-POSITIVE data set.

HydrogelFinder-predicted scores from low to high. Notably, these
peptides are entirely new and do not appear in the HYDROGEL-
POSITIVE dataset. We subsequently evaluated their gelation ca-
pability (Figure S2, Supporting Information). After purification
by HPLC, the obtained compounds were dissolved in water and
the pH of the solution was adjusted to trigger self-assembly
and hydrogelation. Non-self-assembling peptides formed either
a precipitate or a low viscosity fluid irrespective of pH (2–12).
Nonetheless, more than half of these peptides (9/17) could self-
assemble in aqueous solution. This high proportion of self-
assembling peptides confirmed the predictive accuracy of the
HydrogelFinder model. The gelation properties of the nine self-
assembling peptides are summarized in Table 3.

Observing gel behavior in an inverted test tube is a rapid and
facile approach to determine whether a dissolved peptide formed
a gel. Representative images of the nine candidates holding wa-
ter and resisting flow, which together indicated gel formation, are
shown Table 3. Interestingly, we observed that all peptides con-
taining proline (P) failed to form a hydrogel (Table S2, Support-
ing Information). Additionally, only a few self-assembling pep-
tides composed of proline were detected in the hydrogel-positive
database. This suggested that the presence of proline reduces
conformational flexibility, diminishing the likelihood of hydro-
gel formation. Obviously, the pH value of each hydrogel ranged
widely, between 3.0 (highly acidic) to 8.0 (weakly basic), and these
pH values did not exactly match their calculated isoelectric points
(pI). It also warrants mentioned that molecules 95 and 133 shared
the same Fmoc motif, which is commonly used to protect amino
acids during solid-phase peptide synthesis. Additionally, peptide
368 formed an opaque hydrogel, likely attributable to large ag-
gregates in the hydrogel matrix. Furthermore, previous reports
demonstrated that aromatic-aromatic interactions between Fmoc
moieties can promote the hydrogelation of small molecules.[52]

Interestingly, as a lipid peptide, molecule 476, comprised of a sin-
gle amino acid could also form a gel at pH 5.0, thus representing
the shortest lipid peptide of which we are aware.

2.6. Biophysical Characterization of Self-Assembling Peptides

To further explore the gelation properties and self-assembly be-
havior of the candidate self-assembling molecules, we carried out
a series of biophysical characterization experiments. The rheolog-
ical properties of a hydrogel can vary in a manner dependent on
their structure, and moreover, these properties are typically criti-
cal for their function in tissue engineering, drug delivery, or other
applications. An oscillatory rheological analysis was performed
to monitor hydrogel storage modulus (G′, a measure of the elas-
tic response of the material) as a function of time (Figure 4A),
revealing a gradual increase in gel 16, reaching equilibrium at
1254 Pa, and with a consistently higher storage modulus than
loss modulus (G″, a measure of viscosity), suggesting the forma-
tion of a robust hydrogel. Self-assembling peptide 62, 166, and
322 exhibited a similar trend, reaching equilibrium at 2,143 Pa,
1,0991 Pa, and 21,393 Pa, respectively, which were all consistently
higher than their loss moduli, implying that these peptides could
form relative rigid hydrogels.

TEM was then used to examine morphology of hydrogel ma-
trix, which revealed the formation of 9–10 nm width nanofibers
in gel 16, while the self-assembled nanofibers in gels 62, 166, and
322 were approximately 14 nm, 25 nm, and 14 nm, respectively.
These nanofibers were entangled with one another, forming a
3D-network that comprised the hydrogel matrix (Figure 4B).

Circular Dichroism (CD) spectroscopy is a valuable technique
for detecting secondary structures in the peptide assemblies. In
the Far-UV range (190–260 nm), the majority of chromophores
were peptide bonds.[53] The CD spectrum of hydrogel 16 had a
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Table 3. Hydrogelation properties of selected molecules.

IDN Sequence M.W. Calc. pIa) Conc. pH Buffer Images

16 WEFEGDF-NH2 927.4 2.9 1.0 wt% 5.0 1X PBS

62 VRLRLKLL 1009.7 12.4 1.0 wt% 8.0 1X PBS

95 Fmoc-FK 515.2 10.1 2.0 wt% 3.0 Water

133 Fmoc-HW 563.2 7.9 1.0 wt% 3.0 Water

166 FYGVF-NH2 630.7 7. 0.5wt% 7.0 Water

322 FFFVF-NH2 704.3 7.0 1.0 wt% 7.0 Water

368 EYVRFF 859.4 6.9 1.0 wt% 3.0 1X PBS

476 CH3(CH2)14-W 414.3 2.5 3.0 wt% 5.0 Wtaer

560 VKVKAFIDDK 1161.4 9.8 1.0 wt% 8.0 1X PBS

a)
Calc. pI is obtained from: https://www.novopro.cn/tools/calc_peptide_property.html

broad negative band at 218 nm, which was typical of a 𝛽-sheet
conformation. Similar features were detected in gels 62, 166 and
322, suggesting the prevalence of 𝛽-sheets in the self-assembling
peptides, which agreed well with fact that the majority of self-
assembling molecules adopted 𝛽-sheet conformation.[54] To fur-
ther explore the molecular configuration of the assembled struc-
tures, we used Fourier-transformed infrared spectroscopy (FT-
IR) to examine each gel.[55,56] In gel 16, a peak was detected at
1617 cm−1 which was assigned as an amide I band, suggesting
the formation of a 𝛽-sheet. Similarly, a peak at 1627 cm−1 was ob-
served in gel 62, a strong peak at 1621 cm−1 was present in gel 166
spectra, and gel 322 also had a peak at 1637 cm−1, all of which in-

dicated that a 𝛽-sheet conformation was adopted by the peptides
during gelation. Overall, these data consistently supported the
likelihood that these peptides self-assembled into ordered nanos-
tructures which formed 𝛽-sheets that comprised nanofibers in a
gel matrix.

2.7. Biocompatibility of Self-Assembling Peptides

Supramolecular hydrogels can serve as scaffolds for cell culture
because of their high similarity with an extracellular matrix.[57]

However, this application requires high biocompatibility. Thus,
we chose to evaluate cytotoxicity of peptides 16 and 62 using
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Figure 4. Biophysical characterization of hydrogel 16, 62, 166, 322. A) Rheological dynamic time sweep monitors the storage modulus (G’) and loss
modulus (G’’) of different hydrogels as a function of time B) Representative TEM images reveal the morphologies of selected hydrogels, insets are
distribution of nanofibers width (scale bar = 100 nm). C) CD spectra of hydrogels suggested the formation of 𝛽-sheet structure. D)FT-IR spectra of
hydrogels further confirmed their specific secondary structures.

MTT assays. As common cell lines, human dermal fibroblasts
(NHDF) and stem cells from human exfoliated deciduous teeth
(SHED) were chosen as model cells for evaluating the cytotoxicity
of peptides,[69,70] peptides 16 and 62 exhibited high cell compati-
bility at concentrations as high as 500 μM (Figure 5A). Live/dead
assays using calcein AM to stain for viable cells and propidium
iodide (PI) to stain for compromised or dead cells cultured on
the gel surface showed that the vast majority of SHED cells were
positive for calcein AM staining, while few or no PI stained cells
could be detected (Figure 5B). These results implied that either
molecule itself or the bulk gel was exhibited limited toxicity, sug-
gesting its potential use in cell culture applications.

3. Discussion

We developed HydrogelFinder, a foundation model integrating
literature mining module, a generative language model, and ma-
chine learning for de novo design of self-assembling peptides.
This model was complemented by comprehensive experimen-
tally validation, confirming gelation behavior and biocompatibil-

ity. In essence, HydrogelFinder was devised to construct a can-
didate library and establish a publicly accessible database for the
hydrogel research community (http://hydrogeldb.com). It lever-
ages non-peptidal small molecules to guide the in-silico discovery
of structurally diverse self-assembling peptides. Through experi-
mental characterization of 17 randomly selected, structurally di-
verse candidate peptides, we identified nine molecules capable
of forming hydrogels in water under different conditions. These
peptides displayed distinct self-assembly behaviors and length
distributions spanning from 1 to 10 amino acids, with two modi-
fication influencing peptide self-assembly. Biophysical character-
ization revealed the formation of ordered nanostructures, such
as nanofibers, within the hydrogel matrix. Notably, two hydro-
gels demonstrated low cytotoxicity in vitro, suggesting potential
applications as scaffolds for cell culture or drug delivery.

Furthermore, the extensive hydrogel candidate library gener-
ated in this work remains largely unexplored, holding the po-
tential to address ongoing and future research questions. This
includes robust determination of the common structural fea-
tures defining self-assembling molecules. Recognizing that the
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Figure 5. Cell compatibility analysis of compound 16 and 62. A) IC50 of NHDF and SHED cells treated with molecule 16 (top panel) and 62 (bottom
panel) for 24 h. B) Live/dead assays of cells grown on the surface of hydrogel 16 (right of top panel) or 62 (right of bottom panel) for 24 h showing
high biocompatibility with SHED cultures. Living cells show positive staining with calcein AM (green), while dead or compromised cells are stained with
propidium iodide (PI, red). Each column represents three individual experiments (n = 3).

Transformer-based architecture excels in extracting 1D sequence
information, yet falls short in capturing the 3D complexities of
peptide chain’s secondary, tertiary and quaternary structures. To
address this issue, we are actively developing geometric deep
learning models. These models aim to efficiently extract 3D fea-
tures and fuse multimodal information, enhancing the accuracy
and efficiency of candidate molecule generation.

This work thus establishes a powerful framework for design-
ing self-assembling peptides, accompanied by a sizable database
for public exploration and the experimental characterization of
several hydrogels. Beyond a proof-of-concept demonstration, Hy-
drogelFinder stands poised for use in the design and screening
of new peptide crucial for urgent biomedical applications.

4. Experimental Section
Datasets: The original data used in this work were originated

from a few pre-available sources (ChEMBL, CPPsite, and ZINC). Data
from ChEMBL was used to pre-training generative neural network
(HydrogelFinder-GPT pre-training network). Literature data mining by
HydrogelFinder-mining to construct HYDROGEL-POSITIVE dataset for
HydrogelFinder-GPT fine-tuning. CPPsites and ZINC was used to con-
struct a HYDROGEL-NEGATIVE dataset. Training the HydrogelFinder-
predict model using HYDROGEL-POSITIVE and HYDROGEL-NEGATIVE
dataset.

ChEMBL. ChEMBL[58] was a large molecules database. The pre-training
network was trained with a subset of ChEMBL version 25. Initially, the com-
plete dataset was standardized with the MolVS Python module using the
super parent setting, which standardizes fragment, charge, isotope, stere-
ochemistry and tautomeric states. Molecules were filtered to only contain
the atoms [H, C, N, O, F, S, Cl, Br] and heavy atoms that were fewer than
50 in number. In general, a subset of ChEMBEL was constructed for pre-
training procedure with 300000 molecules.

CPPsite. CPPsite[59–61] was an updated version of manually curated
database (CPPsite) of cell-penetrating peptides (CPPs). The current ver-
sion holds around 1850 peptide entries, including their predicted tertiary
structure of cell-penetrating peptides. CPPsite also maintains information
on cell-penetrating peptide properties and abilities to delivery different
cargo in model systems (in vitro and in vivo). In this work, CPPsite was
only used as a part of negative samples in the HYDROGEL dataset.

ZINC. ZINC[62] was a free database of commercially-available com-
pounds for virtual screening. ZINC contains over 230 million purchasable
compounds in ready-to-dock, 3D formats. ZINC also contains over 750
million purchasable compounds one can search for analogs in under a
minute. In this work, “aggregator” was used as the filter key to search this
database, and used the result as another part of negative samples in the
HYDROGEL dataset. It was worth to note that “aggregates” typically de-
notes the non-specific, often irreversible association of molecules, which
frequently leads to the formation of amorphous structures. In contrast,
“self-assembly” refers specifically to the process by which molecules orga-
nize themselves into ordered, functional structures through non-covalent
molecular interaction.[63,64] While there can be overlap between aggrega-
tion and self-assembly in some cases, known aggregators were chosen to
use as a negative training set for HydrogelFinder-predict to ensure that the
model prioritizes the prediction of self-assembly behavior.

HYDROGEL dataset. For the HYDROGEL-POSITIVE dataset construc-
tion, a thorough search of the Pubmed database was conducted us-
ing the “hydrogel” as a query, which yielded 25082 publications. Em-
bedded images in relevant papers were extracted for the training set
using the pdf2image python library. Each image was then enumerated,
and the molecular graph within each image was identified and trans-
lated into SMILES strings using ABC-Net,[65] an advanced model for
chemical structure recognition tasks developed by our group. Accord-
ing to the findings in the papers, compounds used to successfully gen-
erate hydrogels were classified as HYDROGEL-POSITIVE samples, while
other compounds were classified as HYDROGEL-NEGATIVE samples. All
molecules in the HYDROGEL-POSITIVE dataset were thus considered
self-assembling molecules, which enable hydrogel formation. Apart from
the data collected in publications, the HYDROGEL-NEGATIVE dataset also
included compounds obtained from publicly accessible databases, such as
ZINC and CPPsites. Data filtering was conducted using the RDKit python
library to exclude compounds that failed to transform into a corresponding
molecular graph in the HYDROGEL dataset (Supporting Information). In
total, the HYDROGEL dataset contained 2669 positive samples and 16761
negative samples after removing duplication, 70% of which were then ran-
domly selected for the training set, while the remaining 10% was used as
the testing set. During the training process, 20% of the training set was
set aside to serve as the validation set (Table 3).

HydrogelFinder-GPT: A Transformer decoder model was used as ar-
chitecture for our training, taking the sequence as input using one-hot
encoding. The method consists of two parts: pre-training and fine-tuning.

Model pre-training: The decoder module was used as our basic attention
module (Figure 1B). In general, this network contains 18 decoder mod-
ules, each of which has 48 dimensional states, 12 attention heads and
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Table 4. Performance of generative neural network (the up-arrows denote that the higher scores are considered better, the down-arrows mean that lower
scores are better).

Metrics Pre-training W/O Self-assembling Small Molecule W/O Pre-training HydrogelFinder-GPT

FCD (↓) 33.7017 7.1341 5.3607 4.9586

SNN (↑) 0.2153 0.5936 0.4730 0.5149

Frag (↑) 0.6705 0.9952 0.9947 0.9957

Scaff (↑) 0.1388 0.5576 0.4866 0.4821

a position-wise feed-forward network with 512 dimensional inner states.
Here, the chemical generation task was modeled as a text generation task
in the general natural language processing domain. Specifically, given an
unsupervised dataset of compounds v = {c0,…, cm}, a pair of tokens were
inserted ([START] and [END] token) for each compound, and concatenated
them to get our pretraining corpus  = {u0,… , un}, where m denotes
the size of the dataset and n was the number of tokens in the corpus. A
standard language modeling objective was used to maximize the following
likelihood:

L(u) =
∑

i
log P

(
ui
||ui−k,… , ui−1;Θ

)
(1)

where k was the size of the context window, and the conditional probability
P was modeled using a neural network with parameters Θ. In this work, k
was set to 128. The model trained on 40GB NVIDIA V100 in 36 hours.

Model Performance Evaluation: The testing set with 271 samples
of HYDROGEL-POSITIVE dataset was used for the final performance
assessment of HydrogelFinder-GPT. The metrics, included validity,[66]

uniqueness,[66] novelty,[66] FCD,[67] nearest neighbor similarity (SNN),[66]

Fragment similarity (Frag),[68] scaffold similarity (Scaff),[69] Active and di-
versity. Among them, the valid percentage of molecular strings that can
be translated back into molecular graphs; the unique percentage of non-
duplicated molecular strings; and the novel percentage of chemicals that
were not present in the training set. FCD measures the similarity of chem-
ical structures and bioactivities between a testing set and the generated
chemicals according to features extracted by a well-trained deep neural
network.[67] Frag and Scaff were cosine distances between the vectors of
fragments or scaffold frequencies correspondingly to a generated distribu-
tion and the distribution of a testing set. SNN was the average similarity
of generated chemicals to the nearest chemical from a testing set distri-
bution. The four metrics were implemented by the MOSES.[67] A sample
scored higher than 0.5 in the HydrogelFinder-predict was considered as
a candidate capable to form a hydrogel. The active metric represents the
average score between the active proportion of candidates in novel chem-
icals and in total generated chemicals. The diversity of a set of molecules
were define as the average pairwise Tanimoto similarities between them,
where Tanimoto similarities dist (X, Y) = 1 − sim(X, Y).

The performance was assessed of the model using several metrics,
including SNN, Frag, FCD, and Scaff, to gauge the similarity between
the generated chemicals and the hydrogel data in the testing set of the
HYDROGEL-POSITIVE dataset from different angles (Table 4). Notably,
HydrogelFinder-GPT significantly outperforms the pre-training network
across these metrics. Only in cases where small molecules were ab-
sent from the training set did the SNN and Scaff metrics favor the pre-
training network. However, overall, HydrogelFinder-GPT exhibited a more
balanced performance. The data generated by HydrogelFinder-GPT closely
resembled the testing set, implying that the model effectively learned to
characterize the distribution of hydrogels within the chemical space and
can generate chemically similar yet completely new compounds.

High-throughput Prediction HydrogelFinder-predict Model: To evaluate
the performance of the generative neural network to generate potential
self-assembling compounds, a probabilistic SVM classification model was
used (More details in Supporting Information). The model was trained
to discriminate active compounds that could self-assemble to form hy-

drogels from inactive ones according to their 2048-bit-radius extended
connectivity fingerprint (ECFP) representations. Given the size of the
HYDROGEL-POSITIVE datasets and the HYDROGEL-NEGATIVE datasets
were highly imbalanced (Table S2, Supporting Information), Sampling was
performed up to resample positive samples with respect to the negative
ones until they reach the same size (See method in the Supporting Infor-
mation). The model with C = 10 and 𝛾 = 0.01 was considered to have the
highest AUROC (0.9862) toward the testing set of the HYDROGEL dataset.

Peptides Synthesis: All peptides were synthesized via standard solid-
phase peptide synthesis using a CS136S peptide synthesizer, with Rink-AM
resin or 2-Cl resin and activation by HCTU. The resin-bound peptides were
cleaved using a cocktail of TFA/Triisopropylsilane/H2O (95:2.5:2.5) for 3 h.
The resin mixture was filtered and washed with excess TFA. Crude peptides
were obtained by concentrating the filtrate and precipitating it with cold
ether. The crude product was purified by reverse phase HPLC with a semi-
preparative C18 column. HPLC solvents comprise solvent A (0.1% TFA in
MilliQ water) and solvent B (0.1% TFA in 9:1 acetonitrile/water). All pep-
tides were lyophilized after HPLC purification, and subsequently analyzed
using analytical HPLC and MALDI-TOF MS.[18]

Preparation of Hydrogel: All compounds were placed in a glass tube
(diameter 10 mm) and first dissolved in D.I water, sonicated for 5 min
and putted on ice for 30 min. Then added 2x PBS buffer (5.4 mM KCl,
20 mM Na2HPO4, 4 mM KH2PO4) or D.I water to reach the final concen-
tration of 1.0 wt%. pH was adjusted with NaOH or HCl. The solutions were
stored in 37˚C incubator overnight. Gelation was confirmed by the invert-
ing method. In this method, when peptide solution had already formed a
gel at the bottom of sample vial, the vial was inverted, and the gel remained
in place without falling or flowing.

Circular Dichroism Spectroscopy: Circular Dichroism spectra were col-
lected on Jasco X spectropolarimeter (Jasco corp., Tokyo, Japan). CD wave-
length spectra were measured from 260 to 200 nm using a 0.1 mm quartz
cell. Wavelength scans were collected by scanning in 1 nm step intervals
with a 3s averaging time.

Oscillatory Rheology: All rheological experiments were performed on
an Anton Parr equipped with a steel 15 mm parallel geometry tool. In a
typical time-dependent experiment, peptide solution was transferred to
the rheometer stage and lower the geometry to 0.5 mm, then the temper-
ature was increased to 37˚C within 1.0 min. To avoid dehydration, a layer
of silicon oil was applied around the edge of the sample at the start of the
measurement. Dynamic strain sweep experiments were performed to en-
sure that the time-sweep data was collected in the linear regime of strain.
The dynamic strain sweep was performed varying the strain from 0.1 to
100% at a constant frequency (6 rad s−1).

Transmission Electron Microscopy: The sample was prepared by plac-
ing a drop of peptide solution on a 200-mesh copper grid (Electron Mi-
croscopy China) and allowed to stand for 1.0 min, then blotted with filter
paper. Subsequently a drop of 1.0% Uranyl Formate was placed on the grid
and allowed to stand for 1–2 min, then blotted with a piece of filter paper
and left to air dry. Images were taken with a JEOL JEM-2100Plus at 80 kV
accelerating voltage. By calculating the width of peptide, The image J was
used to measure 30 times for 1 TEM picture, and to gather statistics with
frequency.[26]

Fourier Transform Infrared Spectroscopy (FTIR): Hydrogel sample was
prepared for FTIR studies at a concentration of 1.0 wt% in PBS buffer or
D.I water. Prepared hydrogel was lyophilized and dried hydrogel (xerogel)
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powder was embedded in KBr pellet and analyzed in FTIR. The spectrum
was collected using a Nicolet In MX microscopic infrared spectrometer
(Thermo Scientific Co., USA) between the wavelengths 4000–400 cm−1

under 16 scans on an average. KBr thin film was used as blank control.[70]

Cell Viability Assay: MTT assay was employed to assess cytotoxicity of
all molecules. In a typical experiment, NHDF cells were seeded into 96-
well plate at a density of 8000 cells/well, allowed to adhere overnight at
37˚C, 5% CO2. The culture medium was replaced with fresh serum-free
medium containing 0.1–500 μM peptides. Blank medium or DMSO was
used as positive control and negative control, respectively. After 48 h in-
cubation period, 100 μL of fresh serum-containing media was added into
each well. 10 μL of (3-(4,5-Dimethylthiazol-2-yl)−2,5-diphenyl-tetrazolium
bromide (MTT, 5 mg mL−1 in PBS) was added to each well and samples in-
cubated for 3–4 hours, then the medium was replaced with 100 μL DMSO
and incubated at 37˚C with shaking for 0.5-1 h to facilitate formazan crystal
solubilization. Absorbance was recorded at 540 nm using a UV microplate
reader (Molecular Devices, Spectra Max M5). The absorbance of the nega-
tive controls was subtracted from each sample as a blank, and the percent
viability was calculated as follows: (Absorbance peptide-treated cells – Ab-
sorbance negative controls) / (Absorbance untreated cells – Absorbance
negative controls) × 100. IC50 was calculated using Graphpad Prism 9.0
software.[71]

Biocompatibility Test: Following the protocol in previous work,[13] hy-
drogel (1.0 wt%, 50 μL) was prepared in a 96 well plate. The plate was
placed into an incubator at 37˚C and 5% CO2 and allowed to equilibrate
for 24 h. Serum-free MEM-𝛼 media (Gibco)of 100 μL was added on the
top of gel and equilibrate overnight. Stem cell from human exfoliated de-
ciduous teeth was trypsinized and counted using a hemocytometer. The
resulting suspension was diluted with serum containing DMEM, 100 μL
cell suspension (8,0000 cells mL−1) was placed onto the top of hydrogel.
After 24 h incubation, the medium was removed and washed gently with
PBS to remove the serum proteins. Cell viability was evaluated by using a
Live/dead assay. Typically, 100 μL assay buffer containing both 1 μL calcein
AM and 1 μL PI was added into each well. The dye was allowed to incubator
for 30 min before washing with PBS 3 times, after that 100 μL cell imaging
solution was added into each well for imaging. Fluorescence images were
taken on EVOS FL Auto.[60]

Statistics: All quantitative statistical experiments were replicated at
least three times(n = 3). Data were presented as mean ± standard de-
viation (X ± SD). Statistical analyses were performed in GraphPad Prism
9 software.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.

Acknowledgements
This work was partly supported by the National Natural Science Foun-
dation of China (21975068, 51903082, 62372159), Natural Science Foun-
dation of Hunan Province (2022JJ10008, 2020RC3017), start-up package
from Hunan University, and Office of Research Administration (ORA)
at King Abdullah University of Science and Technology (KAUST) under
award numbers FCC/1/1976-44-01, FCC/1/1976-45-01, URF/1/4663-01-
01, REI/1/5202-01-01, REI/1/4940-01-01, and RGC/3/4816-01-01.

Conflict of Interest
The authors declare no conflict of interest.

Author Contributions
X.R., J.W., and X.L. contributed equally to this work. J.S. and X.Z. conceived
the original ideas and guided the project. X.L., X.R. and J.W. designed and

performed the experiments, and analyzed the data. X.G., K.L., Y.L., Q.Z.,
L.W and D.C. guided the design of computing algorithm. S.Y. helped in
sample collection. X.W. and X.J did part of wet laboratory experiments.
M.L constructed the website. All authors provided critical feedback and
helped to shape the research, analysis and manuscript.

Data Availability Statement
The data that support the findings of this study are available from the cor-
responding author upon reasonable request.

Keywords
artificial intelligence, deep generative model, machine learning, self-
assembly

Received: January 23, 2024
Revised: March 10, 2024

Published online: May 5, 2024

[1] X. Du, J. Zhou, J. Shi, B. Xu, Chem. Rev. 2015, 115, 13165.
[2] L. A. Estroff, A. D. Hamilton, Chem. Rev. 2004, 104, 1201.
[3] J. Gao, J. Zhan, Z. Yang, Adv. Mater. 2020, 32, 1805798.
[4] E. Gazit, Chem. Soc. Rev. 2007, 36, 1263.
[5] R. V. Ulijn, A. M. Smith, Chem. Soc. Rev. 2008, 37, 664.
[6] M. J. Webber, E. A. Appel, E. W. Meijer, R. Langer, Nat. Mater. 2016,

15, 13.
[7] S. E. Miller, Y. Yamada, N. Patel, E. Suárez, C. Andrews, S. Tau, B. T.

Luke, R. E. Cachau, J. P. Schneider, ACS Cent. Sci. 2019, 5, 1750.
[8] P. Majumder, A. Singh, Z. Wang, K. Dutta, R. Pahwa, C. Liang, C.

Andrews, N. L. Patel, J. Shi, N. de Val, S. T. R. Walsh, A. B. Jeon, B.
Karim, C. D. Hoang, J. P. Schneider, Nat. Nanotechnol. 2021, 16, 1251.

[9] Y. Kuang, J. Shi, J. Li, D. Yuan, K. A. Alberti, Q. Xu, B. Xu, Angew.
Chem., Int. Ed. 2014, 53, 8104.

[10] X. Li, Y. Wang, Y. Zhang, C. Liang, Z. Zhang, Y. Chen, Z. W. Hu, Z.
Yang, Adv. Funct. Mater. 2021, 31, 2100729.

[11] Z. Álvarez, A. N. Kolberg-Edelbrock, I. R. Sasselli, J. A. Ortega, R. Qiu,
Z. Syrgiannis, P. A. Mirau, F. Chen, S. M. Chin, S. Weigand, E. Kiskinis,
S. I. Stupp, Science 2021, 374, 848.

[12] L. Schnaider, S. Brahmachari, N. W. Schmidt, B. Mensa, S. Shaham-
Niv, D. Bychenko, L. Adler-Abramovich, L. J. W. Shimon, S. Kolusheva,
W. F. DeGrado, E. Gazit, Nat. Commun. 2017, 8, 1365.

[13] J. Shi, G. Fichman, J. P. Schneider, Angew. Chem., Int. Ed. 2018, 57,
11188.

[14] C. G. Pappas, R. Shafi, I. R. Sasselli, H. Siccardi, T. Wang, V. Narang,
R. Abzalimov, N. Wijerathne, R. V. Ulijn, Nat. Nanotechnol. 2016, 11,
960.

[15] C. Li, A. Iscen, H. Sai, K. Sato, N. A. Sather, S. M. Chin, Z. Álvarez, L.
C. Palmer, G. C. Schatz, S. I. Stupp, Nat. Mater. 2020, 19, 900.

[16] J. Boekhoven, W. E. Hendriksen, G. J. M. Koper, R. Eelkema, J. H. v.
Esch, Science 2015, 349, 1075.

[17] I. Yoshimura, Y. Miyahara, N. Kasagi, H. Yamane, A. Ojida, I.
Hamachi, J. Am. Chem. Soc. 2004, 126, 12204.

[18] K. Jian, C. Yang, T. Li, X. Wu, J. Shen, J. Wei, Z. Yang, D. Yuan, M. Zhao,
J. Shi, J. Nanobiotechnol. 2022, 20, 201.

[19] P. W. J. M. Frederix, G. G. Scott, Y. M. Abul-Haija, D. Kalafatovic, C. G.
Pappas, N. Javid, N. T. Hunt, R. V. Ulijn, T. Tuttle, Nat. Chem. 2015,
7, 30.

[20] M. Aoki, K. Murata, S. Shinkai, Chem. Lett. 1991, 20, 1715.
[21] Y. C. Lin, R. G. Weiss, Macromolecules 1987, 20, 414.

Adv. Sci. 2024, 11, 2400829 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2400829 (11 of 12)

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

[22] S. Zhang, T. Holmes, C. Lockshin, A. Rich, Proc. Natl. Acad. Sci. USA
1993, 90, 3334.

[23] B. Xing, C.-W. Yu, K.-H. Chow, P.-L. Ho, D. Fu, B. Xu, J. Am. Chem.
Soc. 2002, 124, 14846.

[24] T. C. Holmes, S. de Lacalle, X. Su, G. S. Liu, A. Rich, S. G. Zhang, Proc.
Natl. Acad. Sci. USA 2000, 97, 6728.

[25] Y. Zhang, H. Gu, Z. Yang, B. Xu, J. Am. Chem. Soc. 2003, 125, 13680.
[26] J. Shi, X. Du, D. Yuan, J. Zhou, N. Zhou, Y. Huang, B. Xu, Biomacro-

molecules 2014, 15, 3559.
[27] D. W. Choo, J. P. Schneider, N. R. Graciani, J. W. Kelly, Macromolecules

1996, 29, 355.
[28] M. Reches, E. Gazit, Science 2003, 300, 625.
[29] B. Y. Feng, B. H. Toyama, H. Wille, D. W. Colby, S. R. Collins, B. C.

H. May, S. B. Prusiner, J. Weissman, B. K. Shoichet, Nat. Chem. Biol.
2008, 4, 197.

[30] M. W. Mullowney, K. R. Duncan, S. S. Elsayed, N. Garg, J. J. J. van
der Hooft, N. I. Martin, D. Meijer, B. R. Terlouw, F. Biermann, K. Blin,
J. Durairaj, M. Gorostiola González, E. J. N. Helfrich, F. Huber, S.
Leopold-Messer, K. Rajan, T. de Rond, J. A. van Santen, M. Sorokina,
M. J. Balunas, M. A. Beniddir, D. A. van Bergeijk, L. M. Carroll, C. M.
Clark, D.-A. Clevert, C. A. Dejong, C. Du, S. Ferrinho, F. Grisoni, A.
Hofstetter, et al., Nat. Rev. Drug Discovery 2023, 22, 895.

[31] G. Turon, J. Hlozek, J. G. Woodland, A. Kumar, K. Chibale, M. Duran-
Frigola, Nat. Commun. 2023, 14, 5736.

[32] C. Yan, D. J. Pochan, Chem. Soc. Rev. 2010, 39, 3528.
[33] K. Li, J. Wang, Y. Song, Y. Wang, Nat. Commun. 2023, 14, 2789.
[34] S. S. S. V, J. N. Law, C. E. Tripp, D. Duplyakin, E. Skordilis, D. Biagioni,

R. S. Paton, P. C. S. John, Nat. Machine Intell. 2022, 4, 720.
[35] Y. Cheng, Y. Gong, Y. Liu, B. Song, Q. Zou, Brief Bioinform. 2021, 22,

bbab344.
[36] J. Meyers, B. Fabian, N. Brown, Drug Discov. Today 2021, 26, 2707.
[37] B. Sanchez-Lengeling, A. Aspuru-Guzik, Science 2018, 361, 360.
[38] A. Gupta, J. Zou, Nat. Machine Intell. 2019, 1, 105.
[39] P. Das, T. Sercu, K. Wadhawan, I. Padhi, S. Gehrmann, F. Cipcigan, V.

Chenthamarakshan, H. Strobelt, C. Dos Santos, P. Y. Chen, Y. Y. Yang,
J. P. K. Tan, J. Hedrick, J. Crain, A. Mojsilovic, Nat. Biomed. Eng. 2021,
5, 613.

[40] R. Chowdhury, N. Bouatta, S. Biswas, C. Floristean, A. Kharkar, K.
Roy, C. Rochereau, G. Ahdritz, J. Zhang, G. M. Church, P. K. Sorger,
M. AlQuraishi, Nat. Biotechnol. 2022, 40, 1617.

[41] X. Zeng, F. Wang, Y. Luo, S. G. Kang, J. Tang, F. C. Lightstone, E.
F. Fang, W. Cornell, R. Nussinov, F. Cheng, Cell Rep. Med. 2022, 3,
100794.

[42] A. Zhavoronkov, Y. A. Ivanenkov, A. Aliper, M. S. Veselov, V. A.
Aladinskiy, A. V. Aladinskaya, V. A. Terentiev, D. A. Polykovskiy, M. D.
Kuznetsov, A. Asadulaev, Y. Volkov, A. Zholus, R. R. Shayakhmetov, A.
Zhebrak, L. I. Minaeva, B. A. Zagribelnyy, L. H. Lee, R. Soll, D. Madge,
L. Xing, T. Guo, A. Aspuru-Guzik, Nat. Biotechnol. 2019, 37, 1038.

[43] R. Batra, T. D. Loeffler, H. Chan, S. Srinivasan, H. Cui, I. V.
Korendovych, V. Nanda, L. C. Palmer, L. A. Solomon, H. C. Fry, S.
K. R. S. Sankaranarayanan, Nat. Chem. 2022, 14, 1427.

[44] T. Xu, J. Wang, S. Zhao, D. Chen, H. Zhang, Y. Fang, N. Kong, Z. Zhou,
W. Li, H. Wang, Nat. Commun. 2023, 14, 3880.

[45] J. Wang, Z. Liu, S. Zhao, T. Xu, H. Wang, S. Z. Li, W. Li, Adv. Sci. 2023,
10, 2301544.

[46] D. Weininger, J. Chem. Inform.Comp. Sci. 1988, 28, 31.
[47] M. Krenn, F. Häse, A. Nigam, P. Friederich, A. Aspuru-Guzik, Sci. Tech-

nol. 2020, 1, 045024.
[48] G. Landrum Google Scholar 2006,
[49] E. Becht, L. McInnes, J. Healy, C.-A. Dutertre, I. W. H. Kwok, L. G. Ng,

F. Ginhoux, E. W. Newell, Nat. Biotechnol. 2019, 37, 38.
[50] L. McInnes, J. Healy, J. Melville, arXiv preprint arXiv:1802.03426

2018,
[51] F. Li, J. Han, T. Cao, W. Lam, B. Fan, W. Tang, S. Chen, K. L. Fok, L. Li,

Proc. Natl. Acad. Sci. USA 2019, 116, 11259.
[52] Y. Zhang, Y. Kuang, Y. Gao, B. Xu, Langmuir 2011, 27, 529.
[53] N. J. Greenfield, Nat. Protoc. 2006, 1, 2876.
[54] H. Dong, M. Wang, S. Fan, C. Wu, C. Zhang, X. Wu, B. Xue, Y.

Cao, J. Deng, D. Yuan, J. Shi, Angew. Chem. Int. Ed. Engl. 2022, 61,
e202212829.

[55] K. A. Oberg, J.-M. Ruysschaert, E. Goormaghtigh, Eur. J. Biochem.
2004, 271, 2937.

[56] P. I. Haris, D. Chapman, Biopolymers: Orig. Res. Biomol. 1995, 37, 251.
[57] J. Lou, D. J. Mooney, Nat. Rev. Chem. 2022, 6, 726.
[58] D. Mendez, A. Gaulton, A. P. Bento, J. Chambers, M. De Veij, E.

Felix, M. P. Magarinos, J. F. Mosquera, P. Mutowo, M. Nowotka,
M. Gordillo-Maranon, F. Hunter, L. Junco, G. Mugumbate, M.
Rodriguez-Lopez, F. Atkinson, N. Bosc, C. J. Radoux, A. Segura-
Cabrera, A. Hersey, A. R. Leach, Nucleic Acids Res. 2019, 47,
D930.

[59] P. Agrawal, S. Bhalla, S. S. Usmani, S. Singh, K. Chaudhary, G. P.
Raghava, A. Gautam, Nucleic Acids Res. 2016, 44, D1098.

[60] J. Shi, J. P. Schneider, Angew. Chem., Int. Ed. 2019, 58, 13706.
[61] G. Guidotti, L. Brambilla, D. Rossi, Trends Pharmacol. Sci. 2017, 38,

406.
[62] T. Sterling, J. J. Irwin, J. Chem. Inf. Model. 2015, 55, 2324.
[63] J. Shi, X. Du, D. Yuan, R. Haburcak, N. Zhou, B. Xu, Bioconjugate

Chem. 2015, 26, 1879.
[64] J. Shi, X. Du, Y. Huang, J. Zhou, D. Yuan, D. Wu, Y. Zhang, R.

Haburcak, I. R. Epstein, B. Xu, J. Am. Chem. Soc. 2015, 137, 26.
[65] X. Zhang, J. Yi, G. Yang, C. Wu, T. Hou, D. Cao, Brief Bioinform 2022,
[66] D. Polykovskiy, A. Zhebrak, B. Sanchez-Lengeling, S. Golovanov, O.

Tatanov, S. Belyaev, R. Kurbanov, A. Artamonov, V. Aladinskiy, M.
Veselov, Front. Pharmacol. 2020, 11, 565644.

[67] K. Preuer, P. Renz, T. Unterthiner, S. Hochreiter, G. Klambauer, J.
Chem. Inf. Model. 2018, 58, 1736.

[68] J. Degen, C. Wegscheid-Gerlach, A. Zaliani, M. Rarey, ChemMedChem
2008, 3, 1503.

[69] G. W. Bemis, M. A. Murcko, J. Med. Chem. 1996, 39, 2887.
[70] S. D. Moran, M. T. Zanni, J. Phys. Chem. Lett. 2014, 5, 1984.
[71] T. Li, C. Zhu, C. Liang, T. Deng, X. Wu, K. Wen, X. Feng, D. Yuan, B.

Xu, J. Shi, ACS Appl. Nano Mater. 2023, 6, 7785.

Adv. Sci. 2024, 11, 2400829 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2400829 (12 of 12)

http://www.advancedsciencenews.com
http://www.advancedscience.com

	HydrogelFinder: A Foundation Model for Efficient Self-Assembling Peptide Discovery Guided by Non-Peptidal Small Molecules
	1. Introduction
	2. Results and Discussion
	2.1. Overview of HydrogelFinder
	2.2. Generation of Self-Assembling Molecules by HydrogelFinder-GPT
	2.3. Exploration of Structurally Diverse Self-Assembling Peptides by HydrogelFinder-GPT
	2.4. Discovery of Self-Assembling Peptide Derivatives by HydrogelFinder
	2.5. Evaluation of Gelation Behavior
	2.6. Biophysical Characterization of Self-Assembling Peptides
	2.7. Biocompatibility of Self-Assembling Peptides

	3. Discussion
	4. Experimental Section
	Supporting Information
	Acknowledgements
	Conflict of Interest
	Author Contributions
	Data Availability Statement

	Keywords


