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Abstract

Most insects, including human-targeting mosquitoes, detect odors through odorant-activated ion 

channel complexes consisting of a divergent odorant-binding subunit (OR) and a conserved co-

receptor subunit (Orco). As a basis for understanding how odorants activate these heteromeric 

receptors, we report here cryo-EM structures of two different heteromeric odorant receptor 

complexes containing ORs from disease-vector mosquitos Aedes aegypti or Anopheles gambiae. 

These structures reveal an unexpected stoichiometry of one OR to three Orco subunits. 

Comparison of structures in odorant-bound and unbound states indicates that odorant binding 

to the sole OR subunit is sufficient to open the channel pore, suggesting a mechanism of OR 

activation and a conceptual framework for understanding evolution of insect odorant receptor 

sensitivity.

One-Sentence Summary:

Cryo-EM structures of mosquito odorant receptor complexes reveal an asymmetric architecture.

Animals rely on olfaction for critical behavioral adaptations (1). Mosquitoes, for instance, 

use their sense of smell to find human hosts and secure a blood meal, and may thereby 

transmit pathogens like the causative agents of malaria, dengue, and yellow fever (2, 3). 

In insects such as mosquitoes, hydrophobic volatile compounds are sensed primarily by 

odorant receptors, a large family of odorant-activated ion channels expressed in the dendritic 
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membrane of olfactory sensory neurons (4–6). Ancestral members of the insect OR family 

in the order Archaeognatha (jumping bristletails), which split off early from the main insect 

lineage, assemble as homotetrameric ion channels, in which each of the four identical 

subunits contains a binding pocket that can interact with odorant molecules to elicit channel 

opening (7–11). Most insects, however, including fruit flies, mosquitoes, ants, and bees, 

express odorant receptors that assemble as obligate heteromeric complexes formed by two 

types of subunits: an odorant-binding subunit (OR) and an OR co-receptor called Orco (12–

14). Most species contain many divergent ORs, yet express a single Orco (10). The amino-

acid sequences of Orcos are highly conserved across a wide range of insect species, and 

Orcos from different species can functionally substitute for each other (15, 16). Biochemical 

and electrophysiological studies have established that ORs and Orco assemble as tetramers 

(14, 17, 18). Current models based on indirect evidence propose an arrangement of two 

OR and two Orco subunits per complex (13, 19, 20), but this has not been demonstrated. 

Although Orcos are a necessary part of the odorant receptor complex (21–23), they do not 

directly interact with any known natural ligands and thus their structural and functional role 

is unknown.

We report structures of insect heteromeric OR/Orco complexes, in odorant-bound and 

unbound states, determined by cryogenic electron microscopy (cryo-EM). Because of the 

public health significance of mosquito olfaction (24), we focused on ORs from mosquito 

species that are major vectors for yellow and dengue fever (Aedes aegypti) and malaria 

(Anopheles gambiae). We determined the structure of a heteromeric complex formed 

by ORs from these species in complex with a Apocrypta bakeri fig wasp Orco that 

is amenable to structural determination (14, 25). We find that these complexes form 

asymmetric tetramers containing 1 OR and 3 Orco subunits, where activation of the sole 

OR subunit upon ligand binding suffices to open the ion conduction pathway. We therefore 

propose that in vivo insect heteromeric receptors could also exhibit a 1:3 stoichiometry, and 

present structural work on human-sensing mosquito odorant receptors that could aid in the 

pharmacological targeting of mosquito olfaction to curb the spread of insect-borne diseases.

The cryo-EM structure of an OR/Orco complex has a 1:3 subunit 

stoichiometry.

We first focused on the conserved OR10 receptor family, which detects indole and 

derivatives in various mosquito species (25–27). Co-expression of Ae. aegypti OR10 with 

its conspecific Orco did not yield complexes that were amenable for structural work (fig. 

S1). We therefore took advantage of the high sequence conservation of Orcos across distant 

species, a feature that has been widely leveraged to functionally characterize ORs from 

multiple species (fig. S1, S2). Indeed, Orcos are functionally interchangeable in vivo and 

in vitro: previous studies showed that expression of mosquito or moth Orco transgenes 

rescued neuronal responses to odors in Orco-null Drosophila (16). Conversely, Drosophila 
expressing their endogenous Orco are routinely used to heterologously express ORs from 

distant species for functional characterization (3, 28–31). We therefore co-expressed OR10 

from Ae. aegypti with a previously structurally characterized Orco from A. bakeri to form a 

complex referred to henceforth as AaOR10/Orco (65% sequence identity and 77% sequence 
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similarity between Ae. aegypti Orco and A. bakeri Orco, fig. S2). We corroborated the 

functionality of the AaOR10/Orco complexes by heterologously expressing these complexes 

in cultured HEK293 cells and performing voltage-clamp electrophysiology to measure their 

response to indole and o-cresol, canonical odorants known to activate AaOR10 heteromers. 

Consistent with previous studies (11, 14), we found that whole-cell currents of AaOR10/

Orco are indistinguishable in EC50 and overall dose-response parameters to those obtained 

with AaOR10 in complex with the Orco from Ae. aegypti (fig. 1A, B, Table S2). Therefore, 

we proceeded with the structural characterization using single-particle cryo-EM of AaOR10/

Orco heteromers purified from HEK293 cells (fig. S3).

We transduced HEK 293 cells using a 1:1 ratio of OR to Orco virus, and purified AaOR10/

Orco complexes with an affinity tag on the OR subunit. We obtained a map of the AaOR10/

Orco complex at 2.9 Å overall resolution enabling unequivocal model building for the 

majority of the protein (except the flexible intracellular N termini, and portions of the 

S3-S4, and S4-S5 loops of the Orco subunits) (fig. S3, S4). We found that the heteromeric 

AaOR10/Orco complexes contain 1 OR subunit and 3 Orco subunits (fig. 1C, D). In order 

to determine whether the expression level of subunits may dictate the stoichiometry of the 

resulting complexes, we purified complexes from HEK293 cells transfected with varying 

ratios of AaOR10 to Orco DNA, and found that increasing the proportion of OR DNA 

does not lead to the formation of complexes of different biochemical properties, as assessed 

using Size Exclusion Chromatography and SDS-PAGE (fig. S1 and S3). Subunit assignment 

to Orco and OR10 was unambiguous, as Orco subunits exhibit strong density for the 

extracellular loop connecting the S3 and S4 helices (fig. 1C, D, fig. S3, S4, S5). This loop 

adopts a dramatically distinct conformation in the OR subunit, a difference visible even at 

early stages of data processing such as ab-initio reconstruction. Extensive data processing 

yielded no evidence of other complex stoichiometries present in the cryo-EM dataset (fig. 

S5).

Aside from the different extracellular loops, the OR10 and Orco subunits have very 

similar fold, despite having only 15.1% sequence identity. Each subunit is composed of 

7 transmembrane helical segments (S1-S7) and a small re-entrant helix (S0) near the 

intracellular N-terminal domain (fig. 1D). The overall tetrameric assembly of the AaOR10/

Orco heteromer closely resembles that of previously described homotetrameric members 

of this family, such as the MhraOR5 from the jumping bristletail Machilis hrabei (11) 

and related insect gustatory receptors (32–34). Most of the protein is embedded within the 

membrane plane, and a small ‘anchor’ domain protrudes into the intracellular space (fig. 

1C, D). The anchor domain, named for its role in anchoring subunits together through a 

tight network of intersubunit interactions, is formed by the coalescence of the intracellular 

portions of the helices S5, S6 and S7a from all subunits. Orco is conserved across insects yet 

can form functional complexes with many divergent ORs. We used PDBePISA to analyze 

the intersubunit interactions (35) and found that they all involve the carboxy-terminal 

portion of the protomers, corresponding to the S5, S6 and S7 helices, namely the anchor 

domain and pore region (fig. 1D and fig. S2). We mapped the residues connecting OR10 and 

Orco onto an alignment of Orcos and ORs constructed using 47 Orcos and 461 ORs from 

five distant species (fig. S2). We used JalView (36) to calculate the conservation score per 
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amino-acid position, a metric that reflects the conservation of physicochemical features at 

each position in the alignment.

We found that the amino-acid positions at the contact interface between OR10 and Orco 

subunits have higher conservation scores than the remainder of the protomers (fig. 1E). The 

residue with the highest conservation score in ORs corresponds to Tyr315 in AaOR10 (a 

score of 9 for Tyr315, compared to a 2.5 average score for the rest of the OR positions). 

In the structure, Tyr315 protrudes deeply into the anchor domain of the neighboring Orco 

subunit, tightly interacting with a pocket of conserved Orco residues (fig. 1D, inset). All 

intersubunit interfaces are dominated by van der Waals interactions; however, each Orco-

Orco interface also contains 2 salt bridges, while OR10 only establishes a salt bridge with 

one of its neighboring Orcos (fig. 1D, inset). Importantly, the residues in Orco that are 

in direct contact with AaOR10 in our structure exhibit 97% sequence identity and 100% 

sequence similarity to those in Ae. aegypti Orco, providing a structural explanation to the 

ability of Orcos to substitute for each other.

A conformational change in the OR subunit alone is sufficient to open the 

pore of the AaOR10/Orco complex.

Thus far, the only structural insight into gating mechanisms of insect ORs comes from 

the cryo-EM structure of the homotetrameric MhOR5 from the jumping bristletail (11). 

In MhOR5, there are no Orco subunits and all four identical OR subunits contain an 

odorant binding pocket and contribute their S7b helix to the pore of the ion conduction 

pathway. In the heteromeric OR/Orco complexes, however, although both Orco and OR 

subunits interface the pore, only OR subunits have odorant binding pockets. As a result, 

two mechanisms of activation are possible: odorant binding to the OR subunit(s) could elicit 

a global conformational change involving movement of both OR and Orco pore helices, 

resulting in a radial dilation of the pore. Alternatively, channel activation could result solely 

from movement of the OR subunit(s), with the Orco subunits remaining static.

We therefore determined the cryo-EM structure of the AaOR10/Orco complex bound to 

o-cresol to an overall resolution of 2.9 Å. We found a pronounced lateralized dilation of 

the channel pore, elicited by the outward movement of the OR10 S7b pore helix (fig. 

2A, B). The OR10 S7b helix shifts diagonally outwards from the main channel axis, 

increasing the distance to the opposing Orco subunit from 6.2 Å to 9.7 Å. The resulting 

open pore is likely wide enough to be permeable to hydrated cations, a result consistent with 

electrophysiological data showing that the channel, like other insect OR/Orco complexes, 

passes both monovalent and divalent cations (fig. S7, Table S3). From this extracellular 

gate, the channel continues into a wide vestibule lined with hydrophilic residues in the 

transmembrane portion of the complex (fig. 2C). At the base of this vestibule, ions flow 

through four lateral conduits into the intracellular space in a quadrivial pore architecture (fig. 

2C), analogous to what has been observed in structures of homotetrameric members of this 

family (11, 14, 32–34).

A comparison of the ion conduction pathway of the odorant bound and unbound structures 

shows that the major displacement of the OR pore helix at the extracellular gate is the 
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only conformational change along the pore, with the remainder of the ion conduction path 

nearly unchanged (fig. 2A, B, C and fig. S8). The Orco subunits in the heteromer remain 

virtually static during channel activation, with a RMSD of 0.9 Å between the liganded 

and unliganded structures (fig. S8), compared to an overall RMSD of 2.4 Å for the OR10 

subunit. The lack of cooperative movement of Orco subunits in response to odorant binding 

agrees with the Hill coefficient of one estimated from dose-response activation curves (fig. 

1A, B). Therefore, the presence of the OR subunit is sufficient to impart odorant specificity 

to the complex and lead to channel opening without any concerted movement of the other 

subunits.

The local resolutions of the odorant bound and unbound structures further support this 

conclusion. In both odorant-bound and unbound structures of the heteromeric complex, the 

density corresponding to the Orco subunits is overall stronger than that of the OR subunit, 

which suggests a higher conformational flexibility localized to the OR subunit (fig. S4).

Mechanism of AaOR10/Orco activation by odorant.

In the odorant-bound structure, we observed clear density for o-cresol in the transmembrane 

portion of the OR10 subunit, ~18 Å deep from the extracellular space, in a pocket formed 

by the coalescence of the S2, S3, S4 and S6 helices (fig. 3A, fig. S9A). We used 

molecular docking to assess the pose of the ligand (37). All top binding poses fit well 

within the observed density (fig. S9B, C), and suggest that o-cresol binding is mediated 

by hydrophobic and aromatic residues such as Tyr183, Leu 67, and by a hydrogen bond 

formed between the hydroxyl groups of the o-cresol and Ser133. Mutation of these residues 

to alanine decreases the apparent affinity of o-cresol activation, seen as a right-shift in the 

dose-response curve assessed using an established calcium flux functional assay (11, 14) 

(Fig 3B, Table S4). The position of the AaOR10 binding pocket closely resembles those of 

the homotetrameric MhOR5 (fig. S10).

How does odorant binding lead to receptor activation? Comparison of the unbound and 

o-cresol bound structures suggests that the shift in position of the OR10 S7b pore helix gates 

the ion conduction pathway and hence determines receptor activation (fig. 2B and fig. 3B). 

That shift is tightly coupled to a displacement of the adjacent helix S5, which in turn is 

coupled to helix S6 through extensive van der Waals interactions (fig. 3A, B and fig. S8). 

Helix S6 thus links the odorant binding pocket with the S7b pore helix.

The cryo-EM dataset of the unbound AaOR10/Orco complex contained two distinct subsets 

of particles. The largest classes contained particles in the inactive conformation, with the 

pore helix S7b in the ‘closed’ state, as expected (fig. S4A, classes 0, 2 and 3). A smaller but 

unambiguous class was in the active conformation, even in the absence of odorant, with the 

S7b pore helix in the ‘open’ state (fig. S4A, class 1). The existence of active and inactive 

states in the unbound dataset suggests that even in the absence of odorant, AaOR10/Orco 

is an equilibrium mixture, consistent with the well-characterized high baseline activity of 

insect odorant receptors in the absence of odorant ligands (38).
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The density map for the unbound, inactive conformation contains an elongated feature 

protruding from the membrane into the odorant binding pocket of the OR subunit (fig. 

3D, E). The strength and shape of this unmodeled density suggest that it represents a 

lipid molecule co-purified with the heteromeric complex. One end of this density partially 

occludes the odorant binding pocket (fig. 3C). The long tail of this density, in turn, is 

wedged into the groove between the S3-S6 and extends into the transmembrane space, 

helping stabilize the inactive conformation by preventing helix S6 from moving towards 

helix S3. The side chain of Phe136 in S3 also impedes a shift of helix S6 (fig. 3D) away 

from its position in the inactive conformation, through a contact with Tyr285 in helix 

S6. Thus, both the presumptive lipid and the phenyl ring of Phe136 appear to stabilize 

the inactive conformation of AaOR10/Orco complex by holding S6 in place. Mutation of 

Phe136 to alanine significantly increases the baseline activity of the receptor, likely shifting 

the conformational equilibrium towards the active state, consistent with its role in stabilizing 

the closed conformation (fig. 3B, Table S4).

In the o-cresol bound structure, density corresponding to the hypothetical lipid is absent. 

Instead, density of the o-cresol molecule occupies the odorant binding pocket (fig. 3D, fig. 

S9). Ejection of the lipid and rotation of Phe136 away from the S6 together clear the space 

between helices S6 and S3 (fig. 3C, D), allowing helix S6 to move towards helix S3 and 

give rise to the active receptor conformation and opening of the channel pore. Closure of the 

S3-S6 gap also allows a hydrogen bond to form between Gln292 in S6 and Asn125 in S3 

(fig. 3D), further stabilizing the active conformation. Indeed, mutation of either interacting 

partner of this hydrogen bond between S3 and S6 decreases channel activation (fig. 3B).

In summary, by destabilizing the inactive conformation and stabilizing the active 

conformation, o-cresol shifts the receptor conformational equilibrium towards the active 

state, resulting in pore opening.

A different heteromeric OR/Orco complex also has a 1:3 subunit 

stoichiometry and a similar mode of channel activation.

To determine if the 1:3 subunit stoichiometry can be observed with other members of 

the OR family, we turned to studying the OR28 receptor of An. gambiae, a main vector 

of malaria, that responds to the natural odorants acetophenone (a plant volatile) and 2,4,5-

trimethylthiazole (henceforth TMT; an animal odor, originally isolated from anal secretions 

of mammals) (39, 40). We confirmed through electrophysiological recording that AgOR28 

co-expressed heterologously with A. bakeri Orco assembled into TMT-responsive complexes 

(fig. S11). We then determined the TMT-bound and unbound structures of AgOR28 in 

complex with A. bakeri Orco, to an overall resolution of 2.95 Å and 2.62 Å, respectively 

(fig. 4 A, B, C, fig. S11, S12, S13).

The AgOR28/Orco structures had the same 1:3 subunit ratio as did the AaOR10/Orco 

complex (fig. 4) and a lateralized pore opening, elicited by a conformational change in the 

OR subunit only (fig. 4B, C and fig. S14). We did not detect any other stoichiometries 

of AgOR28/Orco throughout the course of data processing (fig. S12). PDBePISA analysis 

of the intersubunit interfaces in the AgOR28/Orco complex revealed that the majority of 
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the interactions between AgOR28 and Orco are mediated by the same Orco residues that 

mediate interactions with the AaOR10 subunit (fig. S2). Furthermore, the position of the 

three Orco subunits in complex with either AaOR10 and AgOR28 is nearly identical (fig. 

4D), illustrating modular assembly of a single Orco with many ORs.

As was the case in the OR10 complex, the local resolution of the OR28 subunit in both 

bound and unbound structures is lower than that of Orco, suggesting a higher conformational 

flexibility in the OR28 subunit than the Orco subunits (fig. S12). The cryo-EM dataset of 

the unbound structure also contains an active state, suggesting that, like the AaOR10/Orco 

complex, the AgOR28/Orco complex exists in an equilibrium between states in the absence 

of odorant.

Clear density for TMT was found in a binding pocket roughly in the same position as the 

AaOR10 binding pocket (fig. 4 C and D and fig. S14). Molecular docking of TMT into the 

AgOR28/Orco complex placed the top poses well within the experimental ligand density, 

and suggested that TMT binding is largely mediated by hydrophobic interactions (fig. S14).

Overall, subunit stoichiometry, mechanism of pore opening and ligand binding of the 

AgOR28/Orco complex largely resembles the observations of the AaOR10/Orco complex, 

suggesting that these might be conserved features of this family of proteins.

Discussion.

Here we report cryo-EM structures of two distinct heteromeric OR/Orco complexes, both 

in odorant-bound and unbound states. We consistently observe a stoichiometry of 1 ligand-

binding OR to 3 Orcos in these structures. Based on these in vitro structures, we suggest that 

insect heteromeric complexes could also contain a single OR subunit per complex in vivo. 

In this proposed stoichiometry, odorant binding to the single OR binding site is sufficient 

to open the pore. Orco subunits, which line the majority of the ion conduction pathway, 

remain static throughout receptor activation. Their role, therefore, is to provide a structurally 

sound scaffold onto which ORs can assemble to gate the pore, conferring diversified odorant 

sensitivity.

Asymmetric heteromeric ion channel assemblies are common in nature. For instance, 

nicotinic acetylcholine receptors (41), GABAa receptors (42), cyclic nucleotide-gated 

channels (43) and ionotropic glycine receptors (44–46) can contain heterogeneous subunits 

that assemble in different stoichiometries depending on the tissue. Recent structural studies 

of these heteromeric complexes show that pore opening also occurs with striking asymmetry 

(47, 48). It is likely that the recent advances in cryo-EM structure determination allow us 

to now determine higher resolution structures of heteromeric complexes without the need to 

impose symmetry during data processing, unveiling previously unappreciated complexity in 

the gating mechanisms of asymmetric assemblies.

Recent comparative studies of insect olfaction showed that odorant receptors of 

earlier derived insect species, such as jumping bristletails, operate as homotetramers. 

Homotetrameric members of the family of insect gustatory receptors (from which the OR 

family derived) seem to require more than 1 subunit to elicit channel activation, as evidenced 
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by their Hill coefficients of ~2.5 in heterologous studies (33). In contrast, all recently 

derived insect clades have adopted a heteromeric OR/Orco model, suggesting an adaptive 

advantage over the homomeric ORs (8, 9, 49). One possibility is that the reduction in 

number of odorant binding subunits increases odorant sensitivity of the complexes. This 

sensitivity addresses a conserved challenge of olfactory systems, that need to detect trace 

amounts of poorly soluble odorant stimuli. In most vertebrate odorant receptors, which 

belong to the G-protein coupled receptor family, the binding of a single odorant molecule 

suffices to initiate neuronal signaling (50). With a proposed 1:3 subunit stoichiometry, insect 

odorant receptors would also have evolved along a similar path, resulting in a single odorant 

molecule per signaling event.

Olfactory systems, whether invertebrate or vertebrate, often include a large and diversified 

repertoire of receptors to collectively tile the ethologically relevant chemical space 

and discriminate molecules with requisite specificities (1). Within insects, Drosophila 
melanogaster has 62 different ORs (51), Ae. aegypti has 117 (52), and species in the 

Formicidae (ant) family can have over 400 (53, 54). A heteromeric assembly may allow 

new ORs to quickly evolve through binding pocket and pore mutations yet still easily 

assemble onto an invariant scaffold of Orco, rather than having to additionally evolve novel 

multimerization ‘anchor’ domains or cooperative mechanisms of gating through multiple 

subunits. This adaptation efficiently enables a massive and rapid diversification of ORs in 

recently diverged insect species, allowing them to sense and discriminate a broad swath of 

odorants.

The robustness of formation of the 1:3 stoichiometry described in this work suggests that it 

might represent a physiologically relevant state. If other subunit stoichiometries are in fact 

the predominant functional form in native olfactory sensory neurons, additional regulatory 

mechanisms could be in place in vivo to bias the formation of alternative complexes instead 

of the 1:3 complex described in this manuscript. In either case, intense selective pressure 

over millions of years resulted in the heteromeric insect odorant receptor family, and enabled 

the exceptional olfactory adaptations of insects that allowed them to colonize myriad 

ecological niches. How these complexes form, assemble, and gate in response to odors 

remains an outstanding question for future investigation. Our findings, with an unexpected 

subunit stoichiometry, propose a new model to conceptualize odorant binding and impact 

our thinking of how odor processing takes place in the sensory neurons of insects.
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Figure 1. AaOR10/Orco assembles with a 1:3 stoichiometry.
(A) and (B) Comparison of electrophysiological behavior of Ae. aegypti OR10 with A. 
bakeri Orco or Ae. aegypti Orco. Representative whole-cell currents evoked by indole (A) 
or o-cresol (B) in HEK293T cells expressing AaOR10 with either A. bakeri (black) or Ae. 
aegypti Orco (gold), voltage clamped at 80 mV. The response to o-cresol is farther from 

saturation at high o-cresol concentration, limiting the goodness of the fit. Dose-response 

parameters and statistics can be found in table S2. (C) Cryo-EM density map of the 

AaOR10/Orco complex shown from the side (within the plane of the membrane) and 

from the top (extracellular surface), colored by proximity to each subunit, as marked. 

Orcos in shades of blue, OR10 in magenta, detergent micelle in gray. (D) Cylindrical 

helix representation of the complex, indicating overall location of the major features of 

the complex. Below, all residues found to be involved in contacts between OR10 and 

Orco subunits are represented as spheres and colored by subunit. OR10 is shown separated 

and rotated to exhibit the contact residues. Inset: comparison of analogous intersubunit 
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interfaces between OR10 and Orco (top) and between adjacent Orcos (bottom), showing 

the interactions of a conserved tyrosine (Tyr315 in OR10, Tyr415 in Orco), and also an inter-

subunit salt bridge between a conserved lysine (K439 in Orco) and interacting glutamate in 

OR10 (Glu 312) or Orco (Glu 412). (E) Conservation scores (mean +/− SEM) calculated 

by amino acid position from a sequence alignment of 461 ORs and 47 Orcos across insect 

species (see Methods). Scale goes from 1 (least conserved) to 11 (identical). Statistical 

significance assessed using a Mann-Whitney test (**** p<0.0001, ** p=0.0049).
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Figure 2. The AaOR10/Orco channel gates through outward displacement of the OR10 pore 
helix.
(A) and (B) Views of the AaOR10/Orco complex in the unbound (A) and o-cresol-bound 

(B) structures. Leftmost: Lateral view of the OR subunit and the diagonal Orco subunit. 

Right: Top view of the complexes, with a close-up view of the residues facing the lumen 

of the pore at the gate. Measurement of distances between the Orco and OR pore residues 

in the unbound (A) and o-cresol-bound (B) structures is taken from center atoms, using 

PyMOL. (C) The ion permeation pathways of the unbound (left) and o-cresol bound (right) 

structures, colored by pore diameter. The front Orco A subunit is not shown to permit 

visualization of the cavity. The center vestibule of the ion conduction pathway is continuous 

with four lateral conduits that allow ion permeation; two are shown in each structure. The 

intracellular ‘anchor’ domain remains closed in unbound and o-cresol bound structures. 

The plot shows the diameter of the ion permeation pathway, with respect to distance from 
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the outer membrane boundary towards the intracellular space, in Å. The diameter of the 

impermeable central path through the anchor domain is shown in solid lines, while those of 

the lateral conduits are in dashed lines.
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Figure 3. Odorant binding and mechanism of activation of AaOR10/Orco.
(A) Top view of the o-cresol-bound AaOR10/Orco complex. Inset: close-up of the ligand-

binding pocket showing the o-cresol-interacting residues. (B) Top, o-Cresol dose-response 

curves of AaOR10/Orco mutants. Bottom, baseline fluorescence of the mutants, all 

normalized to the baseline of wild-type AaOR10/Orco on the same plate in order to account 

for inter-plate variation. Experimental details and curve parameters (including N and EC50) 

in supplementary table 4 and methods. (C) Overlay of the unbound and o-cresol bound 

structures showing a top view of the AaOR10 subunit, displaying the rearrangements of 

helices in the presence of o-cresol. (D) Close-up of helices S3, S6, S5, and S7 in the 

unbound (left) and o-cresol-bound (right) structures. Interacting residues in S5, S6, and S7 

within 5 Å from each other are shown in ball-and-stick representation. Note the unmodeled 

density in the unbound state wedged between helices S3-S6 and partially occupying the 

pocket. (E) Lateral views of the complex in unbound (left) and o-cresol bound (right) 

states, displaying the unmodeled density found in the unbound state. Insets: close-ups of the 

Zhao et al. Page 17

Science. Author manuscript; available in PMC 2024 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



unmodeled density (yellow surface), o-cresol (cyan sticks), and the ligand-binding pocket 

in AaOR10, which is shown as a clipped surface. The unbound state exhibits a continuous 

tunnel connecting the ligand-binding pocket to the membrane, where we find the unmodeled 

density. When bound with o-cresol, the tunnel is closed by the coming together of S3 and S6 

helices.
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Figure 4. Cryo-EM structures of an OR/Orco complex from the mosquito Anopheles gambiae, in 
unbound and odorant-bound states.
(A) and (B) Views of the AgOR28/Orco complex in the unbound state (A) and bound 

to 2,4,5-trimethylthiazole (TMT) (B). Leftmost: Lateral view of the OR subunit and the 

diagonal Orco subunit. Right: Top view of the complexes, with a close-up view of the 

residues facing the lumen of the pore at the gate. Measurement of distances between the 

Orco and OR pore residues in the unbound (A) and TMT-bound (B) structures is taken 

from center atoms, using PyMOL. (C) Top view of the AgOR28 subunit, displaying the 

rearrangements of helices in the presence of TMT, in a pattern closely resembling that of 

the AaOR10 complex (see fig. 3). (D) Left, overlay of top views of ligand-bound structures 

of AaOR10/Orco and AgOR28/Orco. Right inset, overlaid top views of the o-cresol-bound 

AaOR10 and TMT-bound AgOR28 subunits.
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