Skip to main content
. 2024 Jun 13;15(27):10366–10380. doi: 10.1039/d4sc00094c

Performance of AIxFuse and compared methods on RORγt|DHODH dual-target drug design benchmark.

Metrics REINVENT2.0 RationaleRL MARS AIxFuse
Validity (%) 100 99.9 100 100
Uniqueness (%) 33.5 33.7 9.9 94.1
Diversity 0.708 0.672 0.530 0.661
Success rate (%) 4.65 1.16 0.00 23.96
USR QED (%) 25.94 1.39 9.83 41.53
USR SA (%) 31.39 33.58 9.77 82.41
USR dockingRORγt (%) 21.60 23.56 1.67 85.04
USR dockingDHODH (%) 4.94 16.54 0.02 72.74
USR 3D SNNRORγta (%) 20.33 12.83 3.17 58.18
USR 3D SNNDHODH (%) 22.81 10.71 6.95 83.87
a

3D SNN measures the maximum 3D similarity to known active compounds, while USR 3D SNN is the proportion of non-repeating compounds that obtained higher 3D SNN than dual-target inhibitor (R)-14d.3