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INTRODUC TION

Small fiber neuropathy (SFN) comprises a heterogeneous group of 
disorders that affect thinly myelinated Aδ-fibers and unmyelinated 
C-fibers [1]. SFN is reported to be associated with a wide range of 
diseases or conditions [2–4], although few of these have a causal 
relationship to SFN like diabetes and impaired glucose tolerance [5, 
6]. In the majority of patients with SFN, particularly the elderly, no 
specific etiology can be identified [7, 8]. The exact pathophysiology, 
which leads to the particular damage of small nerve fiber endings, 
is still unclear. It is also unclear whether nerve fiber degeneration 

occurs only at the very distal endings or also involves the neuron in 
the dorsal root ganglion [9–11].

The diagnosis of SFN is based on the presence of neuropathic 
pain and dysesthesia, along with normal nerve conduction and 
decreased warm and cold sensation on quantitative sensory test-
ing (QST), as well as reduced intraepidermal nerve fiber density 
(IENFD) at the lateral calf [1, 4, 12]. SFN typically presents as a 
distally symmetric “dying-back” pattern in most patients, but in 
some cases it can manifest with a patchy and asymmetric pattern, 
making it challenging to diagnose and differentiate from func-
tional pain disorders without structural nerve damage [13, 14]. 
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Abstract
Background and purpose: Diagnosing small fiber neuropathies can be challenging. To ad-
dress this issue, whether serum neurofilament light chain (sNfL) could serve as a potential 
biomarker of damage to epidermal Aδ- and C-fibers was tested.
Methods: Serum NfL levels were assessed in 30 patients diagnosed with small fiber neurop-
athy and were compared to a control group of 19 healthy individuals. Electrophysiological 
studies, quantitative sensory testing and quantification of intraepidermal nerve fiber 
density after skin biopsy were performed in both the proximal and distal leg.
Results: Serum NfL levels were not increased in patients with small fiber neuropathy 
compared to healthy controls (9.1 ± 3.9 and 9.4 ± 3.8, p = 0.83) and did not correlate with 
intraepidermal nerve fiber density at the lateral calf or lateral thigh or with other param-
eters of small fiber impairment.
Conclusion: Serum NfL levels cannot serve as a biomarker for small fiber damage.
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To overcome these diagnostic difficulties, but also in order to get 
an insight into the pathophysiology of SFN, it was investigated 
whether thin nerve fiber degeneration in SFN can increase serum 
neurofilament light chain (sNfL) levels, thereby making it a poten-
tial biomarker.

Neurofilaments confer structural stability and are present in 
dendrites and neuronal soma, as well as in axons, where their ex-
pression is particularly high [15–17]. NfL is consistently released at 
lower levels from axons, probably in an age-dependent fashion, with 
elevated NfL release observed in older individuals [17]. Importantly, 
NfL is also found to be correlated with neuronal damage in the cere-
brospinal fluid (CSF) and serum of patients with conditions such as 
traumatic brain injury [18], neurodegenerative diseases like amyo-
trophic lateral sclerosis [19, 20] and chronic inflammatory conditions 
like multiple sclerosis [21–23]. Notably, there is a growing body of 
evidence indicating that blood NfL levels are elevated in polyneu-
ropathies [24–33] and correlate with neuropathy acuteness and pro-
gression [26, 32, 34–36]. As there is damage/degeneration of small 
fiber axons [37–40] and neurofilaments are important components 
of the axon, it was hypothesized that NfL, which is broadly investi-
gated and significantly increased in other polyneuropathies, could 
be a surrogate for fiber loss in SFN.

MATERIAL S AND METHODS

Study design and patients

A cross-sectional observational study was conducted and included 
patients with SFN referred to the Neurology Department at the 
University Medical Center of the Johannes Gutenberg University 
Mainz (Mainz, Germany), from March 2019 to December 2020. The 
study was conducted according to the Declaration of Helsinki and 
was approved by the Ethics Committee of the Rhineland-Palatinate 
Medical Association (837.437.17). A written informed consent was 
obtained from each participant.

During their first visit, patients received a comprehensive ex-
amination by an experienced neurologist. Patients diagnosed with 
SFN of any etiology were included. The diagnosis SFN was made ac-
cording to guidelines and landmark papers [1, 41]. More specifically, 
only patients who met the Diabetic Neuropathy Study Group of the 
European Association for the Study of Diabetes (NEURODIAB) cri-
teria [41, 42] for a definite SFN diagnosis, which means clinical evi-
dence of small fiber damage, normal sural nerve conduction studies 
(NCS), abnormal thermal thresholds in QST at the foot and/or re-
duced IENFD at the ankle were included.

Age- and sex-matched healthy controls (HCs) without any known 
acute (at the time of recruitment) or chronic disease and in particular 
absence of any signs of neuropathy were also investigated. Due to 
the positive correlation between age and sNfL [43], it was sought to 
create homogeneous age-matched study groups. Participants (both 
patients with SFN and HCs) with comorbidities that could affect sNfL 
(e.g., other neurological disorders, malignancies) were excluded.

Toronto Clinical Neuropathy Scale and 
symptom evaluation

The Toronto Clinical Neuropathy Scale (TCNS) [44], which assesses 
symptoms and objective sensory-motor signs, was used as a clinical 
tool to define neuropathy severity. A TCNS score from 0 to 5 repre-
sents no/very mild neuropathy, 6–8 mild neuropathy, 9–11 moderate 
neuropathy, and a score ≥12 represents severe neuropathy [44]. Pain 
intensity between 1 and 3 on the 11-point numerical rating scale was 
regarded as mild, 4–6 as moderate and 7–10 as severe pain, in ac-
cordance with previous publications [45–47].

Serum NfL measurement

Serum NfL levels were measured using the same protocol described 
previously [22]. In brief, whole blood was collected from all pa-
tients and controls in 7.5 mL S-Monovette® Serum Gel (Sarstedt, 
Germany). Blood was allowed to clot for about 5 min after sampling. 
Next, samples were spun at 1400 g at room temperature for 10 min. 
Directly after centrifugation, the serum was evenly transferred 
(1 mL/tube) to 1 mL polypropylene tubes and locally stored at −80°C. 
sNfL was measured in several rounds by SiMoA HD-1 (Quanterix, 
USA) using the NF-Light Advantage Kit (Quanterix) from the same 
batch according to the manufacturer's instructions. Resorufin-β-d-
galactopyranoside was incubated at 33°C for 60 min prior to running 
the assay. Samples were measured in duplicate. The coefficient of 
variation (as a percentage) of each sample was obtained by dividing 
the standard deviation of both replicates by the mean of both rep-
licates multiplied by 100. sNfL measurements were performed in a 
blinded fashion without information on clinical data.

Electrophysiological studies

All patients and controls underwent NCS. Ulnar and tibial motor 
nerve conduction velocity (NCV), compound muscle action poten-
tial and antidromic ulnar and sural sensory NCV and sensory nerve 
action potential (SNAP) were performed (right side of the body, or 
predominant side of symptoms) under controlled conditions using 
standard methods [48].

Quantitative sensory testing

Quantitative sensory testing (QST) was performed according to 
the established protocol of the German Research Network on 
Neuropathic Pain (DFNS) [49] at the lateral calf (test area) and 
ipsilateral cheek (control area). Thermal and mechanical detec-
tion and pain thresholds, paradoxical heat sensations with alter-
nating thermal stimuli, dynamic mechanical allodynia, wind-up 
ratio for painful pinprick stimuli and the vibration disappearance 
threshold were determined. Since 5% of healthy individuals can 
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present with at least one pathological test [49], determination of 
pathological QST required the presence of at least two patho-
logical tests, with the exception of the presence of paradoxical 
heat sensations or dynamic mechanical allodynia, since they do 
not normally occur in healthy humans. Reference values are ac-
cording to the DFNS [49].

Skin biopsies

According to the consensus paper by the European Federation of 
Neurological Societies [1], skin punch biopsies were obtained 10 cm 
proximal to lateral malleolus and 20 cm distal to spina iliaca with a 
disposable 6-mm punch biopsy after subcutaneous local anesthesia. 
All skin samples were processed to estimate IENFD according to a 
previously published protocol [50]. Skin biopsies were gathered and 
sent to the histology laboratory of the Department of Neurology, 
University of Würzburg, Germany. The IENFD was determined fol-
lowing standardized counting rules [1] by an investigator blinded to 
subject allocation. Results were then evaluated by an experienced 
clinician also blinded to the subject.

Statistical analysis

Statistical analyses were performed using IBM SPSS 23 Statistics, 
version 23.0, and GraphPad Prism 9 for Windows. The level of statis-
tical significance was set at p < 0.05. All data were tested for normal 
distribution by the D'Agostino−Pearson test and by visual inspection 
of the distribution. Comparison of data between groups was per-
formed with t tests. Pearson correlation analyses were performed to 
explore associations between sNfL levels and clinical and histologi-
cal parameters, as well as neurophysiological data. Categorical data 
were analyzed with χ2 tests.

Regarding QST data, raw data were transformed into z val-
ues as previously described [51] allowing comparison between 
different sexes and ages. For individual assessments, values are 
regarded as pathological if the individual results at the test area 
lie outside the 95% confidence interval (CI) of the age-adapted ref-
erence values [51].

RESULTS

Patients' characteristics

This study included 30 patients with SFN (n = 30, 11 female and 19 
male, mean age ± SD 46 ± 11 years), in most cases idiopathic (81.8%) 
(Figure  S1), and 19 HCs (n = 19, 10 female and nine male, mean 
age ± SD 46 ± 8 years). There were no differences in age or sex be-
tween the two groups (Table 1). The median duration of the SFN was 
18 months (95% CI 24.5–60.1 months). The median TCNS score was 
8 (95% CI 6.5–9.3) representing a mild neuropathy [44]. The median 

pain intensity the week before recruitment, which was rated on an 
11-point numerical rating scale (NRS 0–10) was 5 (95% CI 4.2–5.8), 
the median pain intensity on the examination day was 3 (95% CI 
2.6–4.6) and the median strongest pain intensity in the week before 
recruitment was 8 (95% CI 6.2–7.6).

All recordings from NCS of both patients and the control group 
were within the normal limits of age-controlled normative values. 
NCS of the sural nerve did not differ between patients and con-
trols (SFN patients, mean ± SD, sural SNAP 11.7 ± 4.6, sural NCV 
52.8 ± 10.7; HCs, sural SNAP 10 ± 3.5, sural NCV 54.1 ± 9.1; p = 0.17 
and p = 0.68 respectively). Large fiber neuropathy was not detected 
in any of the included patients. The sural/ulnar SNAP ratio, which 
is discussed as an index of early length-dependent polyneuropathy 
[52-54], was additionally calculated, and no differences were found 
between patients (mean ± SD 0.55 ± 0.31) and HCs (0.65 ± 0.47) (t 
test, p = 0.34).

Assessment of the small fibers and diagnosis of SFN

Quantitative sensory testing (QST) revealed predominant loss 
of thermal perception, that is, warm detection threshold (WDT), 
cold detection threshold (CDT) and thermal sensory limen (TSL) 
(Figure 1). Individually, 11/29 patients with SFN were below the nor-
mal limits (−1.96 standard deviations) of CDT, 8/29 of WDT and 8/29 
of TSL. QST data from one patient are missing because of no-show 
at the QST test site.

Both the proximal IENFD (patients, 7 ± 2.6 fibers/mm; HCs, 
9.5 ± 3.1 fibers/mm; p = 0.014) and distal IENFD (patients, 3.6 ± 2 
fibers/mm; HCs, 7.5 ± 3.5 fibers/mm; p < 0.01) were lower in SFN 
patients (Figure 2). 25/30 SFN patients had a pathological low dis-
tal IENFD but also 2/19 HCs presented with an asymptomatic low 

TA B L E  1 Summary of clinical characteristics and results of NCS 
of the study population.

SFN n = 30
Healthy 
controls n = 19

p 
value

Age 46 ± 11 46 ± 8 0.88

Sex (W/M) 11/19 10/9 0.54

Sural SNAP (μV) 11.7 ± 4.6 10 ± 3.5 0.17

Sural sensCV (m/s) 52.8 ± 10.7 54.1 ± 9 0.68

Tibial CMAP (mV) 17.7 ± 6.1 19.4 ± 10.1 0.52

Tibial motorCV (m/s) 50 ± 6.6 59.7 ± 9 0.14

Ulnar CMAP (mV) 15 ± 3.8 13.8 ± 3.1 0.24

Ulnar motorCV (m/s) 61.9 ± 9.6 66.5 ± 12.3 0.16

Ulnar SNAP (μV) 27.3 ± 14.5 23.1 ± 11.7 0.29

Ulnar sensCV (m/s) 58.8 ± 7.2 62.3 ± 10.6 0.18

Sural/ulnar SNAP ratio 0.55 ± 0.31 0.65 ± 0.47 0.34

Abbreviations: CMAP, compound muscle action potential; motorCV, 
motor nerve conduction velocity; NCS, nerve conduction studies; 
sensCV, sensory nerve conduction velocity; SFN, small fiber 
neuropathy; SNAP, sensory nerve action potential.
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IENFD, based on age- and sex-adjusted normative values [1,55]. 
All patients fulfilled the criteria for a definite SFN [41]; 17 had 
both pathological IENFD and abnormal QST thermal thresholds 
(Figure 3).

Serum NfL in patients with SFN

Serum NfL could be measured in all participants; levels did not 
differ (p = 0.83) between patients with SFN (9.1 ± 3.9) and HCs 
(9.4 ± 3.8). The distribution of individual results broadly overlaps 
(Figure 4). Although mean age was similar in the two groups, the 
correlation of age and sNfL was calculated separately for the two 
groups and they both revealed a strong positive Pearson correla-
tion (for HCs p = 0.001, r = 0.70; for patients with SFN p < 0.001, 
r = 0.69).

In the final step of our analysis, whether there was a correla-
tion between sNfL and tests for small fiber integrity or a sensitive 
parameter for large fiber impairment, namely sural NCS, was ex-
amined (Table  2). In the SFN group, a significant correlation was 
found between sNfL and sural SNAP (r = −0.43, p = 0.02) although 

F I G U R E  1 Quantitative sensory testing of all patients. QST z 
scores of the SFN patients (mean/SD at the lateral calf). The zero 
line denotes the mean value of the control group, the dashed lines 
in each case 1.96 times the standard deviation from the mean 
value of the control group, i.e., the range in which the values of the 
control group lie within a 95% probability (95% confidence interval). 
Negative z scores denote loss of sensitivity. The asterisks denote 
the significant differences of the raw data between patients and 
control group: CDT p < 0.001, WDT p < 0.001, TSL p < 0.00, VDT 
p = 0.033 (*p < 0.05; **p < 0.001). CDT, cold detection threshold; 
CPT, cold pain threshold; DMA, dynamical mechanical allodynia; 
HPT, heat pain threshold; MDT, mechanical detection threshold; 
MPS, mechanical pain sensitivity; MPT, mechanical pain threshold; 
PPT, pressure pain threshold; TSL, thermal sensory limen; VDT, 
vibration detection threshold; WDT, warm detection threshold; 
WUR, wind-up ratio.

F I G U R E  2 Comparing intraepidermal nerve fiber density 
between patients and healthy controls. Intraepidermal nerve fiber 
density (fibers/mm). Horizontal lines indicate the mean and the 
bars the standard deviation (SD) of patients and healthy controls. 
Patients have significantly fewer fibers/mm at both the proximal 
(p = 0.014) and distal (p < 0.01) biopsy sites compared to controls. 
The number of proximal skin biopsies of HCs was smaller (n = 13) 
because not all consented to a second skin biopsy. HC, healthy 
controls; IENFD, intraepidermal nerve fiber density; SFN, small 
fiber neuropathy.

F I G U R E  3 Defining small fiber polyneuropathy patients 
according to the NEURODIAB criteria. Diagnosis of definite SFN 
based on NEURODIAB criteria. All 30 patients fulfilled the criteria 
for definite SFN, 17 of whom had both pathological IENFD and 
abnormal quantitative sensory testing (QST) thermal thresholds at 
the foot, two had only pathological thermal threshold abnormalities 
and 11 had only pathological IENFD. All patients had clinical 
evidence of small fiber damage and normal sural nerve conduction 
studies. IENFD, intraepidermal nerve fiber density; SFN, small fiber 
neuropathy.

F I G U R E  4 Comparing serum Neurofilament between patients 
and healthy controls. sNfL concentrations of 30 patients with SFN 
and 19 age-matched healthy controls. Horizontal lines indicate 
the mean and the bars the standard deviation (SD) of patients 
and healthy controls. No difference was detected between the 
concentrations of SFN patients (mean ± SD, 9.1 ± 3.9) and healthy 
controls (9.4 ± 3.8), p = 0.83. HC, healthy controls; ns, non-
significant; SFN, small fiber neuropathy; sNfl, serum neurofilament 
light chain.
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the individual values fell in the normal range for all patients. Such 
a correlation was not observed in HCs (sural nerve SNAP r = −0.09, 
p = 0.71). No correlation was observed between sNfL and sural/ulnar 
SNAP ratio.

DISCUSSION

Neurofilaments contribute to the growth and stability of axons in 
both central and peripheral neurons and maintain mitochondrial sta-
bility and microtubule content [56]. NfL is expressed in axons and 
is shed into the peripheral blood following axonal injury in patients 
with a variety of neurological diseases in the central and peripheral 
nervous system [57]. sNfL levels are known to be increased in pe-
ripheral sensorimotor neuropathies, particularly if they are signifi-
cantly progressing [24-33]. The availability of highly sensitive assays 
for NfL in serum samples [17] and the need for a quick and repro-
ducible biomarker for nerve fiber damage particularly in clinically 
ambiguous cases motivated our measurements of sNfL levels in pa-
tients with pure SFN.

Our results indicate that sNfL levels of patients with SFN were 
not different from HCs. Furthermore, no correlation was found be-
tween any parameters reflecting small nerve fiber function and in-
tegrity and sNfL levels in our patients. That is, sNfL levels do not 
reflect damage to small diameter axons in SFN although ongoing 
axonal degeneration and regeneration might happen [37-40]. sNfL 
are therefore not suited as a biomarker for SFN. Our negative results 
indicate that either the NfL content of small intraepidermal nerve 
fibers is too low [58] or the axonal damage in SFN is generally too 
subtle to detect altered NfL in serum samples. It has already been 
discussed before that CSF as well as blood NfL remains high for 
2–3 months after a relapse and then drops to lower levels in multiple 
sclerosis patients [15,17] and that serum levels in chronic inflam-
matory demyelinating polyneuropathy significantly decrease after 
1 month of treatment and in remission periods [32,34]; this could 
also affect the diagnostic accuracy of sNfL in patients with SFN, as 
there are no clear signs of relapses or the exact timing of fiber loss 
and degeneration.

Patients and HCs were homogeneous, especially in terms 
of sex and age. Age is an important positive predictor for sNfL 

[43,59]. Our analysis confirmed this finding by presenting a strong 
correlation of sNfL with age in both study cohorts. Furthermore, 
an ultra-sensitive fourth-generation (single-molecule array) immu-
noassay was used that can reliably measure blood levels of sNfL 
and detect subtle longitudinal changes in disease and in healthy 
controls [57,60]. All values from patients and controls were above 
the detection limit.

One strength of our study is that our patients adhered to the 
definition of “pure” SFN. Large fiber neuropathy could not be de-
tected in any of the patients, and QST profiles were typical for 
patients with small fiber damage [12,61]. However, the negative cor-
relation of sural SNAP with sNfL in the patient group, even though 
SNAP was in the normal range, might indicate some preclinical im-
pairment of large sensory fibers. Obviously, this impairment is too 
subtle to cause an absolute increase of sNfL as has been shown in 
more progressive sensory-motor neuropathies [25,62,63]. Indirectly, 
this interpretation is supported by the lack of correlation between 
sNfL and these parameters in HCs.

It was observed that a reduction in IENFD from the distal or 
proximal leg biopsy site was not sufficient to increase sNfL. This 
is in contrast to a recent study showing increased phosphorylated 
heavy chain neurofilaments (NfH) in plasma samples of patients 
with diabetic SFN [63]. In that study [63], patients had a signifi-
cantly lower sural SNAP compared to their HCs which might be an 
indication for at least some sensory fiber damage leading to an in-
crease in serum neurofilaments, as discussed in the previous para-
graph. In contrast to those results [63], in our study sural SNAP did 
not differ between the two groups. NfL and NfH are equally in-
creased in the serum and CSF of patients with amyotrophic lateral 
sclerosis [64] and are both equally stable for measurement [65], 
but fewer data are available on NfH [66], particularly when periph-
eral neuropathies are concerned. Moreover, the SiMoA method 
is a highly sensitive technique compared to the enzyme-linked 
immunosorbent assay or the electrochemiluminescence-based 
assay for CSF and serum samples [67-69]. Further investigations 
are needed to explore whether sNfL could differentiate between 
SFN of different etiologies. It is yet speculative, but axonal damage 
(and sNfL) in idiopathic SFN, prevalent in 81.8% of our study co-
hort, which could remain stable over a long period [4,70,71], might 
be different from SFN in systemic diseases like diabetes leading 

TA B L E  2 Pearson correlations between sNfL and small fiber parameters as well as sural nerve NCS.

IENFD 
lateral thigh

IENFD 
lateral calf CDT WDT MDT MPT TSL VDT

Sural nerve 
SNAP

Sural nerve 
NCV

Sural/
ulnar ratio

sNfL

r −0.15 −0.28 0.05 0.28 0.12 0.12 −0.03 −0.21 −0.43 −0.26 −0.17

p 0.46 0.14 0.81 0.14 0.56 0.56 0.89 0.28 0.02* 0.17 0.37

Note: There were no significant correlations between sNfL and the other results of SFN assessment in the patient cohort (n = 30), but there was a 
strong negative correlation with sural nerve SNAP.
Abbreviations: CDT, cold detection threshold; IENFD, intraepidermal nerve fiber density; MDT, mechanical detection threshold; MPT, mechanical 
pain threshold; NCS, nerve conduction studies; NCV, nerve conduction velocity; SFN, small fiber neuropathy; SNAP, sensory nerve action potential; 
sNfL, serum neurofilament light chain; TSL, thermal sensory limen; VDT, vibration disappearance threshold; WDT, warm detection threshold. 
*significant p value.
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to sensorimotor neuropathy in due course, despite the clinical 
similarity.

The major limitation of our study is that the sample size is 
limited, precluding comparisons of different etiological SFN sub-
groups. Whilst the majority of our patients have idiopathic SFN, 
whose pathology might be confined to the epidermal nerve fibers, 
future investigations should include a sufficient number of sub-
jects with SFN as a result of an ongoing (e.g., diabetes or thyroid 
dysfunction) or terminated systemic disease (e.g., drug-related), in 
order to further address the role of sNfL as biomarkers for periph-
eral neuropathies.

CONCLUSION

Even if measured with a very sensitive assay, sNfL levels are not 
suited to objectify or to monitor loss of small epidermal nerve fibers 
in SFN. Future research has to clarify whether the amount of NfL in 
epidermal nerve fibers is too low, whether other filament proteins 
like the recently investigated peripherin [72] are better suited to 
monitor small nerve fiber damage, or whether the pathophysiology 
of SFN is not related to an ongoing axonal damage.
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