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Abstract

The performance of individual biomarkers in discriminating between two groups, typically 

the healthy and the diseased, may be limited. Thus, there is interest in developing statistical 

methodologies for biomarker combinations with the aim of improving upon the individual 

discriminatory performance. There is extensive literature referring to biomarker combinations 

under the two-class setting. However, the corresponding literature under a three-class setting is 

limited. In our study, we provide parametric and nonparametric methods that allow investigators to 

optimally combine biomarkers that seek to discriminate between three classes by minimizing the 

Euclidean distance from the ROC surface to the perfection corner.

Using this Euclidean distance as the objective function allows for estimation of the optimal 

combination coefficients along with the optimal cutoff values for the combined score. An 

advantage of the proposed methods is that they can accommodate biomarker data from all three 

groups simultaneously, as opposed to a pairwise analysis such as the one implied by the three-class 

Youden index. We illustrate that the derived true classification rates (TCRs) exhibit narrower 

confidence intervals than those derived from the Youden-based approach under a parametric, 

flexible parametric, and nonparametric kernel-based framework. We evaluate our approaches 

through extensive simulations and apply them to real data sets that refer to liver cancer patients.

Keywords

3-class; Box-Cox; Cutoffs; Euclidean Distance; Kernels; Perfection Corner; ROC; Youden Index

Introduction

ROC analysis is a popular method for evaluating the discriminatory ability of continuous 

biomarkers. Initially, ROC methods were restricted to the two-class setting, where the 

groups (classes) under consideration typically refer to a healthy group and a diseased group. 

ROC methods have been extended to include three or more classes.1,2 In the three-class or 
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k—class setting, an ROC surface or hypersurface is used, rather than ROC curves, which 

are employed in the two-class setting. Accounting for more than two groups is useful in 

certain scenarios, as some studies are designed to account for the progressive nature of the 

disease and thus, they might include three (or more) groups for discrimination. In the three 

class-setting, biomarker studies typically consider a healthy/control group (group 1), the 

benign group (group 2), and an aggressive stage of the disease (group 3). For example, liver 

cancer studies often consider three groups: healthy individuals, individuals with cirrhosis of 

the liver or liver cysts, and individuals with liver cancer.3, 4, 5

In the two-class setting, the random variable that refers to the continuous biomarker scores 

for the healthy group is denoted with X1. The random variable that refers to the diseased 

group is denoted with X2. The specificity, at a given cutoff c, is defined as spec(c) = P(X1 

< c) and the sensitivity as sens(c) = P(X2 > c). The ROC curve is a plot of the sensitivity 

versus 1-specificity across all thresholds. There are a variety of measures used in ROC 

analysis to determine the diagnostic performance of a biomarker. The most popular is the 

area under the ROC curve (AUC). It can be shown that it is the average sensitivity across 

all levels of specificity, or likewise the average specificity across all levels of sensitivity.6 

Equivalently, the AUC is equal to P X1 < X2  for a continuous biomarker.6

The Youden index is another popular measure to gauge the performance of a biomarker, 

which is commonly denoted, J.7 Its expression is given by: J = maxc sens c + spec c − 1 , 

where c is the cutoff value. This expression corresponds to the maximum of the sum of the 

sensitivity and specificity. This is graphically represented by the maximum vertical distance 

of the ROC curve to the main diagonal. Another measure is the closest point on the ROC 

curve to the perfection corner. We will refer to this measure as the Euclidean distance.8 It 

yields a more balanced set of true classification rates for the two groups than the Youden 

index.9 Depending on the context, this may or may not be desirable. It is defined by: 

D* = minc 1 − sens c 2 + 1 − spec c 2.

While the AUC provides insight regarding the overall diagnostic performance of a marker, 

it is unable to provide information about the performance of a marker at the optimal point 

on the ROC curve. The Youden index and the Euclidean distance provide information about 

the diagnostic performance of a marker at an ”optimal” operating point. These measures 

also estimate the corresponding optimal cutoff values, which are valuable for diagnostic 

testing. The Youden index has a clear clinical interpretation, while the Euclidean distance 

does not, but instead enjoys an appealing geometrical interpretation10. In a recent paper, 

it was demonstrated that in the 3-class setting, the Euclidean distance can yield narrower 

confidence intervals for the estimated optimal cutoffs compared to the 3-class Youden 

index.11 This is due to its ability to accommodate data from all three groups simultaneously 

as opposed to the 3-class Youden index. Additionally, in some settings, it outperforms the 

Youden index with regard to the sum of the true classification rates (TCRs) when evaluated 

under independent testing data.11

It is common that multiple biomarkers are measured for each individual in a study, with 

each individual biomarker having inadequate diagnostic performance. By collecting multiple 
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measurements, more information is provided on the disease status of the patient than any 

individual biomarker can provide.

As the individual performance of a biomarker may be limited, there is clinical interest in 

finding optimal combinations of biomarkers that are simultaneously assayed on the same 

individuals.12, 13 In the two-class setting, several methods have been explored to combine 

biomarkers using optimization procedures under a variety of objective functions. Methods 

for combining biomarkers to maximize the AUC have been explored extensively.14, 15, 16 

Proposed biomarker-combination methods aiming to maximize the AUC include the min-

max approach,14 stepwise approaches based on the empirical ROC curve,14, 15 the logistic 

regression model,14 and methods using the Fisher’s discriminant coefficient under the 

assumption of normality.16 Authors have also explored combining biomarkers to maximize 

the Youden index (YI) and the partial area under the curve (pAUC).17, 18 Biomarker 

combinations driven by the maximization of the Youden index involve stepwise procedures 

based on the empirical ROC curve, nonparametric methods based on kernel smoothing, 

and methods based on the assumption of normality.17 For combinations that are based on 

the maximization of the pAUC, authors have considered parametric approaches, as well 

as non-parametric kernel-based approaches.18 When assuming normality, if the covariance 

matrices for the healthy and diseased groups are proportional, there is a combination of 

biomarkers that leads to a dominant ROC curve across all levels of specificity.16 This would 

lead to an optimal ROC curve under any measure/objective function. A similar result exists 

for the three-class setting, where a closed form solution for a dominant ROC surface exists. 

This result is discussed in Section 3.1 and proof is available in Web Appendix A. Such an 

assumption is very strict, and thus more flexible methods are needed. However, by exploring 

scenarios that meet these assumptions, we have the luxury of knowing the true optimal 

linear combinations of scores. This allows to see how well our methods perform, not only 

compared to each other, but also with regard to the theoretically dominant ROC surface, and 

thus there is value in exploring such scenarios.

In the three-class setting, the literature is more limited. There are three 

ordered groups, for which, the random variables corresponding to the continuous 

biomarkers are denoted X1, X2, and X3. The ROC surface is the collection 

of the triplets x, y, z = TCR1 c1 , TCR3 c2 , TCR2 c1, c2  for all c1 < c2, where 

TCR1 c1 = P X1 ≤ c1 , TCR2 c1, c2 = P c1 < X2 ≤ c2 , and TCR3 = P X3 > c2 . See also Nakas 

and Yiannoutsos, 2004 and Nakas, Bantis, and Gatsonis, 2023 for more details.2, 19

Authors have explored linear combinations of biomarkers to maximize the volume under 

the surface (VUS). These methods include the cumulative logistic model, a min-max 

combination approach, a penalized/scaled stochastic distance based on the assumption of 

normality, and a stepwise procedure based on the empirical ROC surface.20 Additionally, 

authors have explored strategies that involve the maximization of pairwise AUCs.21 While 

maximizing the VUS provides the best average performance of a biomarker across all 

thresholds, the diagnostic performance at an optimal operating point may be inferior to 

alternative combinations. Additionally, VUS-based combination methods do not provide 

estimates of an optimal pair of cutoff points. As such, the clinical utility of such strategies 

might be questionable.
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In a recent paper, authors explore the use of the Youden index for combining biomarkers in 

the 3-class setting.22 For individual biomarkers, the Euclidean distance has been shown 

to provide substantially shorter confidence intervals around the corresponding cutoffs 

compared to the 3-class Youden index.11 In settings with low sample size, the cutoff values 

estimated using the Youden index may suffer from excessively wide confidence intervals 

and therefore they may not be very informative. The advantage of the Euclidean method to 

simultaneously accommodate the scores of all groups is strengthened when we are dealing 

with k–class problems with (k > 3). The reason being that the k–class Youden index operates 

pairwisely, regardless of the value of k, thus excluding k − 2 groups at a time (k > 3). In such 

instances, the Euclidean distance may be a better choice for cutoff-estimation.

This paper is organized as follows: In section 2 we refer to an easy to use approach 

based on the cumulative logistic model that allows combinations of biomarkers under a 

3-class setting. This approach has been used in order to combine biomarkers to improve the 

VUS.20 Due to its computational simplicity, along with its popularity, we briefly discuss 

it and include it to our comparisons throughout the paper. In section 3 we discuss our 

proposed methods that involve parametric and non-parametric techniques for finding optimal 

combinations that are driven by the minimization of the Euclidean distance of the ROC 

surface to the perfection corner. In section 4 we evaluate our approaches through extensive 

simulations and we further compare them to strategies that involve the cumulative logistic 

regression model and the three-class Youden index. In section 5 we present an application 

that refers to liver cancer patients. We end with a discussion.

Known Approaches for Combining Biomarkers in the Three-Class Setting

Logistic regression is the most common method for linearly combining biomarkers. Due to 

its popularity and its robust performance, it may be of interest as a method for finding 

optimal combinations to minimize the Euclidean distance or maximize the three-class 

Youden index. Its popularity makes it a method of interest to compare with our proposed 

methods. In contrast with the normality assumption in Section 3.1, the logistic regression 

approach is a two-step process. First, the combination coefficients are estimated using the 

logistic model, then based on the combined score, the optimal cutoff values are estimated 

using the empirical estimates of the ROC surface. The cumulative logistic model is of 

the form log P D = 1 ∣ Y p
P D = 2 ∣ Y p + P D = 3 ∣ Y p

= a0 + Y pβ, log P D = 1 ∣ Y p + P D = 2 ∣ Y p
P D = 3 ∣ Y p

= b0 + Y pβ, 

where β is a vector of coefficients of length p, and a0 and b0 are intercepts. In order to 

combine the biomarkers with one set of combination coefficients, we discard the intercepts, 

so the obtained pseudoscore in practice is simply Y pβ̂.

Once the pseudoscore is obtained, the optimal cutoff values can be estimated in order to 

minimize the shortest distance from the ROC surface to the perfection corner. Note that 

since the combination coefficients are derived using cumulative logistic regression, they are 

not optimized with respect to this distance.

Other previously explored approaches aim to maximize the volume under the ROC surface 

(VUS) under various algorithms.20 Unless very strict assumptions are imposed on the ROC 
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surface, a larger VUS for one marker does not necessarily imply better performance at 

its ”optimal” operating point than the optimal operating point for another marker. Our 

approaches combine biomarkers under the notion of minimizing the Euclidean distance 

from the ROC surface to the perfection corner, which aims directly to a combination that 

will yield an optimal operating point. As a result: (1) we simultaneously estimate optimal 

combination coefficients and cutoff values corresponding to the optimal operating point (2) 

we simultaneously accommodate data from all three groups, as opposed to a strategy that 

uses the data in a pairwise fashion, e.g., the 3-class Youden index or a strategy that attempts 

to maximize the sum of pairwise AUCs.

Proposed Approaches for Combining Biomarkers

We propose a variety of approaches, which aim to minimize the shortest Euclidean distance 

from the ROC surface to the perfection corner. The following equation is the general form of 

the equation:

D* = minc1, c2; c1 < c2 1 − F1 c1
2 + 1 − F2 c2 − F2 c1

2 + F3 c2
2 1/2 .

(1)

Parametric Approach Under Multivariate Normality

Let Y i, i = 1,2, 3 be the random variables referring to the collection of p biomarker scores for 

the healthy, moderate diseased, and severe diseased individuals, respectively. Assume that 

Y i ∼ MV Np θi, Σi . Given the combination vector β, the combined score Xi = βTY i follows a 

univariate normal distribution, that is, Xi ∼ N μi, σi , where μi = βTθi, and σi
2 = βTΣiβ.

The Euclidean distance for the combined score is therefore

D∗ = minβ, c1, c2; c1 < c2 1 − Φ c1 − μ1
σ1

2
+ 1 − Φ c2 − μ2

σ2
− Φ c1 − μ2

σ2

2
+ Φ c2 − μ3

σ3

2 1/2
.

(2)

Note that in contrast to equation (1), D* in equation (2) is a function of β, along with 

c1 and c2. Note that estimates for θi and Σi can be obtained using maximum likelihood 

and plugged into (2). We can then use numerical optimization techniques, such as the 

Nelder-Mead method, which is implemented in the fminsearch function in Matlab or various 

packages in R, for estimating the optimal combination, β, and the optimal cutoffs c1, and 

c2. In order to standardize the optimal combination, we restrict our search to the interval 

[1,1 , and allow the marker with the largest value in absolute value to be either 1 or −1. 

This is because ROC surfaces are unchanged under monotone transformations. As such, 

the combined score, X = Y β is equivalent to the combined score, X* = Y β*, where β* = αβ
and α is a positive constant. For example, the combination coefficients β = 1,0.50,0.02  are 

equivalent to β* = 100,5, 2 . Therefore, restricting our search to the interval − 1,1  allows us 
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to search over the range of all possible combinations, while standardizing the result, which 

eliminates any redundant combinations. We implement the following algorithm.

1. Set the coefficient for the first marker to be 1, i.e. β1 = 1, and then search for the 

remaining combination coefficients in the interval − 1,1  to minimize D* using 

equation (3). For this iteration, β1 is the ”anchor” for the combination.

2. Repeat step 1, but with the coefficient for the first marker set to −1, i.e. β1 = − 1.

3. Repeat steps 1 and 2 for each of the remaining biomarkers, first letting β2 be the 

anchor, and then going through the remaining markers, and ending with βp as the 

anchor. Choose the combination with the smallest value of D* from equation (3).

In the two-class setting, combinations for a dominant ROC curve have been derived when 

normality is assumed and the two groups have proportional covariance matrices.16 In such 

a configuration, the ROC curve will have higher sensitivity across all levels of specificity 

compared to any other linear combination. It is also the case in the three-class setting, 

that if μ2 − μ1 = μ3 − μ2 = δ and Σ1 = Σ2 = Σ3 = Σ, then the best set of linear combination 

coefficients is β ∝ δTΣ−1, which results in an ROC surface dominating all others. Proof 

of this result is found in Web Appendix A and a visualization of a linear combination of 

markers corresponding to a dominant ROC surface is displayed in Figure 1. By using such 

configurations, we can evaluate the performance of each of the approaches in comparison 

with the true optimal values.

Box-Cox Approach

It is often the case that the biomarkers for each disease state (group) do not comply with 

the normality assumption. It may be the case that the biomarkers can be transformed to 

normality using the Box-Cox transformation, which is a monotone transformation. Such an 

approach may allow us to achieve approximate normality for the transformed data and thus 

may be convenient, both computationally and in terms of more efficient estimation over a 

non-parametric approach. The Box-Cox transformation is defined by

Y (λ) =
Y λ − 1

λ λ ≠ 0

log(Y ) λ = 0
.

(3)

A single transformation parameter, λm is estimated for biomarker m, where m = 1, …, p. This 

allows us to use a single Box-Cox transformation for each individual biomarker to transform 

all three groups Y 1, m , Y 2, m , Y 3, m  so that the transformed scores for each of the markers, 

Y 1, m
λ , Y 2, m

λ , and Y 3, m
λ  are approximately normally distributed. The Box-Cox transformation 

is demonstrated in Figure 2. The optimal value of λm can be estimated via maximum 

likelihood.23 Under an ROC setting, a profile likelihood can be used for the derivation of λm. 

This results in a computationally easier version of the full likelihood to be used solely for 

estimating λm.24 For a single marker Y m , this profile likelihood can be written as:
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l λm = − n1
2 log i = 1

n1

Y 1i, (m)
(λ) − i = 1

n1 Y 1i, (m)
(λ)

n1

2

n1

2

− n2
2 log j = 1

n2

Y 2j, (m)
(λ) − j = 1

n2 Y 2j, (m)
(λ)

n2

2

n2

− n3
2 log k = 1

n3

Y 3k, (m)
(λ) − k = 1

n3 Y 3k, (m)
(λ)

n3

2

n3

+ (λ − 1)
i = 1

n1

logY 1i, (m) +
j = 1

n2

logY 2j, (m) +
k = 1

n3

logY 3k, (m) + k .

(4)

After the scores are transformed, equation (2) can be used as the objective function 

to combine the scores. This approach implements the same algorithm as the normality 

assumption, but it does so for the transformed scores.

It is often the case that biomarkers are not normally distributed and cannot be adequately 

transformed to approximate normality. In such cases, the performance of methods that rely 

on normality may not be appropriate. As a result, other methods are required for developing 

linear combinations. Various nonparametric approaches have been explored for combining 

biomarkers to optimize different objective functions, such as AUC, pAUC, Youden index, 

and VUS. We will explore using adapted versions of some of these methods to combine 

biomarkers under the notion of minimizing the Euclidean distance.

Stepwise Procedure Based on Empirical ROC Surface

This method is a stepwise down procedure for combining biomarkers that has been used 

to maximize the Youden index in the two-class setting.17 It starts with the combining the 

best two performing individual biomarkers pairwisely and works its way down to the worst 

performing biomarkers. The algorithm implements the following steps:

1. Calculate the empirical estimate of Euclidean distance for each of the p
biomarkers.

2. Order these p biomarkers based on the values of the empirical Euclidean distance 

estimates from smallest to largest. Denote the corresponding values for the 

healthy group as Y 1i = Y 1i, p , Y 1i, p − 1 , …, Y 1i, 1
T  for i = 1,2, …, n1, the values for 

the moderate disease progression group as Y 2j = Y 2j, p , Y 2j, p − 1 , …, Y 2j, 1
T  for 
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j = 1,2, …, n2,, and the values for the advanced disease progression group as 

Y 3k = Y 3k, p , Y 3k, p − 1 , …, Y 3k, 1
T  for k = 1,2, …, n3.

3. Combine the first two biomarkers empirically using the objective function

Dwp − 1
* = 1 − i = 1

n1 I Y 1i, (p) + wp − 1Y 1i, (p − 1) ≤ c1, wp − 1

n1

2
+

1 − j = 1
n2 I Y 2j, (p) + wp − 1Y 2j, (p − 1) ≤ c2, wp − 1

n2
− j = 1

n2 I Y 2j, (p) + wp − 1Y 2j, (p − 1) ≤ c1, wp − 1
n2

2

+ k = 1

n3 I Y 3k, (p) + wp − 1Y 3k, (p − 1) ≤ c2, wp − 1

n3

2 1/2

.

(5)

which is evaluated on 201 equally spaced values of wp − 1 in − 1,1  as follows. 

For each given value of wp − 1, first the optimal cutoff value, ĉwp − 1 is empirically 

searched by minimizing D̂wp − 1
*

; then, the value of D̂wp − 1
*

 is calculated at the 

selected optimal cutoff for each wp − 1.

4. Similar to step 3, combine the first two biomarkers empirically as

Drp − 1
* = 1 − i = 1

n1 I rp − 1Y 1i, (p) + Y 1i, (p − 1) ≤ c1, rp − 1

n1

2

+ 1 − j = 1
n2 I rp − 1Y 2j, (p) + Y 2j, (p − 1) ≤ c2, rp − 1

n2
− j = 1

n2 I rp − 1Y 2j, (p) + Y 2j, (p − 1) ≤ c1, rp − 1
n2

2

+ k = 1

n3 I rp − 1Y 3k, (p) + Y 3k, (p − 1) ≤ c2, rp − 1

n3

2
.

(6)

5. Choose the coefficient, wp − 1 or rp − 1, which gives the smallest Euclidean distance 

value as the optimal combination coefficient for the first two markers.

6. Having derived the univariate combined score of the first two biomarkers in step 

5, combine it with the third marker, that is, the p − 2 tℎ ordered marker, using the 

same procedure in steps 3-5. Proceed in the same way until all biomarkers are 

included in the linear combination.

This approach was shown to perform well in simulations when evaluated under training data 

in the two-class setting with the Youden index as the objective function.17 In our simulation 

section, we evaluate its performance under independent testing data to avoid any issues of 

overfitting.
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Kernel-Based Method

This method is a modification of a method proposed by Yan et. al. to maximize pAUC in the 

two-class setting.18 The method has been modified to optimize the Euclidean distance as the 

objective function.

Given a set of biomarkers for healthy, moderate disease, and advanced disease groups, Y 1, Y 2, 

and Y 3, respctively, and given linear coefficients β, we consider using normal kernels to 

estimate the cumulative distributions of the combined scores for each of the groups, denoted 

X1, X2, and X3. The kernel-based cumulative distribution estimate for group i is given by:

F i(x) = 1
ni j = 1

ni

Φ x − Xij
ℎi

,

(7)

where ni is the sample size of group i, Xij is the combined score of the jtℎ individual in group 

i, and ℎi is the bandwidth for group i. We employ a Gaussian kernel24, and for the bandwidth 

we use:

ℎi = 0.9min sd Xi , iqr Xi /1.34 ni
−0.2,

where sd and iqr are the standard deviation and interquartile range of group i.25

The kernel-based estimate of the Euclidean distance is therefore,

D* = minβ, c1, c2; c1 < c2 1 − F 1 c1
2 + 1 − F 1 c2 − F 1 c1

2 + F 3 c2
2

1
2,

(8)

where ĉ1 and ĉ2 are the estimated optimal cutoff values. The proposed method implements 

the following steps

1. Set the coefficient for the first marker to be 1, i.e. β1 = 1, and then search for the 

remaining combination coefficients in the interval − 1,1  to minimize D* using 

equation (8).

2. Repeat step 1, but with the coefficient for the first marker set to −1, i.e. β1 = − 1.

3. Repeat steps 1 and 2 for each of the remaining biomarkers. Choose the 

combination with the smallest value of D*.

Kernel-density estimation can accommodate a wide variety of distributions. In the context of 

ROC analysis, kernel density estimates of the ROC curve tend to give a more conservative 

estimate of performance than empirical estimates in terms of AUC.26 As such, their results 

when evaluated under training data are less prone to over-estimating the performance of 

biomarkers. Additionally, kernel-based estimates tend to provide smaller MSE for D* than 

empirical based estimates, which is demonstrated in Figure 3.
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Simulation Study

In this section we present the results from an extensive simulation study to compare 

the performance of the combinations of biomarkers based on the Euclidean distance and 

Youden index as objective functions. We implement five methods of combining biomarkers, 

including the normality assumption and the Box-Cox transformation where appropriate, 

the logistic regression model, the stepwise procedure, and the kernel-based method. In all 

scenarios explored, we consider three biomarkers to combine. We explore scenarios where 

data are generated from normal, log-normal, and gamma distributions. We generate groups 

with sample sizes of (30,30,30), (50,50,50), (100,100,100), (200,200,200), and (200,50,50). 

We consider scenarios with correlations between biomarkers of 0.3, 0.5, and 0.7.

In the simulation study we generate training data and estimate both the combination 

coefficients, as well as the optimal cutoff values for the combination. Evaluating the 

performance of the combination based on training data leads to overly optimistic results that 

are unlikely to accurately reflect how the combinations would perform in the population. 

For validation, we generate independent datasets with sample sizes of 100,000 for each of 

the three groups in order to evaluate the performance of the combination methods. This is 

analogous to estimating combination coefficients and cutoff values in a given study and then 

evaluating their performance in the population. It is through the independent testing data 

that we can see the true performance of the estimated combination coefficients and their 

associated cutoff values.

In the scenarios where the data are generated from normal distributions, we explore 

configurations where the combination coefficients for a dominant ROC surface can be 

derived in closed form. In the two-class setting, combinations for a dominant ROC curve 

have been derived when normality is assumed and the two groups have proportional 

covariance matrices.16 McIntosh and Pepe (2002) also discuss that in the two-class setting, 

it is not necessary to specify the constituent distributions because rules based on the density 

ratio are equivalent to rules based on P D = 1 ∣ Y , which can be approximated with binomial 

regression tools.27 It is the case in the three-class setting, that if μ2 − μ1 = μ3 − μ2 = δ and 

Σ1 = Σ2 = Σ3 = Σ, then the best set of linear combination coefficients is β = δΣ−1, which 

results in an ROC surface dominating all others. Proof of this result is found in Web 

Appendix A. By using such configurations, we can evaluate the performance of each of the 

approaches in comparison with the true optimal values.

In order to compare the performance of the Euclidean distance and the Youden index 

as objective functions to be optimized for the combined score, we explore the following 

measures for all of the explored scenarios:

1. Variance of the TCRs.

2. Percent difference in total classification (sum of TCRs).

3. Total classification for each method/approach.

Because the scale of the combined score is affected by the estimated combination 

coefficients, directly comparing the variance of the cutoff values is not meaningful, as the 
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scale of the combined scores may vary between approaches. By comparing the variance of 

the TCRs, we remain in the ROC space, and thus lie on the same scale for both methods.

For the scenarios generated from normal distributions, where a dominant ROC surface is 

known, we can also explore the bias, variance, and MSE of the estimated combination 

coefficients, cutoff values, TCRs, and sum(TCRs). These measures will provide us with 

insight as to how each of the methods perform in estimating the true optimal combination 

coefficients and cutoff values.

Scenarios with a dominant ROC surface

Comparing performance of the Euclidean distance and Youden index as 
objective functions—When the data are generated from normal distributions in 

configurations where a dominant ROC surface exists and is known, both combination 

methods seek to find the same set of combination coefficients. This allows us to compare 

the use of the Euclidean method and Youden index as objective functions for combining 

biomarkers under fair conditions. We focus on results for the scenarios with covariance 

matrices, Σ = 0.7I + 0.3J . Results for Σ = 0.5I + 0.3J  and Σ = 0.3I + 0.7J  are discussed 

briefly in the text and full results are included in the Web Appendix B. In Figure 4, 

we see that in most explored scenarios, the TCRs have smaller bias, variance, and mean 

squared error (MSE) under the Euclidean method than the Youden index for each of the 

approaches. In a few select scenarios, the Youden index exhibits smaller bias than the 

Euclidean method. When n1, n2, n3 = 200,50,50 , logistic regression exhibits larger bias than 

the Youden index. The stepwise procedure results in higher bias for the Euclidean method 

when sample sizes are n1, n2, n3 = 100,100,100 , 200,200,200 , and 200,50,50 . While the bias 

for these scenarios is larger for the Euclidean method, we observe substantially smaller 

variances, and as a result, smaller MSE. For instance, when using logistic regression and the 

sample size is n1, n2, n3 = 200,50,50 , the bias, variance, and MSE for the Euclidean method 

are 0.0174,0.0037, and 0.0045, respectively. For the Youden index, they are 0.0145,0.0095, and 

0.0100. While on average, the Youden index has a smaller bias on for the TCRs, the average 

variance is 2.57 times larger. This results in MSEs for the TCRs derived using the Youden 

index that are 2.22 times larger on average. Similarly, when using the stepwise procedure 

and the sample size is n1, n2, n3 = 200,50,50 , the bias, variance, and MSE for the Euclidean 

method are 0.0412,0.0033, and 0.0055. For the Youden index, they are 0.0230,0.0083, and 

0.0092. Again, while the bias for the Youden index is smaller on average, its variance is 2.52 

times larger. This results in an MSE that is 1.67 times larger for the Youden index. In all 

scenarios where Σ = 0.7I + 0.3J , the Euclidean method exhibits smaller variance and MSE 

for the TCRs than the Youden index. In the majority of scenarios, the Euclidean method also 

exhibits smaller bias on average than the Youden index.

When Σ = 0.5I + 0.5J , there are several instances where the TCRs derived by the Euclidean 

method exhibit larger bias on average than those derived by the Youden index when using 

logistic regression or the stepwise procedure. Full results are available in Table B.5 in 

Web Appendix B. For logistic regression, this occurs when n1, n2, n3 = 200,50,50 . For the 

stepwise procedure, this occurs when n1, n2, n3 = 100,100,100 , 200,200,200 , and 200,50,50 . 
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For each of these scenarios, the Youden index has higher variance and MSE than the 

Euclidean method. When the normality assumption or Yan’s method are used, the bias is 

smaller for the Euclidean method for all sample sizes.

When Σ = 0.3I + 0.7J , the stepwise procedure is the only combination approach with higher 

average absolute bias for the TCRs when using the Euclidean method out for select sample 

sizes. Full results are available in Table B.6 in Web Appendix B. The higher bias occurs 

when n1, n2, n3 = 100,100,100 , 200,200,200 , and 200,50,50 . While these scenarios have 

higher bias for the Euclidean method, the Youden index has higher variance and MSE.

In Figure 5, we see that the difference in sum(TCRs), or total classification, between the 

two methods is minimal. For the logistic regression approach, the Euclidean method actually 

provides higher total classification in independent testing data than the Youden index for all 

scenarios except when the sample size is 200 for each of the groups. When this combination 

approach is used and the sample size is 30 for each group, the Euclidean method has a total 

classification that is 0.87% higher than the Youden index. When the sample size is 200, the 

Euclidean method has a total classification that is 0.17% lower than the Youden index. For 

normally distributed biomarkers, this result, along with the smaller variance of the TCRs
provides strong justification for using the Euclidean method when using logistic regression 

to combine biomarkers.

For Yan’s method, the Youden index provides higher total classification than the Euclidean 

method in all cases. The largest difference is seen where sample sizes are 200 for each of 

the groups. Here the Euclidean method has a total classification that is 0.56% lower than that 

of the Youden index. When sample sizes are 30 for each group, this percent difference is 

only 0.22%. While the gain in total classification when using the Youden index is minimal, 

its increase in variance for the TCRs is substantial.

For the normality assumption, again, the Euclidean method provides lower total 

classification than the Youden index in all explored scenarios. This corresponding percent 

difference ranges from 0.55% to 0.65% lower total classification for the Euclidean method 

than the Youden index.

For the stepwise procedure we see similar results to those when using logistic regression. 

For all scenarios explored, except when the sample size is 200 for each group, the Euclidean 

method outperforms the Youden index in terms of total classification. Here, the Euclidean 

method has total classification that is 0.08% lower than the Youden index. When the sample 

size is 30 for each group, the Euclidean method provides total classification that is 1.41%
higher than the Youden index.

We see that for each of the methods, little is lost in terms of total classification when 

using either of the methods. For the normality assumption and Yan’s method, the Youden 

index provides higher total classification that is less than 1% higher than for the Euclidean 

method. On the other hand, for the logistic regression and stepwise procedure approaches 

of combining biomarkers, the Euclidean method provides higher total classification than the 
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Youden index for all explored sample sizes, except when the sample size is 200 for each of 

the groups.

Comparing the performance of the explored combination approaches—In order 

to compare the performance of the combination approaches, it is valuable to know what 

the true optimal combination coefficients are, as well as the true optimal cutoff values 

for the combination. This allows us to compare the bias, variance, and MSE of the 

combination coefficients and the cutoff values for each of the approaches. Under the 

normality assumption, the scenarios were configured so that there is a known dominant 

ROC surface. Population parameters and optimal combination coefficients/cutoff values are 

displayed in Table 1. Table 2 displays the corresponding bias, variance, and MSE of each of 

the approaches for the combination coefficients.

With regard to the combination coefficients, the logistic regression method provides the 

smallest values of bias, variance, and MSE for all explored scenarios. The normal approach 

exhibits a bias for the combination coefficients that is similar to logistic regression. 

However, the former exhibits higher variance and MSE than the latter. We see that 

each of the approaches provide estimates of the combination coefficients that are biased 

downwards. As the sample size increases, the estimates approach the true optimal values. 

Unsurprisingly, the stepwise procedure and kernel-based approach perform worse than the 

logistic regression and normality-based approaches. We see that the stepwise approach 

provides the largest values of bias, variance, and MSE.

With regard to the first optimal cutoff value, c1, there are mixed results. Full results are 

presented in Table 3. For all sample sizes excluding n1, n2, n3 = 50,50,50 , the stepwise 

procedure has the smallest bias. On the other hand, the normal assumption provides the 

smallest variance and MSE for all sample sizes. While the logistic approach has the smallest 

bias, variance, and MSE for each of the combination coefficients, it exhibits the largest 

variance and MSE for c1. The variance of the estimate from the logistic approach is more 

than double the variance of the estimate from Yan’s method for several of the sample sizes. 

For example, when n1, n2, n3 = 100,100,100 , the variance of c1 for Yan’s method is 0.0460, 

while it is 0.1017 for the logistic approach. With regard to the second optimal cutoff value, 

c2, the stepwise procedure provides the largest bias for all sample sizes. Additionally, it also 

has the largest MSE of all of the approaches. The normal assumption has the smallest bias 

for c2 for all sample sizes except n1, n2, n3 = 200,50,50 , where it has a bias of −0.2202, and 

the logistic approach has a bias of −0.1816. With regard to variance and MSE, the normal 

assumption provides the smallest values for c2.

Next, we explore the performance of each of the approaches with regard to the TCRs. 

The bias, variance, and MSE of the TCRs are displayed in Table 4, along with the mean 

total classification (sum of TCRs) for each of the approaches. We see that the normality 

assumption leads to the smallest bias, variance, and MSE for the TCRs. Additionally, 

the normality assumption has the highest total classification when compared to all other 

approaches. The difference in total classification is minimal when compared to the logistic 

approach. For instance, when the sample size is 100 for each group, the normality 
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assumption provides a total classification that is equal to 1.9984, while the logistic approach 

has total classification of 1.9912. Yan’s method provides smaller MSE than the logistic 

approach for all explored sample sizes, but has smaller total classification than the logistic 

approach. This is partially due to smaller variances in the TCRs than those of the logistic 

approach. The stepwise approach provides smaller MSE than the logistic approach for TCR1

and TCR3, but has a larger MSE for TCR2. This approach performs notably worse than all 

of the other approaches in terms of total classification. When the sample size is 30 for each 

group, the stepwise approach has total classification of 1.9281, while it is 1.9454 for Yan’s 

method, 1.9654 for the logistic approach, and 1.9796 for the normal assumption. As sample 

sizes increase, the difference in performance between the methods decreases.

Additionally, we compare the performance of each of these methods with respect to training 

data. Here, we compare the sum of TCRs under training and testing for each method and 

approach. Here, we discuss the scenarios with Σ = 0.7I + 0.3J . Full results are available in 

Tables B.7, B.8, and B.9

The stepwise procedure had the highest sum of TCRs out of all the approaches under training 

data, being 2.1371 and 2.1609 for the Euclidean and Youden methods, on average across 

all sample sizes. This approach led to a sum of TCRs under training data that ranged from 

4.0% to 15.3% (average of 9.2% across all sample sizes) higher than for testing data for the 

Euclidean method. For the Youden index, these values ranged from 5.1% to 17.6% higher, 

with an average of 11.0% across all sample sizes.

Logistic regression had the next highest sum of TCRs on average, being 2.1089 and 2.1279 

for the Euclidean method and Youden index. This approach led to a sum of TCRs under 

training data that ranged from 3.0% to 10.3% (average of 5.4% across all sample sizes) higher 

than for testing data for the Euclidean method and a range of 3.6% to 12.4% (average of 7.6%
across all sample sizes) for the Youden index.

Yan’s method had the second lowest sum of TCRs on average, being 2.0538 and 2.0779 for 

the Euclidean method and Youden index, respectively. This approach led to a sum of TCRs
under training data that ranged from 1.4% to 7.6% (average of 4.1% across all sample sizes) 

higher than for testing data for the Euclidean method and a range of 1.8% to 8.7% (average of 

4.9% across all sample sizes) for the Youden index.

The normality assumption had the lowest sum of TCRs across all approaches, being on 

average, 2.0217 and 2.0359 for the Euclidean method and Youden index, respectively. This 

approach led to a sum of TCRs under training data that ranged from 0.4% to 2.7% (average 

of 1.5% across all sample sizes) higher than for testing data for the Euclidean method and a 

range of 0.5% to 2.9% (average of 1.6% across all sample sizes).

In short, while it provided the lowest sum of TCRs under training data, it had the 

performance closest to what was seen under testing data, where it saw the best performance 

of all approaches. Yan’s method performed the next closest between training and testing 

data. The logistic model and stepwise procedure significantly overestimate the performance 
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under training data, when compared to their performance under independent testing data. 

As such, investigators should be wary of the results of these methods when evaluated 

under training data. Additionally, the Youden index tended to overestimate the performance 

in training data when compared to testing data. For instance, when Yan’s method was 

used, the Euclidean method overestimated performance by 4.1%, while the Youden index 

overestimated it by 4.9%. Similar trends were seen for each of the approaches, implying the 

Youden index is more prone to overfitting than the Euclidean method.

Scenarios without a known dominant ROC surface

When the data are generated from lognormal or gamma distributions, we do not know the 

distribution of the linear combination, and thus, we cannot derive the best linear combination 

of biomarkers. In order to compare the performance of the Euclidean method versus the 

Youden index, we can explore the variance of the TCRs, as well as the total classification of 

both methods. Results for the lognormal scenarios are available in Tables C.1, C.2, and C.3, 

as well as Figures 5–10 in Web Appendix C. Results for the gamma scenarios are available 

in Tables C.4, C.5, and C.6, as well as Figures 11–16 in Web Appendix C.

Data generated from lognormal distributions—When the data are generated from 

lognormal distributions, the data lies within the power-normal family, and thus, the data can 

be transformed to normality using the Box-Cox transformation. Full results are available in 

Tables C.1, C.2, and C.3 in the Web Appendix. In Figure 5 in Web Appendix C, we see that 

the Box-Cox approach provides the best performance in terms of variability of the TCRs. 

Additionally, it provides the best performance in terms of total classification. With regard to 

the variance of the TCRs, the Euclidean method provides smaller variances than the Youden 

index. On average, the Euclidean method has variances for the TCRs that are 2.70 times 

smaller than those from the Youden index. Averaging across the sample sizes, on average, 

the Euclidean method has a total classification of 1.7908, while the Youden index has a total 

classification of 1.8148. This result is apparent in Figure 6 in Web Appendix C. This equates 

to a sum of TCRs that is 1.34% higher for the Youden index than for the Euclidean method. 

Little is lost in terms of the total classification when using the Euclidean method, but the 

variance of the TCRs is much smaller for the Euclidean method.

For Yan’s method of combining biomarkers, the Euclidean method exhibits smaller 

variances for the TCRs than for the Youden index. On average, the variance of the TCRs
are 3.86 times larger for the Youden index than for the Euclidean method. The total 

classification for the Euclidean method is on average 1.47% lower than for the Youden index. 

Again, the Euclidean method has minimal loss in total classification, but the variance of the 

TCRs is greatly reduced when compared to the Youden index.

When the logistic regression approach for combining biomarkers is used, the Euclidean 

method provides smaller variances for the TCRs than the Youden index does. On average, 

the variance of the TCRs is 2.39 times smaller for the Euclidean method than for the Youden 

index. On average, the sum of TCRs for the Euclidean method is 1.7317, whereas it is 1.7399 

for the Youden index. This equates to a gain of 0.47% in terms of total classification for the 
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Youden index. In fact, when the sample size is 30 for each group, the Euclidean method 

sees a sum of TCRs equal to 1.7162, whereas the Youden index has a sum of TCRs equal 

to 1.7153. When the sample size is limited, the Euclidean method is able to outperform the 

Youden index with regard to total classification.

When the stepwise procedure is used to combine biomarkers, the Euclidean method sees 

variances of the TCRs that are 2.27 times smaller on average than for the Youden index. In 

terms of total classification, on average, the Euclidean method estimates the sum of TCR to 

be 1.7099, whereas the Youden index estimates the sum of TCRs to be 1.7201. This equates 

to an increase of 0.60% in terms of total classification for the Youden index.

For each of the explored approaches of combining biomarkers, the Euclidean method 

has variances of the TCRs that are less than half those from the Youden index. The 

higher variance of the TCRs when using the Youden index leads to uncertainty regarding 

the estimation of the optimal combination coefficients and the optimal cutoff values. On 

average, the Youden index provides a higher sum of TCRs than the Euclidean method, but at 

best, this equates to an improvement of 1.34%. This increase in total classification is minor, 

whereas the improvement in variance of the TCRs seen when using the Euclidean method is 

substantial.

In terms of comparing the performance of the approaches when the data are generated 

from lognormal distributions, the Box-Cox approach significantly outperforms all of the 

other approaches. This approach has an average sum of TCRs equal to 1.7908. The next 

best performing approach is the logistic regression approach, with a total classification of 

1.7317. This is followed by Yan’s method and the stepwise procedure, with sums of TCRs
equal to 1.7122 and 1.7099, respectively. The Box-Cox approach outperforms the next best 

performing approach by 3.41%, which is a substantial gain in terms of total classification. 

Additionally, the Box-Cox approach has the smallest variance for the TCRs, being equal to 

0.0012. Yan’s method has the next smallest variance for the TCRs, being equal to 0.0026. 

This is followed by the stepwise procedure and the logistic regression approach, with 

variances of the TCRs equal to 0.0055 and 0.0061, respectively. Interestingly, the logistic 

regression approach has the highest variance for the TCRs.

We also compare the results of the methods in terms of training data. Full results are 

available in Tables C.4, C.5, and C.6 in the Web Appendix. These results were similar to 

what we saw for the scenarios generated under the normality assumption. The stepwise 

procedure had the highest sum of TCRs out of the methods, but had the worst performance 

in terms of testing data. Next was logistic regression, then Yan’s method, and then the 

Box-Cox approach. In general, parametric methods overfit much less than nonparametric, 

and particularly, empirical-based methods.

Data generated from gamma distributions—When the data are generated from 

gamma distributions, we are operating in the power-normal family. In some instances, the 

Box-Cox transformation can still suitably approximate normality after transforming the data. 

The scenarios explored in this simulation study showed poor performance of the Box-Cox 
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approach when the data are generated from gamma distributions. Full results are available in 

Tables C.7, C.8, and C.9 in the Web Appendix.

When using the Box-Cox approach, we see in Figure 11 in Web Appendix C that the 

Euclidean method provides smaller variance for the TCRs than for the Youden index. On 

average, the variance of the TCRs is 0.0010 for the Euclidean method, whereas it is 0.0014 

for the Youden index. This corresponds to variances that are 43% higher for the Youden 

index. The sum of TCRs for the Euclidean method is 2.0728, whereas it is 2.0795 for the 

Youden index. This corresponds to a 0.32% higher total classification for the Youden index, 

which can be visualized in Figure 12 in Web Appendix C.

Under Yan’s combination method, the TCRs have on average, a variance of 0.0017 and 

0.0031 when using the Euclidean distance and Youden index as objective functions, 

respectively. The Youden index has variances that are 1.9936 times larger than for the 

Euclidean distance. The sum of TCRs for the Euclidean method is 2.1099, whereas it is 

2.1093 for the Youden index. When the sample sizes are 30, 30, 30 , and 50,50,50 , the 

Euclidean method has a higher sum of TCRs than the Youden index. For all other explored 

sample sizes, the Youden index has higher total classification.

When using logistic regression to combine the biomarkers, the variance of the TCRs is 

0.0037 for the Euclidean method and 0.0078 for the Youden index. On average, the variance 

of the TCRs when using the Youden index is 2.1171 times larger than when using the 

Euclidean method. The sum of TCRs for the Euclidean method is 2.1090 and 2.0994 for 

the Youden index. For all explored sample sizes, the Euclidean method provides higher total 

classification.

The stepwise procedure saw smaller variances for the Euclidean method. The Youden index 

has variances that are 2.0675 times larger on average than for the Euclidean method. The 

sum of TCRs for the Euclidean method is 2.0925, whereas it is 2.0820 for the Youden index. 

For all explored sample sizes, the Euclidean method provides higher total classification.

The Box-Cox approach fails to perform well compared to the other approaches in terms of 

sum of TCRs. Yan’s method and the logistic regression approach have the best performance 

in terms of sum of TCR. They perform similarly in this regard. For instance, when the 

sample sizes are 30,30,30 , and 200, 50, 50 , the logistic regression approach has higher 

total classification. For all other explored sample sizes, Yan’s method has higher total 

classification. The Box-Cox approach and the stepwise procedure perform similarly in terms 

of total classification, but underperform compared to the other two approaches.

In terms of variance of the TCRs, the Box-Cox approach has the smallest variance, followed 

by Yan’s approach, then the logistic regression approach, and lastly the stepwise procedure.

In instances where the data cannot be adequately transformed to normality, Yan’s method 

shows the best performing approach to combine biomarkers. It has a comparable sum of 

TCRs to the logistic regression approach for small sample sizes, and even has a higher 

total classification when sample sizes are 50,50,50 , 100,100,100 , and 200,200,200 . Yan’s 
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method provides variances for the TCRs that are 2.50 times smaller than the variances from 

using logistic regression.

Interestingly, the Euclidean method has higher total classification than the Youden index 

in several instances. For the logistic regression approach and the stepwise procedure, the 

Euclidean method has higher total classification than the Youden index for all explored 

sample sizes. Additionally, this was the case for Yan’s method, when sample sizes are 30 for 

each group and 50 for each group.

For the gamma scenarios, the Box-Cox method showed the worst performance in terms of 

results under training data, but performed almost as well as logistic regression in terms of 

results from testing data. Again, the stepwise procedure overfitted the most, followed by 

logistic regression. In these scenarios, Yan’s method had the third highest sum of TCRs
based on training data, but had the best performance based on testing data. Full results are 

available in Tables C.10, C.11, and C.12 in the Web Appendix.

Additional simulations—In addition to the above scenarios, we ran a small simulation 

study to explore scenarios in which the markers in each group were generated from different 

families of distributions. Full results are available in Table C.13 in the Web Appendix. In 

these scenarios, group 1 was generated from lognormal distributions, group 2 was generated 

from gamma distributions, and group 3 was generated from mixture normal distributions. 

The correlation between groups was set to be ρ = 0.5 and the sample size was set to 

n1, n2, n3 = 50,50,50.

The Box-Cox approach provided the highest sum of TCRs, being 2.2010 for the Euclidean 

method and 2.2514 for the Youden-index method. Logistic regression had the next 

highest sum of TCRs, being 2.1703 and 2.1890 for the Euclidean and Youden index, 

respectively. The kernel-based approach had the next highest TCRs, being 2.1549 and 

2.1721, respectively. Last was the stepwise procedure, with TCRs being 2.1465 and 2.1627, 

respectively.

In terms of variances of the TCRs, the Box-Cox approach saw the smallest average variance 

for the TCRs, being 0.0011 for both the Euclidean and Youden index methods. For logistic 

regression, the average variance of the TCRs were 0.0045 and 0.0068, respectively. For the 

kernel-based approach, the average variances were 0.0020 and 0.0039, respectively. For the 

stepwise procedure, the variances were 0.0039 and 0.0055, respectively.

It should be noted that while the Box-Cox approach had the best performance overall 

for these scenarios, it is still sensitive to distributional assumptions. This was observed 

in the previous scenarios that were generated from gamma distributions, where it was 

outperformed by the kernel-based approach, as well as logistic regression. The Box-Cox 

approach has been used in different ROC settings before and therein the authors discuss 

its robustness when data are generated from Gamma as well as its limitations for severe 

violations of normality induced by bimodal distributions.28, 29, 30, 31, 32 Therein, it is 

highlighted that if normality is not justified for the Box-Cox transformed scores then 
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non-parametric kernel-based alternatives should be considered, which is also the strategy 

that we recommend in our framework.

Summary of simulation results—The simulation section demonstrates the benefits of 

using the Euclidean distance as the objective function, rather than the Youden index when 

combining biomarkers. We see substantially smaller variances and MSEs for the TCRs when 

using the Euclidean method. In addition, the potential benefit from using the Youden index 

is minimal in terms of sum of the TCRs. At best, the Youden index provides a sum of TCRs
that is less than 2% higher than when using the Euclidean method. In many instances, the 

Euclidean method is able to outperform the Youden index in terms of total classification 

when evaluated under independent testing data. In particular, when the logistic regression 

model or the stepwise procedure are used, the Euclidean method frequently outperforms the 

Youden index in terms of sum of TCR. These results provide strong justification for the use 

of the Euclidean method by providing substantially smaller variance of the TCRs, as well as 

similar sums of TCRs.

When the data are generated from normal distributions, the normality assumption has the 

best performance in terms of bias, variance, and MSE of the TCR. In addition, it has the 

highest total classification out of each of the approaches. For the explored scenarios, the 

Youden index has a total classification that is at most 0.65% higher than the Euclidean 

method. For both the Youden index and the stepwise procedure, the Euclidean method 

provides a higher sum of TCRs than the Youden index, while having smaller bias, variance, 

and MSE for the TCRs.

When the data are generated form lognormal distributions, the Box-Cox approach 

outperforms all of the other explored approaches. The Euclidean method has smaller 

variance for the TCRs than the Youden index. The Youden index provides higher total 

classification than the Euclidean method for each of the approaches, but this is at most 1.37%
higher when using the preferred Box-Cox approach.

When the data are generated from gamma distributions, Yan’s approach performs 

comparably to logistic regression with regard to total classification, but has smaller 

variances for the TCRs, making it the preferred method when the data cannot be adequately 

transformed to normality. When sample sizes are 30,30,30  or 50,50,50 , the Euclidean 

method has higher total classification than the Youden index when using Yan’s approach. 

When the sample sizes are 200,50,50 , the sum of TCRs for the Youden index is ; 0.01%
higher than for the Euclidean method. For smaller sample sizes, the Euclidean method can 

outperform the Youden index in both variance of TCRs and total classification.

At the request of an anonymous reviewer, we explored the use of the normality assumption 

when the data are generated from lognormal and gamma distributions. For the considered 

lognormal scenarios, the Box-Cox approach has a sum of TCRs that is 4.9% higher 

than for the normality assumption. For different explored gamma scenarios, we also 

saw unsatisfactory performance. The combined results from the lognormal and gamma 

scenarios demonstrate that when normality is not met, it is best to use alternative methods. 
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Additionally, the reviewer requested we explore the performance of our methods with 

regard to the VUS of the resulting combination. For the normal scenarios, on average, the 

VUS was 0.0013 lower for our proposed method compared to the Youden index. For the 

lognormal and gamma scenarios, our proposed combination method had a higher VUS than 

combinations based on the Youden index, being 0.0015 and 0.0011 higher, respectively. That 

is, we do not observe any meaningful differences with respect to the VUS.

We suggest the following guidance for when each approach is more appropriate. If the 

markers are each approximately normally distributed, the normality assumption should be 

used. If the markers are not normally distributed, but can each be successfully transformed 

using the Box-Cox transformation, the Box-Cox approach should be used. When the data 

cannot be successfully transformed to normality, Yan’s method, the kernel-based approach 

should be used, although logistic regression performed nearly as well in our simulations for 

these scenarios. The stepwise procedure performed the worst on average, and we would not 

recommend using it.

If logistic regression is used to find a combination of scores, our method provides a higher 

sum of TCRs than the Youden index on average. As such, we would suggest using our 

method to derive optimal cutoff values when logistic regression is the combination method 

used.

While the difference in total classification between the Euclidean method and Youden index 

is minimal, the methods provide different sets of TCRs. In general, the Euclidean method 

provides a more balanced set of TCRs than the Youden index. Thus, if the clinical setting has 

preference for this, such a combination would be preferred. If there is preference for higher 

classification of one group, then the Youden index may provide a better set of TCRs for that 

clinical setting.

Application to Liver Cancer

A biomarker study was conducted for application to liver cancer at the Shanghai Chang-

zheng Hospital in China. This dataset has previously been used to combine biomarkers 

in the two-class setting where groups were evaluated pairwisely, or where patients with 

chronic liver disease and hepatoma were combined into one group.33 In the three-class 

setting it was used in application of cubic splines for ROC surface estimation.34 Biomarker 

scores were generated by the surface-enhanced laser desorption/ionization time of flight 

mass spectrometer. The study includes 236 markers, along with 52 healthy individuals, 39 

individuals with chronic liver disease, and 54 individuals with hepatoma. Three biomarkers 

were selected to be combined: markers 11646.52674, 11675.92167, and 11866.94047. 

Normality of the scores was evaluated before and after Box-Cox transformation using the 

Kolmogorov-Smirnov test (KS test). The estimated D* and KS test p-values after Box-Cox 

transformation are displayed in Table 5.

We explore the use of the Box-Cox approach, logistic regression, Yan’s method, and 

the stepwise procedure for combining these scores. The point estimates of the optimal 

combination coefficients are displayed in Table 6. The point estimates of D*, the TCRs, and 
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the sum of the TCRs are displayed in Table 7. Based on the point estimates in Table 7, 

the combination estimated using the stepwise procedure appears to be the best performing 

of all of the approaches. We see that it has the smallest value for D*, as well as the 

highest sum(TCRs). Logistic regression had the next best performance in training, followed 

by Yan’s method, and finally, the Box-Cox approach. These training-based estimates of 

performance are not sufficient for evaluating their true performance. In simulation we saw 

that the stepwise procedure and logistic regression are more prone to overfitting than the 

other approaches, and thus cross-validation is required to get a better estimate of their 

performance.

For this reason, we also use repeated cross-validation by resampling training/testing datasets 

1000 times. We use half of the data for training and half for testing. The results are also 

displayed in Table 7. We see that when evaluated using cross-validation, the Box-Cox 

approach has the best performance. Its estimated D* is 0.5755, and the sum(TCRs) is 

2.0902. Logistic regression saw an estimated D* of 0.6235, and a sum(TCRs) of 2.0176. 

In both measures, the Box-Cox approach has better performance. Lastly, we estimate the 

variance of the TCRs for each of the approaches. In Table 8, we see that on average, the 

Euclidean method provides smaller variances for the TCRs than the Youden index. For the 

Box-Cox approach, the estimated variance for TCR1 is 0.0014 for the Euclidean method 

and 0.0013 for the Youden index. For TCR2 and TCR3, the variance of their estimators are 

1.47 and 2.68 times larger for the Youden index, respectively. For all other approaches, the 

Euclidean method saw smaller estimated variances for each of the TCR. In several instances, 

the Youden index has variances that are multiple times larger than the Euclidean method. 

For the stepwise procedure, the estimated variances of TCR1, TCR2, and TCR3 when using the 

Youden index are 1.86, 3.33, and 5.48 times larger than the corresponding estimates based 

on the Euclidean method.

In conclusion, when the approaches applied to this dataset are evaluated using cross-

validation, the Box-Cox approach provides the smallest value for D*, the highest total 

classification, and the lowest variance of the estimates of TCRs on average. This approach 

is preferred to the commonly used logistic regression when markers can be transformed to 

approximate normality. For this dataset, logistic regression outperforms both Yan’s method 

and the stepwise procedure. It provides a higher total classification than both approaches. 

The Euclidean method has comparable performance to the Youden index when evaluated 

under independent testing data and provides smaller variances for the TCR. For the Box-

Cox approach, the total classification is 2.0902 for the Euclidean method and 2.1078 for 

the Youden index. This corresponds to total classification that is 0.84% higher for the 

Youden index, while its variance is 1.78 times larger. Logistic regression has higher total 

classification for the Euclidean method than the Youden index. The corresponding values are 

2.0176 and 2.0064 for the Euclidean method and Youden index, respectively.

The Box-Cox approach is the preferred method of combining biomarkers for these data 

since the biomarkers could be adequately transformed to normality. It exhibits both the 

highest total classification, as well as the smallest variance for the TCRs. The Euclidean 
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method has comparable sums of TCRs to the Youden index, while providing smaller 

variances for the TCRs.

Discussion

The Youden index has been used in the literature as an objective function for combining 

biomarkers while simultaneously selecting optimal cutoff values. In the three-class setting, 

this has well known drawbacks. For such settings, when estimating cutoffs for a single 

biomarker, the Youden index ignores information from one of the groups. The Euclidean 

method considers information from all three groups (i.e. all available data), as opposed to 

the pairwise nature of the Youden index. When combining biomarkers, the Youden index 

indirectly gains information from all three groups through the combination coefficients. We 

demonstrate that while this is the case, the Euclidean method still provides smaller variance 

for the TCRs. In our extensive simulation studies, we observe many cases where the Youden 

index exhibits variances for the TCRs that are over twice those of the Euclidean method. In 

addition, the Euclidean method provides comparable sums of TCRs to the Youden index. 

When using the logistic regression or the stepwise procedure, the Euclidean method actually 

provides a higher sum than the Youden index in independent testing data. For Yan’s method 

and the normality/Box-Cox approaches, the difference in sum of TCRs is less than 1%. This 

makes the Euclidean distance an attractive alternative to the Youden index as an objective 

function for combining biomarkers.

When we applied our methods to the liver cancer dataset, we show that the logistic 

regression underperforms. The Box-Cox approach outperforms the logistic regression model 

as well as the other approaches in terms of both ∑TCRs and variance of the TCRs.

We provide a variety of combination approaches that can accommodate biomarkers from a 

wide range of distributions. The normality assumption and Box-Cox approach are preferred 

to logistic regression when the data justify these assumptions. When these assumptions 

are not met, the more flexible kernel-based approach is appropriate and exhibits better 

performance compared to the logistic regression.

Combining markers in the three-class setting is a relatively new topic, which is in need of 

further research. Additional topics may include maximizing different objective functions, 

including covariates to the models, or constructing nonlinear combinations of markers. 

There are many possible paths of research for both of these topics. Additionally, to make this 

work accessible, a Matlab package has been uploaded to https://github.com/BrianMosier/

dstar.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A plot comparing the ROC surface using the true optimal combination (transparent yellow/

green) versus an ROC surface using a combination estimated from logistic regression (grey). 

The yellow/green ROC surface dominates the grey surface. The surfaces were constructed 

using the true CDFs of the combined scores.
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Figure 2. 
The plot demonstrates the use of the Box-Cox transformation in the context of ROC 

analysis. A single biomarker with 3 groups uses a single value of λ to transform all 3 groups 

to normality. When using this approach to combine p biomarkers, we obtain p separate λ’s 

to transform each biomarker to normality.
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Figure 3. 
Data were simulated from normal, lognormal, and gamma distributions with sample sizes 

of (30, 30, 30), (50, 50, 50), (100, 100, 100), and (200, 200, 200). Point estimates of D*
were obtained using a kernel-based estimate and an empirical estimate. Mean squared errors 

were estimated for both estimators. The kernel-based estimator had smaller MSE than the 

empirical estimator for all explored distributions and sample sizes.
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Figure 4. 
The first panel in the figure displays the average of bias TCR1 , bias TCR2 , and bias TCR3

for each of the explored sample sizes. The second panel displays the average of 

var TCR1 , var TCR2 , and var TCR3  for each scenario. The third panel displays the average 

of MSE TCR1 , MSE TCR2 , and MSE TCR3  for each scenario. We see that for most 

scenarios, the Euclidean method had smaller bias than the Youden index. For all scenarios, 

the Euclidean method had smaller variance and MSE.
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Figure 5. 
The plot displays the percent difference in ∑i TCRi, i = 1, 2, 3, i.e. total classification, for 

the Euclidean method (EUC) versus the Youden index (YI) for each of the combination 

approaches and sample sizes, where Σ = 0.7I + 0.3J . The percent difference is calculated 

by ∑TCR EUC − ∑TCR Y I
∑TCR Y I . Values above 0% correspond to a higher total classification 

for the Euclidean method than the Youden index, indicating better diagnostic performance 

for the Euclidean method. Both logistic regression and the stepwise procedure saw 

higher total classification than the Youden index for all sample sizes except when 

n1, n2, n3 = 200,200,200 . For the normality assumption and Yan’s method, the Youden index 

saw higher total classification that was less than 1% higher than that of the Euclidean 

method.
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Table 5.

The selected biomarkers, along with their D* values and Kolmogorov-Smirnov test p-values after Box-Cox 

transformation (denoted pi for group i, i = 1,2, 3.)

Marker D* p1 p2 p3

11646.52674 0.5349 0.5073 0.5439 0.4148

11675.92167 0.5639 0.2870 0.1683 0.2468

11866.94047 0.6092 0.4701 0.5007 0.4202
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Table 6.

The estimated combination coefficients for each of the approaches for the Euclidean method.

Method β̂1 β̂2 β̂3

Box-Cox 1.0000 0.2081 0.8492

Logistic 1.0000 0.0435 0.4283

Yan 1.0000 0.0833 0.6134

Stepwise 1.0000 0.2700 0.1700
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Table 8.

The bootstrap-based estimates of the variances of the TCRs.

Approach var TCR1 var TCR2 var TCR3

Box-Cox 0.0014 0.0017 0.0022

Logistic 0.0037 0.0050 0.0050

Yan 0.0034 0.0042 0.0042

Stepwise 0.0021 0.0021 0.0027

Box-Cox 0.0013 0.0025 0.0059

Logistic 0.0047 0.0079 0.0094

Yan 0.0053 0.0087 0.0179

Stepwise 0.0039 0.0070 0.0148
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