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Abstract

The performance of individual biomarkers in discriminating between two groups, typically

the healthy and the diseased, may be limited. Thus, there is interest in developing statistical
methodologies for biomarker combinations with the aim of improving upon the individual
discriminatory performance. There is extensive literature referring to biomarker combinations
under the two-class setting. However, the corresponding literature under a three-class setting is
limited. In our study, we provide parametric and nonparametric methods that allow investigators to
optimally combine biomarkers that seek to discriminate between three classes by minimizing the
Euclidean distance from the ROC surface to the perfection corner.

Using this Euclidean distance as the objective function allows for estimation of the optimal
combination coefficients along with the optimal cutoff values for the combined score. An
advantage of the proposed methods is that they can accommodate biomarker data from all three
groups simultaneously, as opposed to a pairwise analysis such as the one implied by the three-class
Youden index. We illustrate that the derived true classification rates (TCRs) exhibit narrower
confidence intervals than those derived from the Youden-based approach under a parametric,
flexible parametric, and nonparametric kernel-based framework. We evaluate our approaches
through extensive simulations and apply them to real data sets that refer to liver cancer patients.
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Introduction

ROC analysis is a popular method for evaluating the discriminatory ability of continuous
biomarkers. Initially, ROC methods were restricted to the two-class setting, where the

groups (classes) under consideration typically refer to a healthy group and a diseased group.

ROC methods have been extended to include three or more classes.12 In the three-class or
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k—class setting, an ROC surface or hypersurface is used, rather than ROC curves, which
are employed in the two-class setting. Accounting for more than two groups is useful in
certain scenarios, as some studies are designed to account for the progressive nature of the
disease and thus, they might include three (or more) groups for discrimination. In the three
class-setting, biomarker studies typically consider a healthy/control group (group 1), the
benign group (group 2), and an aggressive stage of the disease (group 3). For example, liver
cancer studies often consider three groups: healthy individuals, individuals with cirrhosis of
the liver or liver cysts, and individuals with liver cancer.3 4 5

In the two-class setting, the random variable that refers to the continuous biomarker scores
for the healthy group is denoted with X3. The random variable that refers to the diseased
group is denoted with X5. The specificity, at a given cutoff ¢, is defined as spec(c) = A X,
< ¢) and the sensitivity as sens(c) = AX; > ¢). The ROC curve is a plot of the sensitivity
versus 1-specificity across all thresholds. There are a variety of measures used in ROC
analysis to determine the diagnostic performance of a biomarker. The most popular is the
area under the ROC curve (AUC). It can be shown that it is the average sensitivity across
all levels of specificity, or likewise the average specificity across all levels of sensitivity.®
Equivalently, the AUC is equal to P(X, < X,) for a continuous biomarker.®

The Youden index is another popular measure to gauge the performance of a biomarker,
which is commonly denoted, J.7 Its expression is given by: J = max.{sens(c) + spec(c) — 1},
where ¢ is the cutoff value. This expression corresponds to the maximum of the sum of the
sensitivity and specificity. This is graphically represented by the maximum vertical distance
of the ROC curve to the main diagonal. Another measure is the closest point on the ROC
curve to the perfection corner. We will refer to this measure as the Euclidean distance.8 It
yields a more balanced set of true classification rates for the two groups than the Youden
index.® Depending on the context, this may or may not be desirable. It is defined by:

D* = minc\/(l - sens(c))2 +(1- spec(c))z.

While the AUC provides insight regarding the overall diagnostic performance of a marker,
it is unable to provide information about the performance of a marker at the optimal point
on the ROC curve. The Youden index and the Euclidean distance provide information about
the diagnostic performance of a marker at an "optimal” operating point. These measures
also estimate the corresponding optimal cutoff values, which are valuable for diagnostic
testing. The Youden index has a clear clinical interpretation, while the Euclidean distance
does not, but instead enjoys an appealing geometrical interpretation. In a recent paper,

it was demonstrated that in the 3-class setting, the Euclidean distance can yield narrower
confidence intervals for the estimated optimal cutoffs compared to the 3-class Youden
index.1! This is due to its ability to accommodate data from all three groups simultaneously
as opposed to the 3-class Youden index. Additionally, in some settings, it outperforms the
Youden index with regard to the sum of the true classification rates (TCRs) when evaluated
under independent testing data.1!

It is common that multiple biomarkers are measured for each individual in a study, with
each individual biomarker having inadequate diagnostic performance. By collecting multiple
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measurements, more information is provided on the disease status of the patient than any
individual biomarker can provide.

As the individual performance of a biomarker may be limited, there is clinical interest in
finding optimal combinations of biomarkers that are simultaneously assayed on the same
individuals.12 13 In the two-class setting, several methods have been explored to combine
biomarkers using optimization procedures under a variety of objective functions. Methods
for combining biomarkers to maximize the AUC have been explored extensively.14: 15 16
Proposed biomarker-combination methods aiming to maximize the AUC include the min-
max approach,14 stepwise approaches based on the empirical ROC curve,4 15 the logistic
regression model,1* and methods using the Fisher’s discriminant coefficient under the
assumption of normality.18 Authors have also explored combining biomarkers to maximize
the Youden index (Y1) and the partial area under the curve (pAUC).17: 18 Biomarker
combinations driven by the maximization of the Youden index involve stepwise procedures
based on the empirical ROC curve, nonparametric methods based on kernel smoothing,

and methods based on the assumption of normality.1” For combinations that are based on
the maximization of the pAUC, authors have considered parametric approaches, as well

as non-parametric kernel-based approaches.18 When assuming normality, if the covariance
matrices for the healthy and diseased groups are proportional, there is a combination of
biomarkers that leads to a dominant ROC curve across all levels of specificity.1® This would
lead to an optimal ROC curve under any measure/objective function. A similar result exists
for the three-class setting, where a closed form solution for a dominant ROC surface exists.
This result is discussed in Section 3.1 and proof is available in Web Appendix A. Such an
assumption is very strict, and thus more flexible methods are needed. However, by exploring
scenarios that meet these assumptions, we have the luxury of knowing the true optimal
linear combinations of scores. This allows to see how well our methods perform, not only
compared to each other, but also with regard to the theoretically dominant ROC surface, and
thus there is value in exploring such scenarios.

In the three-class setting, the literature is more limited. There are three

ordered groups, for which, the random variables corresponding to the continuous
biomarkers are denoted X,, X,, and X;. The ROC surface is the collection

of the triplets (x, y, z) = (TCR\(c)), TCRy(c,), TCRy(c1, c)) for all ¢, < ¢,, where

TCR(c) = P(X, < ¢)), TCRy(c;,c)) = P(c; < X, < ¢), and TCR; = P(X; > ;). See also Nakas
and Yiannoutsos, 2004 and Nakas, Bantis, and Gatsonis, 2023 for more details.? 19

Authors have explored linear combinations of biomarkers to maximize the volume under
the surface (VUS). These methods include the cumulative logistic model, a min-max
combination approach, a penalized/scaled stochastic distance based on the assumption of
normality, and a stepwise procedure based on the empirical ROC surface.29 Additionally,
authors have explored strategies that involve the maximization of pairwise AUCs.2 While
maximizing the VUS provides the best average performance of a biomarker across all
thresholds, the diagnostic performance at an optimal operating point may be inferior to
alternative combinations. Additionally, VUS-based combination methods do not provide
estimates of an optimal pair of cutoff points. As such, the clinical utility of such strategies
might be questionable.
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In a recent paper, authors explore the use of the Youden index for combining biomarkers in
the 3-class setting.22 For individual biomarkers, the Euclidean distance has been shown

to provide substantially shorter confidence intervals around the corresponding cutoffs
compared to the 3-class Youden index.1! In settings with low sample size, the cutoff values
estimated using the Youden index may suffer from excessively wide confidence intervals
and therefore they may not be very informative. The advantage of the Euclidean method to
simultaneously accommodate the scores of all groups is strengthened when we are dealing
with A—class problems with (k> 3). The reason being that the A&~class Youden index operates
pairwisely, regardless of the value of &, thus excluding A — 2 groups at a time (k> 3). In such
instances, the Euclidean distance may be a better choice for cutoff-estimation.

This paper is organized as follows: In section 2 we refer to an easy to use approach

based on the cumulative logistic model that allows combinations of biomarkers under a
3-class setting. This approach has been used in order to combine biomarkers to improve the
VUS.20 Due to its computational simplicity, along with its popularity, we briefly discuss

it and include it to our comparisons throughout the paper. In section 3 we discuss our
proposed methods that involve parametric and non-parametric techniques for finding optimal
combinations that are driven by the minimization of the Euclidean distance of the ROC
surface to the perfection corner. In section 4 we evaluate our approaches through extensive
simulations and we further compare them to strategies that involve the cumulative logistic
regression model and the three-class Youden index. In section 5 we present an application
that refers to liver cancer patients. We end with a discussion.

Known Approaches for Combining Biomarkers in the Three-Class Setting

Logistic regression is the most common method for linearly combining biomarkers. Due to
its popularity and its robust performance, it may be of interest as a method for finding
optimal combinations to minimize the Euclidean distance or maximize the three-class
Youden index. Its popularity makes it a method of interest to compare with our proposed
methods. In contrast with the normality assumption in Section 3.1, the logistic regression
approach is a two-step process. First, the combination coefficients are estimated using the
logistic model, then based on the combined score, the optimal cutoff values are estimated
using the empirical estimates of the ROC surface. The cumulative logistic model is of

P(D=1]Y),) _ P(D=1]Y)+PD=2]Y))) _
(D=2|Y,,)+P(D=3|Yp))_a”+Y"ﬂ’log( P(D=3|7,) )—bu+Ypﬂ,

where g is a vector of coefficients of length p, and 4, and b, are intercepts. In order to
combine the biomarkers with one set of combination coefficients, we discard the intercepts,
so the obtained pseudoscore in practice is simply Y.

the form log( 5

Once the pseudoscore is obtained, the optimal cutoff values can be estimated in order to
minimize the shortest distance from the ROC surface to the perfection corner. Note that
since the combination coefficients are derived using cumulative logistic regression, they are
not optimized with respect to this distance.

Other previously explored approaches aim to maximize the volume under the ROC surface
(VUS) under various algorithms.20 Unless very strict assumptions are imposed on the ROC
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surface, a larger VUS for one marker does not necessarily imply better performance at

its “optimal” operating point than the optimal operating point for another marker. Our
approaches combine biomarkers under the notion of minimizing the Euclidean distance
from the ROC surface to the perfection corner, which aims directly to a combination that
will yield an optimal operating point. As a result: (1) we simultaneously estimate optimal
combination coefficients and cutoff values corresponding to the optimal operating point (2)
we simultaneously accommodate data from all three groups, as opposed to a strategy that
uses the data in a pairwise fashion, e.g., the 3-class Youden index or a strategy that attempts
to maximize the sum of pairwise AUCs.

Proposed Approaches for Combining Biomarkers

We propose a variety of approaches, which aim to minimize the shortest Euclidean distance
from the ROC surface to the perfection corner. The following equation is the general form of
the equation:

D% = min <o (1= Fie)+ (1 = (Fie) = Fe))? + ()

@

Parametric Approach Under Multivariate Normality

Let Y, i = 1,2,3 be the random variables referring to the collection of p biomarker scores for
the healthy, moderate diseased, and severe diseased individuals, respectively. Assume that
Y, ~ MV N,(6, X.). Given the combination vector g, the combined score X, = ' ¥, follows a
univariate normal distribution, that is, X, ~ N(u, s,), where y, = g’ 0, and o> = g/ Z.B.

The Euclidean distance for the combined score is therefore

oo - o

@

Note that in contrast to equation (1), D* in equation (2) is a function of g, along with

c; and ¢,. Note that estimates for 6, and =, can be obtained using maximum likelihood

and plugged into (2). We can then use numerical optimization techniques, such as the
Nelder-Mead method, which is implemented in the fminsearch function in Matlab or various
packages in R, for estimating the optimal combination, g, and the optimal cutoffs ¢,, and

. In order to standardize the optimal combination, we restrict our search to the interval
[1.1], and allow the marker with the largest value in absolute value to be either 1 or —1.

This is because ROC surfaces are unchanged under monotone transformations. As such,

the combined score, X = Y is equivalent to the combined score, X* = Y g%, where p* = of
and « is a positive constant. For example, the combination coefficients g = [1,0.50,0.02] are
equivalent to g* = [100,5, 2]. Therefore, restricting our search to the interval [ — 1,1] allows us
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to search over the range of all possible combinations, while standardizing the result, which
eliminates any redundant combinations. We implement the following algorithm.

1. Set the coefficient for the first marker to be 1, i.e. g, = 1, and then search for the
remaining combination coefficients in the interval [ — 1,1] to minimize D* using
equation (3). For this iteration, g, is the "anchor” for the combination.

2. Repeat step 1, but with the coefficient for the first marker setto -1, i.e. g, = — 1.

3. Repeat steps 1 and 2 for each of the remaining biomarkers, first letting g, be the
anchor, and then going through the remaining markers, and ending with g, as the
anchor. Choose the combination with the smallest value of D* from equation (3).

In the two-class setting, combinations for a dominant ROC curve have been derived when
normality is assumed and the two groups have proportional covariance matrices.2® In such
a configuration, the ROC curve will have higher sensitivity across all levels of specificity
compared to any other linear combination. It is also the case in the three-class setting,

that if u,— p, = u, — u,=6and T, = %, = T, = X, then the best set of linear combination

coefficients is g « 57!, which results in an ROC surface dominating all others. Proof
of this result is found in Web Appendix A and a visualization of a linear combination of
markers corresponding to a dominant ROC surface is displayed in Figure 1. By using such
configurations, we can evaluate the performance of each of the approaches in comparison
with the true optimal values.

Box-Cox Approach

It is often the case that the biomarkers for each disease state (group) do not comply with
the normality assumption. It may be the case that the biomarkers can be transformed to
normality using the Box-Cox transformation, which is a monotone transformation. Such an
approach may allow us to achieve approximate normality for the transformed data and thus
may be convenient, both computationally and in terms of more efficient estimation over a
non-parametric approach. The Box-Cox transformation is defined by

YW = # A£0,

log(Y) A=0

©)

A single transformation parameter, 4, is estimated for biomarker m, where m = 1, ..., p. This
allows us to use a single Box-Cox transformation for each individual biomarker to transform
all three groups (Y., Y2 Ya.0m) SO that the transformed scores for each of the markers,
Y, Y9, and YY), are approximately normally distributed. The Box-Cox transformation

is demonstrated in Figure 2. The optimal value of 4, can be estimated via maximum
likelihood.23 Under an ROC setting, a profile likelihood can be used for the derivation of 4,.
This results in a computationally easier version of the full likelihood to be used solely for
estimating 4,.24 For a single marker Y, this profile likelihood can be written as:
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After the scores are transformed, equation (2) can be used as the objective function
to combine the scores. This approach implements the same algorithm as the normality
assumption, but it does so for the transformed scores.

It is often the case that biomarkers are not normally distributed and cannot be adequately
transformed to approximate normality. In such cases, the performance of methods that rely
on normality may not be appropriate. As a result, other methods are required for developing
linear combinations. Various nonparametric approaches have been explored for combining
biomarkers to optimize different objective functions, such as AUC, pAUC, Youden index,
and VUS. We will explore using adapted versions of some of these methods to combine
biomarkers under the notion of minimizing the Euclidean distance.

Stepwise Procedure Based on Empirical ROC Surface

This method is a stepwise down procedure for combining biomarkers that has been used

to maximize the Youden index in the two-class setting.1’ It starts with the combining the
best two performing individual biomarkers pairwisely and works its way down to the worst
performing biomarkers. The algorithm implements the following steps:

1 Calculate the empirical estimate of Euclidean distance for each of the p
biomarkers.

2. Order these p biomarkers based on the values of the empirical Euclidean distance
estimates from smallest to largest. Denote the corresponding values for the
healthy group as (Y., = (Y. Yiipo—1ys -+ - Yl,._(,))T fori=1,2,...,n, the values for

the moderate disease progression group as Y, = (Yo ;s Yaj - 1)s - -+ YZ,_(,))T for
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Jj=1.2,...,m, and the values for the advanced disease progression group as

T
(Y3k = (Y}k'“)), Y3k_(1’,, ) oees Y3k7(1)) fOl' k= 1,2, e, M3
3. Combine the first two biomarkers empirically using the objective function
A% Z”l I(Y”'(P)+ w,,,lY,,-v(p,nSEl'w 71) 2
D, = 1= &i=1 P +
P n;

L) m

" . m . 2
1- [2/2— Ao+ Wy Yoo S Erupet) Yy IV + 0= 1 Yay-0 < C'vu’pl)])

n1/2

+

ns

" A
Zk: II(Y3k.<,,) +w, Y p-1n < C2,u, 1))

®)

which is evaluated on 201 equally spaced values of w,_, in [ - 1,1] as follows.
For each given value of w,_,, first the optimal cutoff value, ¢,, _, is empirically

searched by minimizing D, ; then, the value of D, , is calculated at the
selected optimal cutoff for each w,_,.

4. Similar to step 3, combine the first two biomarkers empirically as

D, =|1- Y (= Y i+ Yingon < é1sy) ’
p—1" n

3

n ~ ~ 2
- (Z/Z_ 1 I(rp_ 1Y2,,(p) + Yz/,(p_ n < Cz,rl,,l) Z/: 1 I(rn—lYZJ.(p) + YZMP— n = Clvrpl)))

m m

+

+

n R 2
Zk: | 1(",;7 Yk + Yaep-n < oy 1)
n3 '

(6
5. Choose the coefficient, w,_, or r,_,, which gives the smallest Euclidean distance
value as the optimal combination coefficient for the first two markers.
6. Having derived the univariate combined score of the first two biomarkers in step

5, combine it with the third marker, that is, the (p — 2)”’ ordered marker, using the

same procedure in steps 3-5. Proceed in the same way until all biomarkers are
included in the linear combination.

This approach was shown to perform well in simulations when evaluated under training data
in the two-class setting with the Youden index as the objective function.1’ In our simulation
section, we evaluate its performance under independent testing data to avoid any issues of
overfitting.
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Kernel-Based Method

This method is a modification of a method proposed by Yan et. al. to maximize pAUC in the
two-class setting.18 The method has been modified to optimize the Euclidean distance as the
objective function.

Given a set of biomarkers for healthy, moderate disease, and advanced disease groups, Y,, Y5,
and v;, respctively, and given linear coefficients g, we consider using normal kernels to
estimate the cumulative distributions of the combined scores for each of the groups, denoted
X, X,, and X;. The kernel-based cumulative distribution estimate for group i is given by:

-~ 1 x—X;
Fi(x) = I z :Q(T/),
lj:1 1

™

where #, is the sample size of group i, X;; is the combined score of the j, individual in group
i, and A, is the bandwidth for group i. We employ a Gaussian kernel24, and for the bandwidth
we use:

h; = 0.9min(sd(X,), igr(X;)/1.34)n;°2,

where sdand igrare the standard deviation and interquartile range of group 7.2

The kernel-based estimate of the Euclidean distance is therefore,

B = ming.y ey <cz’(1 — B@)f + (1= (Bi@) - Fe) + (F;(éz))z]

| —

®

where ¢, and ¢, are the estimated optimal cutoff values. The proposed method implements
the following steps

1. Set the coefficient for the first marker to be 1, i.e. g, = 1, and then search for the
remaining combination coefficients in the interval [ — 1,1] to minimize D* using
equation (8).

2. Repeat step 1, but with the coefficient for the first marker set to -1, i.e. g, = — 1.

3. Repeat steps 1 and 2 for each of the remaining biomarkers. Choose the
combination with the smallest value of D*.

Kernel-density estimation can accommodate a wide variety of distributions. In the context of
ROC analysis, kernel density estimates of the ROC curve tend to give a more conservative
estimate of performance than empirical estimates in terms of AUC.28 As such, their results
when evaluated under training data are less prone to over-estimating the performance of
biomarkers. Additionally, kernel-based estimates tend to provide smaller MSE for D* than
empirical based estimates, which is demonstrated in Figure 3.
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Simulation Study

In this section we present the results from an extensive simulation study to compare

the performance of the combinations of biomarkers based on the Euclidean distance and
Youden index as objective functions. We implement five methods of combining biomarkers,
including the normality assumption and the Box-Cox transformation where appropriate,

the logistic regression model, the stepwise procedure, and the kernel-based method. In all
scenarios explored, we consider three biomarkers to combine. We explore scenarios where
data are generated from normal, log-normal, and gamma distributions. We generate groups
with sample sizes of (30,30,30), (50,50,50), (100,100,100), (200,200,200), and (200,50,50).
We consider scenarios with correlations between biomarkers of 0.3, 0.5, and 0.7.

In the simulation study we generate training data and estimate both the combination
coefficients, as well as the optimal cutoff values for the combination. Evaluating the
performance of the combination based on training data leads to overly optimistic results that
are unlikely to accurately reflect how the combinations would perform in the population.
For validation, we generate independent datasets with sample sizes of 100,000 for each of
the three groups in order to evaluate the performance of the combination methods. This is
analogous to estimating combination coefficients and cutoff values in a given study and then
evaluating their performance in the population. It is through the independent testing data
that we can see the true performance of the estimated combination coefficients and their
associated cutoff values.

In the scenarios where the data are generated from normal distributions, we explore
configurations where the combination coefficients for a dominant ROC surface can be
derived in closed form. In the two-class setting, combinations for a dominant ROC curve
have been derived when normality is assumed and the two groups have proportional
covariance matrices.18 Mclntosh and Pepe (2002) also discuss that in the two-class setting,

it is not necessary to specify the constituent distributions because rules based on the density
ratio are equivalent to rules based on P(D = 1| Y), which can be approximated with binomial
regression tools.2 It is the case in the three-class setting, that if p, — p, = pu, — p, = 5 and

X, =X, =X, = X, then the best set of linear combination coefficients is g = sz~ ! which
results in an ROC surface dominating all others. Proof of this result is found in Web
Appendix A. By using such configurations, we can evaluate the performance of each of the
approaches in comparison with the true optimal values.

In order to compare the performance of the Euclidean distance and the Youden index
as objective functions to be optimized for the combined score, we explore the following
measures for all of the explored scenarios:

1 Variance of the TCRs.
2. Percent difference in total classification (sum of TCRs).
3. Total classification for each method/approach.

Because the scale of the combined score is affected by the estimated combination
coefficients, directly comparing the variance of the cutoff values is not meaningful, as the
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scale of the combined scores may vary between approaches. By comparing the variance of
the TCRs, we remain in the ROC space, and thus lie on the same scale for both methods.

For the scenarios generated from normal distributions, where a dominant ROC surface is
known, we can also explore the bias, variance, and MSE of the estimated combination
coefficients, cutoff values, TCRs, and sum(TCRs). These measures will provide us with
insight as to how each of the methods perform in estimating the true optimal combination
coefficients and cutoff values.

Scenarios with a dominant ROC surface

Comparing performance of the Euclidean distance and Youden index as
objective functions—When the data are generated from normal distributions in
configurations where a dominant ROC surface exists and is known, both combination
methods seek to find the same set of combination coefficients. This allows us to compare
the use of the Euclidean method and Youden index as objective functions for combining
biomarkers under fair conditions. We focus on results for the scenarios with covariance
matrices, = = 0.71 + 0.3J. Results for £ = 0.57 + 0.3J and = = 0.3 + 0.7J are discussed
briefly in the text and full results are included in the Web Appendix B. In Figure 4,

we see that in most explored scenarios, the TCRs have smaller bias, variance, and mean
squared error (MSE) under the Euclidean method than the Youden index for each of the
approaches. In a few select scenarios, the Youden index exhibits smaller bias than the
Euclidean method. When (n,, n,, n;) = (200,50,50), logistic regression exhibits larger bias than
the Youden index. The stepwise procedure results in higher bias for the Euclidean method
when sample sizes are (n,, n,, n;) = (100,100,100), (200,200,200), and (200,50,50). While the bias
for these scenarios is larger for the Euclidean method, we observe substantially smaller
variances, and as a result, smaller MSE. For instance, when using logistic regression and the
sample size is (n, m, n3) = (200,50,50), the bias, variance, and MSE for the Euclidean method
are 0.0174,0.0037, and 0.0045, respectively. For the Youden index, they are 0.0145,0.0095, and
0.0100. While on average, the Youden index has a smaller bias on for the TCRs, the average
variance is 2.57 times larger. This results in MSEs for the TCRs derived using the Youden
index that are 2.22 times larger on average. Similarly, when using the stepwise procedure
and the sample size is (n,, n, n;) = (200,50,50), the bias, variance, and MSE for the Euclidean
method are 0.0412,0.0033, and 0.0055. For the Youden index, they are 0.0230,0.0083, and
0.0092. Again, while the bias for the Youden index is smaller on average, its variance is 2.52
times larger. This results in an MSE that is 1.67 times larger for the Youden index. In all
scenarios where X = 0.71 + 0.3J, the Euclidean method exhibits smaller variance and MSE
for the TCRs than the Youden index. In the majority of scenarios, the Euclidean method also
exhibits smaller bias on average than the Youden index.

When X = 0.5 +0.5J, there are several instances where the TCRs derived by the Euclidean
method exhibit larger bias on average than those derived by the Youden index when using
logistic regression or the stepwise procedure. Full results are available in Table B.5 in

Web Appendix B. For logistic regression, this occurs when (n,, n,, n;) = (200,50,50). For the
stepwise procedure, this occurs when (n,, n,, n;) = (100,100,100), (200,200,200), and (200,50,50).
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For each of these scenarios, the Youden index has higher variance and MSE than the
Euclidean method. When the normality assumption or Yan’s method are used, the bias is
smaller for the Euclidean method for all sample sizes.

When T = 0.31 + 0.7J, the stepwise procedure is the only combination approach with higher
average absolute bias for the TCRs when using the Euclidean method out for select sample
sizes. Full results are available in Table B.6 in Web Appendix B. The higher bias occurs
when (n,, n,, n3) = (100,100,100), (200,200,200), and (200,50,50). While these scenarios have
higher bias for the Euclidean method, the Youden index has higher variance and MSE.

In Figure 5, we see that the difference in sum(TCRs), or total classification, between the

two methods is minimal. For the logistic regression approach, the Euclidean method actually
provides higher total classification in independent testing data than the Youden index for all
scenarios except when the sample size is 200 for each of the groups. When this combination
approach is used and the sample size is 30 for each group, the Euclidean method has a total
classification that is 0.87% higher than the Youden index. When the sample size is 200, the
Euclidean method has a total classification that is 0.17% lower than the Youden index. For
normally distributed biomarkers, this result, along with the smaller variance of the TCRs
provides strong justification for using the Euclidean method when using logistic regression
to combine biomarkers.

For Yan’s method, the Youden index provides higher total classification than the Euclidean
method in all cases. The largest difference is seen where sample sizes are 200 for each of
the groups. Here the Euclidean method has a total classification that is 0.56% lower than that
of the Youden index. When sample sizes are 30 for each group, this percent difference is
only 0.22%. While the gain in total classification when using the Youden index is minimal,
its increase in variance for the TCRs is substantial.

For the normality assumption, again, the Euclidean method provides lower total
classification than the Youden index in all explored scenarios. This corresponding percent
difference ranges from 0.55% to 0.65% lower total classification for the Euclidean method
than the Youden index.

For the stepwise procedure we see similar results to those when using logistic regression.
For all scenarios explored, except when the sample size is 200 for each group, the Euclidean
method outperforms the Youden index in terms of total classification. Here, the Euclidean
method has total classification that is 0.08% lower than the Youden index. When the sample
size is 30 for each group, the Euclidean method provides total classification that is 1.41%
higher than the Youden index.

We see that for each of the methods, little is lost in terms of total classification when

using either of the methods. For the normality assumption and Yan’s method, the Youden
index provides higher total classification that is less than 1% higher than for the Euclidean
method. On the other hand, for the logistic regression and stepwise procedure approaches
of combining biomarkers, the Euclidean method provides higher total classification than the
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Youden index for all explored sample sizes, except when the sample size is 200 for each of
the groups.

Comparing the performance of the explored combination approaches—In order
to compare the performance of the combination approaches, it is valuable to know what

the true optimal combination coefficients are, as well as the true optimal cutoff values

for the combination. This allows us to compare the bias, variance, and MSE of the
combination coefficients and the cutoff values for each of the approaches. Under the
normality assumption, the scenarios were configured so that there is a known dominant
ROC surface. Population parameters and optimal combination coefficients/cutoff values are
displayed in Table 1. Table 2 displays the corresponding bias, variance, and MSE of each of
the approaches for the combination coefficients.

With regard to the combination coefficients, the logistic regression method provides the
smallest values of bias, variance, and MSE for all explored scenarios. The normal approach
exhibits a bias for the combination coefficients that is similar to logistic regression.
However, the former exhibits higher variance and MSE than the latter. We see that

each of the approaches provide estimates of the combination coefficients that are biased
downwards. As the sample size increases, the estimates approach the true optimal values.
Unsurprisingly, the stepwise procedure and kernel-based approach perform worse than the
logistic regression and normality-based approaches. We see that the stepwise approach
provides the largest values of bias, variance, and MSE.

With regard to the first optimal cutoff value, ¢;, there are mixed results. Full results are
presented in Table 3. For all sample sizes excluding (n,, n,, n;) = (50,50,50), the stepwise
procedure has the smallest bias. On the other hand, the normal assumption provides the
smallest variance and MSE for all sample sizes. While the logistic approach has the smallest
bias, variance, and MSE for each of the combination coefficients, it exhibits the largest
variance and MSE for ¢,. The variance of the estimate from the logistic approach is more
than double the variance of the estimate from Yan’s method for several of the sample sizes.
For example, when (n,, n,, n;) = (100,100,100), the variance of ¢, for Yan’s method is 0.0460,
while it is 0.1017 for the logistic approach. With regard to the second optimal cutoff value,
o, the stepwise procedure provides the largest bias for all sample sizes. Additionally, it also
has the largest MSE of all of the approaches. The normal assumption has the smallest bias
for ¢, for all sample sizes except (n;, m,, n;) = (200,50,50), where it has a bias of —0.2202, and
the logistic approach has a bias of —0.1816. With regard to variance and MSE, the normal
assumption provides the smallest values for c,.

Next, we explore the performance of each of the approaches with regard to the TCRs.

The bias, variance, and MSE of the TCRs are displayed in Table 4, along with the mean
total classification (sum of TCRs) for each of the approaches. We see that the normality
assumption leads to the smallest bias, variance, and MSE for the TCRs. Additionally,

the normality assumption has the highest total classification when compared to all other
approaches. The difference in total classification is minimal when compared to the logistic
approach. For instance, when the sample size is 100 for each group, the normality
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assumption provides a total classification that is equal to 1.9984, while the logistic approach
has total classification of 1.9912. Yan’s method provides smaller MSE than the logistic
approach for all explored sample sizes, but has smaller total classification than the logistic
approach. This is partially due to smaller variances in the TCRs than those of the logistic
approach. The stepwise approach provides smaller MSE than the logistic approach for TCR,
and TCR,, but has a larger MSE for TCR,. This approach performs notably worse than all

of the other approaches in terms of total classification. When the sample size is 30 for each
group, the stepwise approach has total classification of 1.9281, while it is 1.9454 for Yan’s
method, 1.9654 for the logistic approach, and 1.9796 for the normal assumption. As sample
sizes increase, the difference in performance between the methods decreases.

Additionally, we compare the performance of each of these methods with respect to training
data. Here, we compare the sum of TCRs under training and testing for each method and
approach. Here, we discuss the scenarios with £ = 0.71 + 0.3J. Full results are available in
Tables B.7, B.8, and B.9

The stepwise procedure had the highest sum of TCRs out of all the approaches under training
data, being 2.1371 and 2.1609 for the Euclidean and Youden methods, on average across

all sample sizes. This approach led to a sum of TCRs under training data that ranged from
4.0% to 15.3% (average of 9.2% across all sample sizes) higher than for testing data for the
Euclidean method. For the Youden index, these values ranged from 5.1% to 17.6% higher,
with an average of 11.0% across all sample sizes.

Logistic regression had the next highest sum of TCRs on average, being 2.1089 and 2.1279
for the Euclidean method and Youden index. This approach led to a sum of TCRs under
training data that ranged from 3.0% to 10.3% (average of 5.4% across all sample sizes) higher
than for testing data for the Euclidean method and a range of 3.6% to 12.4% (average of 7.6%
across all sample sizes) for the Youden index.

Yan’s method had the second lowest sum of TCRs on average, being 2.0538 and 2.0779 for
the Euclidean method and Youden index, respectively. This approach led to a sum of TCRs
under training data that ranged from 1.4% to 7.6% (average of 4.1% across all sample sizes)
higher than for testing data for the Euclidean method and a range of 1.8% to 8.7% (average of
4.9% across all sample sizes) for the Youden index.

The normality assumption had the lowest sum of TCRs across all approaches, being on
average, 2.0217 and 2.0359 for the Euclidean method and Youden index, respectively. This
approach led to a sum of TCRs under training data that ranged from 0.4% to 2.7% (average
of 1.5% across all sample sizes) higher than for testing data for the Euclidean method and a
range of 0.5% to 2.9% (average of 1.6% across all sample sizes).

In short, while it provided the lowest sum of TCRs under training data, it had the
performance closest to what was seen under testing data, where it saw the best performance
of all approaches. Yan’s method performed the next closest between training and testing
data. The logistic model and stepwise procedure significantly overestimate the performance
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under training data, when compared to their performance under independent testing data.
As such, investigators should be wary of the results of these methods when evaluated

under training data. Additionally, the Youden index tended to overestimate the performance
in training data when compared to testing data. For instance, when Yan’s method was

used, the Euclidean method overestimated performance by 4.1%, while the Youden index
overestimated it by 4.9%. Similar trends were seen for each of the approaches, implying the
Youden index is more prone to overfitting than the Euclidean method.

Scenarios without a known dominant ROC surface

When the data are generated from lognormal or gamma distributions, we do not know the
distribution of the linear combination, and thus, we cannot derive the best linear combination
of biomarkers. In order to compare the performance of the Euclidean method versus the
Youden index, we can explore the variance of the TCRs, as well as the total classification of
both methods. Results for the lognormal scenarios are available in Tables C.1, C.2, and C.3,
as well as Figures 5-10 in Web Appendix C. Results for the gamma scenarios are available
in Tables C.4, C.5, and C.6, as well as Figures 11-16 in Web Appendix C.

Data generated from lognormal distributions—When the data are generated from
lognormal distributions, the data lies within the power-normal family, and thus, the data can
be transformed to normality using the Box-Cox transformation. Full results are available in
Tables C.1, C.2, and C.3 in the Web Appendix. In Figure 5 in Web Appendix C, we see that
the Box-Cox approach provides the best performance in terms of variability of the TCRs.
Additionally, it provides the best performance in terms of total classification. With regard to
the variance of the TCRs, the Euclidean method provides smaller variances than the Youden
index. On average, the Euclidean method has variances for the TCRs that are 2.70 times
smaller than those from the Youden index. Averaging across the sample sizes, on average,
the Euclidean method has a total classification of 1.7908, while the Youden index has a total
classification of 1.8148. This result is apparent in Figure 6 in Web Appendix C. This equates
to a sum of TCRs that is 1.34% higher for the Youden index than for the Euclidean method.
Little is lost in terms of the total classification when using the Euclidean method, but the
variance of the TCRs is much smaller for the Euclidean method.

For Yan’s method of combining biomarkers, the Euclidean method exhibits smaller
variances for the TCRs than for the Youden index. On average, the variance of the TCRs

are 3.86 times larger for the Youden index than for the Euclidean method. The total
classification for the Euclidean method is on average 1.47% lower than for the Youden index.
Again, the Euclidean method has minimal loss in total classification, but the variance of the
TCRs is greatly reduced when compared to the Youden index.

When the logistic regression approach for combining biomarkers is used, the Euclidean
method provides smaller variances for the TCRs than the Youden index does. On average,
the variance of the TCRs is 2.39 times smaller for the Euclidean method than for the Youden
index. On average, the sum of TCRs for the Euclidean method is 1.7317, whereas it is 1.7399
for the Youden index. This equates to a gain of 0.47% in terms of total classification for the
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Youden index. In fact, when the sample size is 30 for each group, the Euclidean method
sees a sum of TCRs equal to 1.7162, whereas the Youden index has a sum of TCRs equal
to 1.7153. When the sample size is limited, the Euclidean method is able to outperform the
Youden index with regard to total classification.

When the stepwise procedure is used to combine biomarkers, the Euclidean method sees
variances of the TCRs that are 2.27 times smaller on average than for the Youden index. In
terms of total classification, on average, the Euclidean method estimates the sum of TCR to
be 1.7099, whereas the Youden index estimates the sum of TCRs to be 1.7201. This equates
to an increase of 0.60% in terms of total classification for the Youden index.

For each of the explored approaches of combining biomarkers, the Euclidean method

has variances of the TCRs that are less than half those from the Youden index. The

higher variance of the TCRs when using the Youden index leads to uncertainty regarding

the estimation of the optimal combination coefficients and the optimal cutoff values. On
average, the Youden index provides a higher sum of TCRs than the Euclidean method, but at
best, this equates to an improvement of 1.34%. This increase in total classification is minor,
whereas the improvement in variance of the TCRs seen when using the Euclidean method is
substantial.

In terms of comparing the performance of the approaches when the data are generated
from lognormal distributions, the Box-Cox approach significantly outperforms all of the
other approaches. This approach has an average sum of TCRs equal to 1.7908. The next
best performing approach is the logistic regression approach, with a total classification of
1.7317. This is followed by Yan’s method and the stepwise procedure, with sums of TCRs
equal to 1.7122 and 1.7099, respectively. The Box-Cox approach outperforms the next best
performing approach by 3.41%, which is a substantial gain in terms of total classification.
Additionally, the Box-Cox approach has the smallest variance for the TCRs, being equal to
0.0012. Yan’s method has the next smallest variance for the TCRs, being equal to 0.0026.
This is followed by the stepwise procedure and the logistic regression approach, with
variances of the TCRs equal to 0.0055 and 0.0061, respectively. Interestingly, the logistic
regression approach has the highest variance for the TCRs.

We also compare the results of the methods in terms of training data. Full results are
available in Tables C.4, C.5, and C.6 in the Web Appendix. These results were similar to
what we saw for the scenarios generated under the normality assumption. The stepwise
procedure had the highest sum of TCRs out of the methods, but had the worst performance
in terms of testing data. Next was logistic regression, then Yan’s method, and then the
Box-Cox approach. In general, parametric methods overfit much less than nonparametric,
and particularly, empirical-based methods.

Data generated from gamma distributions—When the data are generated from
gamma distributions, we are operating in the power-normal family. In some instances, the
Box-Cox transformation can still suitably approximate normality after transforming the data.
The scenarios explored in this simulation study showed poor performance of the Box-Cox
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approach when the data are generated from gamma distributions. Full results are available in
Tables C.7, C.8, and C.9 in the Web Appendix.

When using the Box-Cox approach, we see in Figure 11 in Web Appendix C that the
Euclidean method provides smaller variance for the TCRs than for the Youden index. On
average, the variance of the TCRs is 0.0010 for the Euclidean method, whereas it is 0.0014
for the Youden index. This corresponds to variances that are 43% higher for the Youden
index. The sum of TCRs for the Euclidean method is 2.0728, whereas it is 2.0795 for the
Youden index. This corresponds to a 0.32% higher total classification for the Youden index,
which can be visualized in Figure 12 in Web Appendix C.

Under Yan’s combination method, the TCRs have on average, a variance of 0.0017 and
0.0031 when using the Euclidean distance and Youden index as objective functions,
respectively. The Youden index has variances that are 1.9936 times larger than for the
Euclidean distance. The sum of TCRs for the Euclidean method is 2.1099, whereas it is
2.1093 for the Youden index. When the sample sizes are (30, 30, 30), and (50,50,50), the
Euclidean method has a higher sum of TCRs than the Youden index. For all other explored
sample sizes, the Youden index has higher total classification.

When using logistic regression to combine the biomarkers, the variance of the TCRs is
0.0037 for the Euclidean method and 0.0078 for the Youden index. On average, the variance
of the TCRs when using the Youden index is 2.1171 times larger than when using the
Euclidean method. The sum of TCRs for the Euclidean method is 2.1090 and 2.0994 for

the Youden index. For all explored sample sizes, the Euclidean method provides higher total
classification.

The stepwise procedure saw smaller variances for the Euclidean method. The Youden index
has variances that are 2.0675 times larger on average than for the Euclidean method. The
sum of TCRs for the Euclidean method is 2.0925, whereas it is 2.0820 for the Youden index.
For all explored sample sizes, the Euclidean method provides higher total classification.

The Box-Cox approach fails to perform well compared to the other approaches in terms of
sum of TCRs. Yan’s method and the logistic regression approach have the best performance
in terms of sum of TCR. They perform similarly in this regard. For instance, when the
sample sizes are (30,30,30), and (200, 50, 50), the logistic regression approach has higher

total classification. For all other explored sample sizes, Yan’s method has higher total
classification. The Box-Cox approach and the stepwise procedure perform similarly in terms
of total classification, but underperform compared to the other two approaches.

In terms of variance of the TCRs, the Box-Cox approach has the smallest variance, followed
by Yan’s approach, then the logistic regression approach, and lastly the stepwise procedure.

In instances where the data cannot be adequately transformed to normality, Yan’s method
shows the best performing approach to combine biomarkers. It has a comparable sum of
TCRs to the logistic regression approach for small sample sizes, and even has a higher
total classification when sample sizes are (50,50,50), (100,100,100), and (200,200,200). Yan’s
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method provides variances for the TCRs that are 2.50 times smaller than the variances from
using logistic regression.

Interestingly, the Euclidean method has higher total classification than the Youden index

in several instances. For the logistic regression approach and the stepwise procedure, the
Euclidean method has higher total classification than the Youden index for all explored
sample sizes. Additionally, this was the case for Yan’s method, when sample sizes are 30 for
each group and 50 for each group.

For the gamma scenarios, the Box-Cox method showed the worst performance in terms of
results under training data, but performed almost as well as logistic regression in terms of
results from testing data. Again, the stepwise procedure overfitted the most, followed by
logistic regression. In these scenarios, Yan’s method had the third highest sum of TCRs
based on training data, but had the best performance based on testing data. Full results are
available in Tables C.10, C.11, and C.12 in the Web Appendix.

Additional simulations—In addition to the above scenarios, we ran a small simulation
study to explore scenarios in which the markers in each group were generated from different
families of distributions. Full results are available in Table C.13 in the Web Appendix. In
these scenarios, group 1 was generated from lognormal distributions, group 2 was generated
from gamma distributions, and group 3 was generated from mixture normal distributions.
The correlation between groups was set to be p = 0.5 and the sample size was set to

n, m, n; = 50,50,50.

The Box-Cox approach provided the highest sum of TCRs, being 2.2010 for the Euclidean
method and 2.2514 for the Youden-index method. Logistic regression had the next

highest sum of TCRs, being 2.1703 and 2.1890 for the Euclidean and Youden index,
respectively. The kernel-based approach had the next highest TCRs, being 2.1549 and
2.1721, respectively. Last was the stepwise procedure, with TCRs being 2.1465 and 2.1627,
respectively.

In terms of variances of the TCRs, the Box-Cox approach saw the smallest average variance
for the TCRs, being 0.0011 for both the Euclidean and Youden index methods. For logistic
regression, the average variance of the TCRs were 0.0045 and 0.0068, respectively. For the
kernel-based approach, the average variances were 0.0020 and 0.0039, respectively. For the
stepwise procedure, the variances were 0.0039 and 0.0055, respectively.

It should be noted that while the Box-Cox approach had the best performance overall
for these scenarios, it is still sensitive to distributional assumptions. This was observed
in the previous scenarios that were generated from gamma distributions, where it was
outperformed by the kernel-based approach, as well as logistic regression. The Box-Cox
approach has been used in different ROC settings before and therein the authors discuss
its robustness when data are generated from Gamma as well as its limitations for severe
violations of normality induced by bimodal distributions.28: 29 30. 31, 32 Therein, it is
highlighted that if normality is not justified for the Box-Cox transformed scores then
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non-parametric kernel-based alternatives should be considered, which is also the strategy
that we recommend in our framework.

Summary of simulation results—The simulation section demonstrates the benefits of
using the Euclidean distance as the objective function, rather than the Youden index when
combining biomarkers. We see substantially smaller variances and MSEs for the TCRs when
using the Euclidean method. In addition, the potential benefit from using the Youden index
is minimal in terms of sum of the TCRs. At best, the Youden index provides a sum of TCRs
that is less than 2% higher than when using the Euclidean method. In many instances, the
Euclidean method is able to outperform the Youden index in terms of total classification
when evaluated under independent testing data. In particular, when the logistic regression
model or the stepwise procedure are used, the Euclidean method frequently outperforms the
Youden index in terms of sum of TCR. These results provide strong justification for the use
of the Euclidean method by providing substantially smaller variance of the TCRs, as well as
similar sums of TCRs.

When the data are generated from normal distributions, the normality assumption has the
best performance in terms of bias, variance, and MSE of the TCR. In addition, it has the
highest total classification out of each of the approaches. For the explored scenarios, the
Youden index has a total classification that is at most 0.65% higher than the Euclidean
method. For both the Youden index and the stepwise procedure, the Euclidean method
provides a higher sum of TCRs than the Youden index, while having smaller bias, variance,
and MSE for the TCRs.

When the data are generated form lognormal distributions, the Box-Cox approach
outperforms all of the other explored approaches. The Euclidean method has smaller
variance for the TCRs than the Youden index. The Youden index provides higher total
classification than the Euclidean method for each of the approaches, but this is at most 1.37%
higher when using the preferred Box-Cox approach.

When the data are generated from gamma distributions, Yan’s approach performs
comparably to logistic regression with regard to total classification, but has smaller
variances for the TCRs, making it the preferred method when the data cannot be adequately
transformed to normality. When sample sizes are (30,30,30) or (50,50,50), the Euclidean
method has higher total classification than the Youden index when using Yan’s approach.
When the sample sizes are (200,50,50), the sum of TCRs for the Youden index is ;0.01%
higher than for the Euclidean method. For smaller sample sizes, the Euclidean method can
outperform the Youden index in both variance of TCRs and total classification.

At the request of an anonymous reviewer, we explored the use of the normality assumption
when the data are generated from lognormal and gamma distributions. For the considered
lognormal scenarios, the Box-Cox approach has a sum of TCRs that is 4.9% higher

than for the normality assumption. For different explored gamma scenarios, we also

saw unsatisfactory performance. The combined results from the lognormal and gamma
scenarios demonstrate that when normality is not met, it is best to use alternative methods.
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Additionally, the reviewer requested we explore the performance of our methods with

regard to the VUS of the resulting combination. For the normal scenarios, on average, the
VUS was 0.0013 lower for our proposed method compared to the Youden index. For the
lognormal and gamma scenarios, our proposed combination method had a higher VUS than
combinations based on the Youden index, being 0.0015 and 0.0011 higher, respectively. That
is, we do not observe any meaningful differences with respect to the VUS.

We suggest the following guidance for when each approach is more appropriate. If the
markers are each approximately normally distributed, the normality assumption should be
used. If the markers are not normally distributed, but can each be successfully transformed
using the Box-Cox transformation, the Box-Cox approach should be used. When the data
cannot be successfully transformed to normality, Yan’s method, the kernel-based approach
should be used, although logistic regression performed nearly as well in our simulations for
these scenarios. The stepwise procedure performed the worst on average, and we would not
recommend using it.

If logistic regression is used to find a combination of scores, our method provides a higher
sum of TCRs than the Youden index on average. As such, we would suggest using our
method to derive optimal cutoff values when logistic regression is the combination method
used.

While the difference in total classification between the Euclidean method and Youden index
is minimal, the methods provide different sets of TCRs. In general, the Euclidean method
provides a more balanced set of TCRs than the Youden index. Thus, if the clinical setting has
preference for this, such a combination would be preferred. If there is preference for higher
classification of one group, then the Youden index may provide a better set of TCRs for that
clinical setting.

Application to Liver Cancer

A biomarker study was conducted for application to liver cancer at the Shanghai Chang-
zheng Hospital in China. This dataset has previously been used to combine biomarkers

in the two-class setting where groups were evaluated pairwisely, or where patients with
chronic liver disease and hepatoma were combined into one group.33 In the three-class
setting it was used in application of cubic splines for ROC surface estimation.34 Biomarker
scores were generated by the surface-enhanced laser desorption/ionization time of flight
mass spectrometer. The study includes 236 markers, along with 52 healthy individuals, 39
individuals with chronic liver disease, and 54 individuals with hepatoma. Three biomarkers
were selected to be combined: markers 11646.52674, 11675.92167, and 11866.94047.
Normality of the scores was evaluated before and after Box-Cox transformation using the
Kolmogorov-Smirnov test (KS test). The estimated D* and KS test p-values after Box-Cox
transformation are displayed in Table 5.

We explore the use of the Box-Cox approach, logistic regression, Yan’s method, and
the stepwise procedure for combining these scores. The point estimates of the optimal
combination coefficients are displayed in Table 6. The point estimates of D*, the TCRs, and
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the sum of the TCRs are displayed in Table 7. Based on the point estimates in Table 7,

the combination estimated using the stepwise procedure appears to be the best performing
of all of the approaches. We see that it has the smallest value for D*, as well as the

highest sum(TCRs). Logistic regression had the next best performance in training, followed
by Yan’s method, and finally, the Box-Cox approach. These training-based estimates of
performance are not sufficient for evaluating their true performance. In simulation we saw
that the stepwise procedure and logistic regression are more prone to overfitting than the
other approaches, and thus cross-validation is required to get a better estimate of their
performance.

For this reason, we also use repeated cross-validation by resampling training/testing datasets
1000 times. We use half of the data for training and half for testing. The results are also
displayed in Table 7. We see that when evaluated using cross-validation, the Box-Cox
approach has the best performance. Its estimated D* is 0.5755, and the sum(TCRS) is
2.0902. Logistic regression saw an estimated D* of 0.6235, and a sum(TCRs) of 2.0176.

In both measures, the Box-Cox approach has better performance. Lastly, we estimate the
variance of the TCRs for each of the approaches. In Table 8, we see that on average, the
Euclidean method provides smaller variances for the TCRs than the Youden index. For the
Box-Cox approach, the estimated variance for TCR, is 0.0014 for the Euclidean method

and 0.0013 for the Youden index. For TCR, and TCR;, the variance of their estimators are
1.47 and 2.68 times larger for the Youden index, respectively. For all other approaches, the
Euclidean method saw smaller estimated variances for each of the TCR. In several instances,
the Youden index has variances that are multiple times larger than the Euclidean method.
For the stepwise procedure, the estimated variances of TCR,, TCR,, and TCR, when using the
Youden index are 1.86, 3.33, and 5.48 times larger than the corresponding estimates based
on the Euclidean method.

In conclusion, when the approaches applied to this dataset are evaluated using cross-
validation, the Box-Cox approach provides the smallest value for D*, the highest total
classification, and the lowest variance of the estimates of TCRs on average. This approach
is preferred to the commonly used logistic regression when markers can be transformed to
approximate normality. For this dataset, logistic regression outperforms both Yan’s method
and the stepwise procedure. It provides a higher total classification than both approaches.
The Euclidean method has comparable performance to the Youden index when evaluated
under independent testing data and provides smaller variances for the TCR. For the Box-
Cox approach, the total classification is 2.0902 for the Euclidean method and 2.1078 for
the Youden index. This corresponds to total classification that is 0.84% higher for the
Youden index, while its variance is 1.78 times larger. Logistic regression has higher total
classification for the Euclidean method than the Youden index. The corresponding values are
2.0176 and 2.0064 for the Euclidean method and Youden index, respectively.

The Box-Cox approach is the preferred method of combining biomarkers for these data
since the biomarkers could be adequately transformed to normality. It exhibits both the
highest total classification, as well as the smallest variance for the TCRs. The Euclidean
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method has comparable sums of TCRs to the Youden index, while providing smaller
variances for the TCRs.

Discussion

The Youden index has been used in the literature as an objective function for combining
biomarkers while simultaneously selecting optimal cutoff values. In the three-class setting,
this has well known drawbacks. For such settings, when estimating cutoffs for a single
biomarker, the Youden index ignores information from one of the groups. The Euclidean
method considers information from all three groups (i.e. all available data), as opposed to
the pairwise nature of the Youden index. When combining biomarkers, the Youden index
indirectly gains information from all three groups through the combination coefficients. We
demonstrate that while this is the case, the Euclidean method still provides smaller variance
for the TCRs. In our extensive simulation studies, we observe many cases where the Youden
index exhibits variances for the TCRs that are over twice those of the Euclidean method. In
addition, the Euclidean method provides comparable sums of 7CRsto the Youden index.
When using the logistic regression or the stepwise procedure, the Euclidean method actually
provides a higher sum than the Youden index in independent testing data. For Yan’s method
and the normality/Box-Cox approaches, the difference in sum of TCRs is less than 1%. This
makes the Euclidean distance an attractive alternative to the Youden index as an objective
function for combining biomarkers.

When we applied our methods to the liver cancer dataset, we show that the logistic
regression underperforms. The Box-Cox approach outperforms the logistic regression model
as well as the other approaches in terms of both Y 7CRs and variance of the TCRs.

We provide a variety of combination approaches that can accommodate biomarkers from a
wide range of distributions. The normality assumption and Box-Cox approach are preferred
to logistic regression when the data justify these assumptions. When these assumptions

are not met, the more flexible kernel-based approach is appropriate and exhibits better
performance compared to the logistic regression.

Combining markers in the three-class setting is a relatively new topic, which is in need of
further research. Additional topics may include maximizing different objective functions,
including covariates to the models, or constructing nonlinear combinations of markers.
There are many possible paths of research for both of these topics. Additionally, to make this
work accessible, a Matlab package has been uploaded to https://github.com/BrianMosier/
dstar.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Dominant ROC Surface vs. Logistic Regression Combination
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Figure 1.
A plot comparing the ROC surface using the true optimal combination (transparent yellow/

green) versus an ROC surface using a combination estimated from logistic regression (grey).
The yellow/green ROC surface dominates the grey surface. The surfaces were constructed
using the true CDFs of the combined scores.
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Figure 2.
The plot demonstrates the use of the Box-Cox transformation in the context of ROC

analysis. A single biomarker with 3 groups uses a single value of A to transform all 3 groups
to normality. When using this approach to combine p biomarkers, we obtain p separate A’s
to transform each biomarker to normality.
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MSEs for Kernel-Based and
Empirical-Based Estimates of D
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Figure 3.
Data were simulated from normal, lognormal, and gamma distributions with sample sizes

of (30, 30, 30), (50, 50, 50), (100, 100, 100), and (200, 200, 200). Point estimates of D*
were obtained using a kernel-based estimate and an empirical estimate. Mean squared errors
were estimated for both estimators. The kernel-based estimator had smaller MSE than the
empirical estimator for all explored distributions and sample sizes.
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Bias, Variance, and MSE of the TCRs for Normal Scenarios ( £=071+03))
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The first panel in the figure displays the average of |bias(TCR, )| |bias(TCR.)|, and |bias(TCR)|

for each of the explored sample sizes. The second panel displays the average of

var(TCR,), var(TCR,), and var(TCR;) for each scenario. The third panel displays the average

of MSE(ﬁI), MSE(T/GTQ'Z), and MSE(ﬁ;) for each scenario. We see that for most

scenarios, the Euclidean method had smaller bias than the Youden index. For all scenarios,
the Euclidean method had smaller variance and MSE.
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Percent Difference in Total Classification for Normal Scenarios ¥ = 0.7 + 0.3J
Values above 0% indicate better diagnostic performance for the Euclidean method
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The plot displays the percent difference in Y., TCR,, i = 1,2,3, i.e. total classification, for

the Euclidean method (EUC) versus the Youden index (Y1) for each of the combination

approaches and sample sizes, where £ = 0.71 + 0.3J. The percent difference is calculated
by ZTCR(EUC) — FTCR(
y STCR(YT)

for the Euclidean method than the Youden index, indicating better diagnostic performance
for the Euclidean method. Both logistic regression and the stepwise procedure saw

higher total classification than the Youden index for all sample sizes except when

(m, my, m3) = (200,200,200). For the normality assumption and Yan’s method, the Youden index
saw higher total classification that was less than 1% higher than that of the Euclidean
method.

Y1) Values above 0% correspond to a higher total classification
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Table 5.

Page 37

The selected biomarkers, along with their D* values and Kolmogorov-Smirnov test p-values after Box-Cox

transformation (denoted p, for group i,i = 1,2,3.)

Marker D* p D b

11646.52674 0.5349 0.5073 0.5439 0.4148
11675.92167 0.5639 0.2870 0.1683 0.2468
11866.94047 0.6092 0.4701 0.5007 0.4202
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Table 6.

The estimated combination coefficients for each of the approaches for the Euclidean method.

1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny
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Method

B,

B

B,

Box-Cox
Logistic
Yan

Stepwise

1.0000
1.0000
1.0000
1.0000

0.2081
0.0435
0.0833
0.2700

0.8492
0.4283
0.6134
0.1700
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The bootstrap-based estimates of the variances of the TCRs.

Approach Uar(T/C\Rl) Uar(ﬁz) Uar(T/C\R3)

Box-Cox 0.0014 0.0017 0.0022
Logistic 0.0037 0.0050 0.0050

Yan 0.0034 0.0042 0.0042
Stepwise 0.0021 0.0021 0.0027
Box-Cox 0.0013 0.0025 0.0059
Logistic 0.0047 0.0079 0.0094

Yan 0.0053 0.0087 0.0179
Stepwise 0.0039 0.0070 0.0148

Stat Methods Med Res. Author manuscript; available in PMC 2024 July 10.
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