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Abstract

Spatial transcriptomics has gained popularity over the past decade due to its ability to evalu-
ate transcriptome data while preserving spatial information. Cell segmentation is a crucial
step in spatial transcriptomic analysis, as it enables the avoidance of unpredictable tissue
disentanglement steps. Although high-quality cell segmentation algorithms can aid in the
extraction of valuable data, traditional methods are frequently non-spatial, do not account
for spatial information efficiently, and perform poorly when confronted with the problem of
spatial transcriptome cell segmentation with varying shapes. In this study, we propose ST-
CellSeg, an image-based machine learning method for spatial transcriptomics that uses
manifold for cell segmentation and is novel in its consideration of multi-scale information.
We first construct a fully connected graph which acts as a spatial transcriptomic manifold.
Using multi-scale data, we then determine the low-dimensional spatial probability distribu-
tion representation for cell segmentation. Using the adjusted Rand index (ARI), normalized
mutual information (NMI), and Silhouette coefficient (SC) as model performance measures,
the proposed algorithm significantly outperforms baseline models in selected datasets and
is efficient in computational complexity.

Author summary

Spatial transcriptomics data is a type of biological data that describes gene expression pat-
terns in the context of tissue or cell spatial arrangement. Traditional transcriptomics stud-
ies the gene expression of a group of cells or a tissue sample as a whole, revealing which
genes are active or inactive in that sample. Spatial transcriptomics, on the other hand, is a
recent technology that can maintain the spatial information of where these genes are
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expressed inside the tissue. These methods provide a more accurate description of tissue
and cell subcellular architecture, allowing for a better understanding of physical and bio-
chemical interactions between cells. Precise cell identification is critical because it can aid
in the discovery of unusual cell types, particularly in cancer research. Traditional cluster-
ing approaches, on the other hand, frequently fail to account for spatial information. The
issue in bioinformatics is thus to diversify cell segmentation approaches in spatial tran-
scriptomic analysis. To that purpose, we develop a cell segmentation technique for spatial
transcriptomic data that uses distance metrics to better define the spatial transcriptomics
distribution. The experimental results reveal that this algorithm outperforms the popular
cell segmentation algorithms and performs faster under the same conditions.

1. Introduction

Human and animal tissues consist of diverse cell types that are organized systematically [1].
Single-cell transcriptomics approaches have exploded in popularity over the past decade, and
single-cell RNA sequencing (scRNA-seq) technologies have become the tool of choice for char-
acterizing complicated tissue states [2-4]. However, these methods are resulting in a loss in
spatial information. Thus, single cell sequencing methods are gradually improved by spatial
transcriptomics, a recent technical invention that evaluates transcriptome information while
conserving spatial information [1]. In these techniques, the transcriptome measurements are
resolved based on situ sequencing, multi-channel single-molecule fluorescent in situ hybrid-
ization (smFISH) [5-7], or spatial barcode hybridization [8, 9].

Furthermore, the effects of physical and biochemical interactions between cells, as well as
the effects of transcriptomic processes on tissue organization during development and disease
[10, 11], can be revealed. The number of genes and molecules that can be detected in most
assays is currently limited to 30 to 300 genes and 50 to 500 molecules per cell, respectively [12].
Increasing scale and spatial resolution has enabled an accurate description of the subcellular
organization of tissue and cells [13, 14], as the number of genes optimized for detection has
increased to thousands [15]. Thus, spatial transcriptomics analysis may eventually replace
scRNA-seq since they provide technical benefits such as the ability to avoid the capricious tis-
sue disentanglement steps required by scRNA-Seq.

The most fundamental task in spatial transcriptomics data analysis is cell type identification
[16]. The process of identifying the cell type of each spatial unit or spot typically starts with
dimensionality reduction techniques to reduce the temporal and spatial complexity of down-
stream analysis. Cells are clustered using the simplified representation under the assumption
that cells of the same type belong to the same cluster [1]. Cell segmentation is a critical step in
spatial transcriptomic analysis. High-quality cell segmentation algorithms can assist people in
mining valuable data. Cells have a variety of irregular shapes; however, traditional clustering
methods are frequently non-spatial and do not efficiently account for spatial information [17].
As a result, because cell deformation and cell overlap undermine the spatial assumption, these
methods fail to perform well in the problem of spatial transcriptome cell segmentation with
different shapes. Several state-of-the-art methods have been proposed for cell segmentation.
ClusterMAP [18] is proposed as an annotation-free unsupervised clustering framework for
spatial gene expression clustering using neighborhood gene composition. SpaGCN [19] uses
graph convolutional network (GCN) and considers the similarity between adjacent spots to
account for gene expression spatial dependency. A graph attention auto-encoder framework
[17] is developed to characterize the spatial similarity at spatial domain boundaries. Moreover,
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Cellpose [20] is considered as a state-of-art cell segmentation algorithm on variety of image
types. In spatial transcriptome analysis, a manually designed distance metric is useful to
describe the relationship between spatial transcriptome sampling points. Thus, in this study,
we develop ST-CellSeg, a cell segmentation algorithm for spatial transcriptomics by employing
the concept of manifold to better describe the spatial transcriptome distribution under this dis-
tance measure. A manifold is a space with local Euclidean space properties that is used to
describe geometric shapes in mathematics. The proposed algorithm is a three-stage algorithm.
The first stage is to construct a fully connected graph and learn its manifold structure. The sec-
ond stage is to find a low-dimensional spatial probability distribution representation that
approximates the high-dimensional manifold structure. Assuming the location of each tran-
scribed RNA has a strong relationship to its neighbors; the novelty of our method is to use a
multi-scale neighborhood gene composition (MSNGC) feature to represent the spatial infor-
mation of the spatial transcriptome. The advance of using MSNGC in compared to single scale
neighbor gene composition is that MSNGC can gather more information of cells. The
designed distance representation is then used to fuse spatial coordinate information and
multi-scale neighborhood gene composition feature information. In final stage, considering
the distribution between each cluster, we use density clustering method to segment cells in
low-dimensional space and feed the loss of density clustering back to the upstream training
process. To assess the performance of our proposed algorithm, we apply it to various datasets
and compare the performance to state-of-the-art spatial transcriptomic cell segmentation algo-
rithms. Using the cluster analysis index and the number of floating points as evaluation met-
rics, the experimental results show that our algorithm outperforms other baseline methods on
the cluster analysis index and has a faster speed under the same conditions.

2. Materials and methods
2.1 Datasets

To evaluate the performance of the proposed method, we consider three spatial transcriptomic
datasets with different gene distribution: STARmap mouse placenta 903-gene [15], STARmap
cardiac organoid 8-gene [21], MERFISH mouse POA [14]. In this study, we rename these
datasets as STARmap 903-gene data, STARmap 8-gene data, and MERFISH 140-gene data,
respectively. These data were collected from a variety of experiments in which different gene
expression shapes cell types onto a three-dimensional (3D) space using three image-based in
situ transcriptomics methods: spatially resolved transcript amplicon readout mapping (STAR-
map) [15] and multiplexed error-robust fluorescence in situ hybridization (MERFISH) [14].
Table 1 provides a description of these datasets, including experiment methods, number of
genes, number of cells, number of reads, and cell types.

The basic unit of spatial transcriptomic data is spot. As indicated in Table 1, reads represent
the number of spots in each dataset.

2.2 Data Preprocessing

Before performing data dimensionality reduction, it is essential to preprocess the data to
ensure its quality and remove any outliers that may negatively impact subsequent analysis. In

Table 1. Summary of spatial transcriptome datasets.

Datasets Experimental methods Reads Genes Cells Cell types
STARmap 903-gene data STARmap 5,090,930 903 7,224 12
STARmap 8-gene data STARmap 47,594 8 1,519 3
MERFISH 140-gene data MERFISH 3,065,171 140 10,320 9

https://doi.org/10.1371/journal.pcbi.1012254.t001
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this step, we calculate the distance between each data point and its nearest neighbor. If the dis-
tance exceeds a predefined threshold, the point is considered an outlier and filtered out from
further analysis. This approach helps remove data points that might introduce noise or bias to
the clustering results, ensuring a more reliable and accurate outcome.

2.3 Spatial transcriptomic uniform manifold approximation

In this study, we propose a spatial transcriptomic uniform manifold approximation algorithm
for cell segmentation (ST-CellSeg) by taking multi-scale information into account. ST-CellSeg
is an extension of uniform manifold approximation (UMAP) [22] learning algorithm for cell
segmentation in spatial transcriptome. The proposed algorithm maps to the space for cluster-
ing of segmented cells by learning the manifold structure of the spatial transcriptome data.
The entire cell segmentation using ST-CellSeg includes three steps. The first step is to learn the
manifold structure of a fully connected graph which is constructed based on multi-scale dis-
tance metric of the spatial transcriptome. The second step is to find a low-dimensional spatial
probability distribution representation that approximates the high-dimensional manifold
structure. Finally, given the structure of manifold is learned in Euclidean space, cell segmenta-
tion is conducted based on the density clustering method (i.e., sample points are clustered in
low-dimensional space). The overview of ST-CellSeg architecture is described in Fig 1.

2.3.1 Data structure of spatial transcriptomic data and basic notations. Spatial tran-
scriptomic data is a set of disordered points or spots. Each spot has two primary components:
physical coordinates and a gene tag. While the physical coordinates satisfy the properties of

Finding a low-

Build the Learning the
manifold rrtlani{old dimensional
structure tati
(a) In situ transcriptomicimaging (c) .‘""_"s.t_r_u_r:t_t!:? ........ RCLTTLLTIT e ,(d) represe"amn .......
o*= e, o % o,
mRNA spot matrix D % Forward: N %
. 1 Manifold Leamning =
x y (z2) Gene H o a a 6—.—9" A A
spot1 7 22 1 ° : | Spatial transcriptomic :: - Low dimensional
H a2 = O
pisll . : distribution | & F distribution
| ¥z Backward: -
H Cross Entropy Loss 5
EIC T TP P PEPP P PR TS e A
Gene types . =
elonereiere Forward:
T, Local
Sreraa,, :  connectivity
.~ H .
—_s = and merging
of edges
= Forward:D Backward:Cluster
: BSCAN Loss

.......... Close scale (R)

Spatial transcriptomic |
distance i

.......... Mild scale (3R)

.......... Long scale (SR)

“ Ris hyper-parameter which can be

%, ‘.'. optimized. E S - E
Multi-Scale Neighborhood Gene Composition (MSNGC) % Physical Coordinate of Spot1 : L H H v
feature of Spot1 C H
g [} (] [} ® [ ]

: : Integrating with | : :
o 1 1 1 0 o Closescale(R] & (x,y, (2)) physical coordinate of | : Cell detection
2 214 3 818 Mild scélelon : = Physical coordinates can be two- : Spotl | = :
2 4 4 3 1 1 Long scale(SR)) H H : H

= dependingon the dataset " ie \‘ 3

Fig 1. The diagram of ST-CellSeg for cell segmentation. The ST-CellSeg cell segmentation algorithm has three stages. (a) A spatial transcriptomic data
structure. Each spatial transcriptome sampling site includes a gene tag and physical coordinates, which can be two-dimensional or three-dimensional. (b)
Illustration of multi-scale neighbourhood gene composition (MSNGC). MSNGC is a spot feature that counts the number of adjacent genes at different scale
levels and represents the gene relationship between the sampling point and its surroundings. Given MSNGC features and physical coordinates of spots, ST
distances are calculated, which represent the spatial location of sampling points. (c-d) An ST-CellSeg cell segmentation framework. Spatial transcriptomic
manifolds are built in (c). Local connectivity and merging edges are combined to build a manifold structure. The low dimensional clustering space is
constructed from manifold learning. (d) Cell segmentation (or cell detection) results are obtained from density clustering in the clustering space. Fusion cross-
entropy and clustering analysis metrics are used as error propagation.

https://doi.org/10.1371/journal.pchi.1012254.9001
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symmetry, positive qualitative, and triangular inequalities, the gene tags represent the gene cat-
egories corresponding to the sampling points in discrete disorder. The ST sampling points are
generally assumed to have local correlation which is the basis of the spatial transcriptome dis-
tribution. To better understand the structure of spatial transcriptomic data, let S, be the i""
spot which is the basic unit of the spatial transcriptome dataset, for i = 1,2,. . .N where N is the
total number of spots. The number of spots in each ST datasets is defined as reads in Table 1.
We can define each spot S, as

Si=(x,y,(2)), (1)

where S, is the two-dimensional or three-dimensional physical coordinate of each spot. Each
S, is attached to a gene tag € for £ = 1,2,.. .L. An example of ST data structure is illustrated in
Fig 1, Panel (a).

2.3.2 Spatial transcriptome distance. To compute the spatial transcriptome distance of
spots S, and S, denoted as D(S;, S;), we propose the multi-scale neighborhood gene composi-
tion (MSNGC) features of each spot. MSNGC feature represents the gene relationship of a
given spot S, and its surrounding sampling points. Denote M; a cxL MSNGC feature matrix of
spot S, where ¢ represents the number of scale levels and L indicates the number of gene tags.
We consider three different scales: close scale (R), mid scale (3R), and long scale (5R) where R
is the radius of circular surrounding given spot S,. Each element of M; represent the count of
surrounding sampling points of S; having gene tag and scale level as indicating by column and
row labels of the matrix. The illustration can be found in Fig 1, Panel (b). Let M; and M; be
MSNGC features of spots S; and S, respectively. We propose to build a manifold using multi-
scale information by considering information from all three scales (R, 3R, and 5R), and the
Pearson correlation factors of M; and M; can be defined as

P (M” Mj) _ ZZZI zL:lLl[(Mi)lﬂ - (Mi)ﬁl X E(M;)l/; - (Mj)ﬁ] 2 (2)
\/ Dol (M) — (M) ] 2000 (M) — (M) 4]

where 3 represents three different scales, (M), and (M;); are the average of MSNGC features
of spots §; and S in scale f3, respectively.

Given ppysnee(Mi M), the ST distance D(S,, S;) of any given spots S, and S, can expressed
as

D(S;;8) =d(S;;S) x (1 = prsvec (M, My)), (3)

[ "~

where d(S,, Sj) represents the Manhattan distance of spots S, and S e Although the distances
may not satisfy the properties of triangle inequality in some cases, ST-CellSeg only requires the
distances satisfying the properties of symmetry and non-negativity. Thus, the performance of
the proposed method does not depend on the triangle inequality of the distances. Furthermore,
among the commonly used distance measures, Euclidean distance and Manhattan distance are
two most popular ones in clustering data mining techniques [23]. Manhattan distance has
been used in clustering algorithms for better performance [24, 25]. Apart from this reason, we
have decided to choose Manhattan distance over Euclidean distance in our proposed method
because of its primary advantage in computational efficiency and cost. The process of comput-
ing the ST distance is describe in Fig 1, Panels (b) and (c).

2.3.3 Spatial transcriptomic manifold in high-dimensional space. To determine the ST
manifold in high-dimensional space, a weighted k-neighbour graph is constructed. Given the
preferred number of neighbours k as an input hyper-parameter, we consider the k-nearest
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neighbour descent (k NN-descent) algorithm to find the nearest neighbor spots. The k NN-
descent forms a wider connection across manifold with larger k, while the algorithm pays
more attention to local information with smaller k. We assume the sample spots are evenly dis-
tributed across the manifold and distance measure is considered varied between regions.
Denote S = (S, S,,...,Sy) be the input set of spots and let £ = {S,,,S,,,...,S,;,} be the
set of k nearest spots of spot S,. We define a weighted (directed) graph G = (V, E, w) where
vertices V of G is the set S and edges E is simply the set K. The edge weight w(S,, S, ;) between
two S, and its neighbours can be expressed as

(5.5,) ~op (P00 8

0;

where §, = min{D(S,,S,;)[1 <j <k, 1 <i< N} is the distance to the nearest neighbor of
S, and the normalizing factor o; is set in condition to

—max{0, D(S,,S,;) — &}

I e ) ©

i

Although the edge weight of spot S to §; is different from that of S; to S, ST-CellSeg over-
comes this inconsistency by taking the union of two edges and constructs the related weighted
(undirected) graph G' by connecting k nearest neighbours. The weighted adjacency matrix A
of G'is defined as

Ay =w(S,8) +w(S,S,) —w(S,S)w(S,,S,), fori,j=1,2,...N. (6)

In the high-dimensional probability distribution for modeling ST-CellSeg, a Bayesian dis-

tribution between two spots S; and §; is considered. Based on the smooth nearest neighbour

distances, the similarities p;j; is defined as

D(S,S,) -9,
o) ), ”)

o,

1

Pj\i = exXp <_

and the symmetrization can be expressed as Py = Py + Py — PPy

In the context of spatial transcriptomic analysis, the purpose of probability symmetrization
is to refine the estimation of spatial relationships between transcriptomics spots. In high-
dimensional distributions where each spot represents a complex set of transcriptomic data,
defining a reliable measure of similarity between spots is important for accurate segmentation
and cell type identification.

The similarity metric is initially derived using Bayesian distribution to account for the
inherent uncertainty and variability in the spatial data. This similarity is based on the smooth
nearest neighbour distances, which incorporate both the proximity and the density of spots to
capture the local structure of the data more effectively. By considering Bayesian probabilities,
the model can infer the degree to which spots share similar transcriptomic profiles, which
might suggest a functional or cellular relationship.

The symmetrization of the probability is used for two reasons. First, it ensures that the simi-
larity measure is bidirectional and reflects the mutual relationship between two spots irrespec-
tive of the order in which they are considered. This is crucial in spatial analysis, where the
interaction between two locations is inherently reciprocal. Symmetrization can be used to pre-
vent the model from overemphasizing unidirectional similarities that could arise from asym-
metries in the local density of spots or from noise in the data.
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Secondly, symmetrization promotes a more robust clustering of spots, as it balances the
similarity contributions from both spots. For example, in the presence of outliers or spots with
disproportionately high or low density of transcripts, the raw nearest neighbour distances
might skew the similarity metric, affecting the downstream clustering or segmentation. By
averaging the contributions from each spot, the symmetrization reduces the influence of such
anomalies, leading to more stable and interpretable clusters that are more reflective of the
underlying cellular architecture.

2.3.4 Spatial transcriptomic manifold in clustering space. Given the approximate mani-
fold learned from a higher-dimensional space in previous subsection, we now obtain the ST
manifold in clustering space which is a lower-dimensional representation prior to conduct the
cell segmentation. However, the distance is variable in low-dimensional space. To construct a
spatial transcriptomic manifold in cluster space, we consider the standard Euclidean distance
relative to the global coordinate system. The low-dimensional similarities g;; are defined as

/ ! 2b -1
g =(1+al S-S5 2) ; (8)

where a, b are defined positive-valued hyperparameters, and S; and S; are representation of S,
and §; in clustering space.

Since the conversion from variable distance to standard distance may affect the distance to
the nearest neighbor, a hyperparameter d,,,;,, defining the minimum distance between points
in lower dimensional space is required. Given d,,;,, the algorithm searches for a better repre-
sentation to replace the representation of low-dimensional manifold. ST-CellSeg is imple-
mented by minimizing the cross entropy (CE) cost function which is defined as

pl pi'
CE‘ST*UMAP = Zl#] pylogqj + (1 _plj)logl q] (9)

The lower-dimensional representation is then used for clustering. This step is shown in
Fig 1, Panels (c) and (d). The multi-scale neighborhood gene composition (MSNGC) mani-
fold learning of ST-CellSeg is presented in Algorithm 1.

Algorithm 1. ST-CellSeg algorithm in MSNGC manifold learning

1: input Spots §, number of nearest neighbours k, number of epochs e,
2: Clustering space dimension d

3: initialize

4: Obtain N, the total number of spots S, for 1 = 1,2,...,N.

5: for i,7=1,2,...,Ndo

6: Compute M; and M;.

7: Calculate the spatial transcriptome distance D(S,.,Sj) using Eq 3.
8: Obtain edge weight w(S,S,;) using Eq 4.

9: Construct A; from Eq 6.

10: Obtain degree matrix AP of graph A.

11: Compute L= VAP(A? — A)VAP.

12: Obtain v where v is the sorted eigenvectors of L.

13: Assign § «—v[l...d+1]

14: for t = 1,2,...,e do

15: Optimize embedding by minimizing (9).

16: Compute C = DBSCAN(S)

17: Obtain center spots S, for i = 1,2,...,card(C) of each cluster C
18: for i,7=1,2,...,card(C) do

19: Compute M; and M;.
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(a)

20: Calculate the spatial transcriptome distance D(S,S;) using
Equation

21: Obtain edge weight w(S,S;;) using Eq 4.

22 Add A; from Eq 6.

23: Obtain degree matrix A” of graph A.

24: Compute L= VAP(A” — A)VA®.

25: Obtain v where v is the sorted eigenvectors of L.

26: Assign 8§ «v[l...d+1]

27: output Lower-dimensional representation §'.

2.3.5 Cell segmentation of spatial transcriptomic data. Given the manifold in lower
dimension, we conduct the cell segmentation using density-based spatial clustering of applica-
tions with noise (DBSCAN) algorithm in Euclidean space. DBSCAN can partition regions
with sufficiently high density into clusters and to find clusters of arbitrary shapes in noisy spa-
tial data. The overview of cell segmentation using DBSCAN is summarized in Fig 2.

The DBSCAN algorithm requires a scan radius (eps) and a minimum number of included
points (minPts) as inputs. The algorithm starts by choosing any unvisited point to visit and
scans all nearby points which are within the distance of eps (including eps). If the number of
nearby points is greater or equal to minPts, the current point forms a cluster with its nearby
points, and the starting point is marked as visited. The algorithm will continuously process all
points in the cluster that are not marked as visited in a recursive manner to extend the cluster.
However, if the number of nearby points is smaller than minPts, the point is temporarily
marked as a noise point. If the cluster is sufficiently expanded (i.e., all points in the cluster are
marked as visited), the same algorithm is applied to the unvisited points. Given several clusters
obtained from DBSCAN, we select several sample points closest to the centre of each cluster.

(b) ® "o

Fig 2. Cell segmentation with DBSCAN. (a) DBSCAN Workflow: Core Points, Reachability, and Noise. In the DBSCAN workflow with minPts = 4, core
points (including Point A) are identified by the condition that the area surrounding them within an € radius contains at least 4 points. These core points form a
single cluster as they are mutually reachable. Points B and C, although not core points, are reachable from Point A through other core points, thus belonging to
the same cluster. Point N is classified as a noise point since it is neither a core point nor directly reachable from any core points. (b) Illustration of clustering

effect using DBSCAN.

https://doi.org/10.1371/journal.pcbi.1012254.9002
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Table 2. Optimal values of hyper-parameters used in ST-CellSeg framework.

Hyper- Optimal values

parameters

k Between 2 and 100, and the optimal value is 50.

a The initial learning rate value is 1.0

e 200 for large datasets; 500 for small datasets

r 10 in x, y domain; 7 in z domain

eps Hyperparameter in DBSCAN which is a maximum distance from one observation to another

before they are no longer considered as neighbors

minsamples Default value is 1.

https://doi.org/10.1371/journal.pcbi.1012254.1002

In addition, distribution of relationship between obtained clusters in the manifold learning
process can be learned.

2.4 Hyper-parameter settings

In the ST-CellSeg framework, the values of hyper-parameters may have impact on the perfor-
mance of the algorithm in cell segmentation. The optimal values of the number of neighbors k,
learning rate o, number of epochs e, radius to search for circles to build ST manifold r, eps and
minsamples in DBSCAN are reported in Table 2.

2.5 Baseline methods

ClusterMAP [18]: ClusterMAP is an annotation-free unsupervised clustering framework for
multi-scale spatial gene expression clustering. The algorithm can be used to precisely cluster
RNAs into subcellular structures in both two- and three-dimensional space, incorporating the
physical location and gene identity from images with high-dimensional transcriptomic
profiles.

SpaGCN [19]: SpaGCN is a novel clustering approach that incorporates spatial information
to account for the spatial dependency of gene expression. This method primarily analyzes gene
expression count matrices, emphasizing the relationships between adjacent spots. SpaGCN
uses a graph convolutional network (GCN) to effectively integrate gene expression data with
the spatial locations of the spots. Additionally, it employs a self-supervised learning module to
discover spatial domains within the tissue.

Baysor [26]: Baysor is a cell segmentation method for spatial transcriptomics data. It opti-
mizes cell boundaries by considering the joint likelihood of transcriptional composition and
cell morphology. The algorithm integrates gene expression and spatial location, utilizing a self-
supervised module to identify domains.

STAGATE [17]: STAGATE is a graph attention auto-encoder framework used to charac-
terize spatial similarity at spatial domain boundaries. By integrating spatial information and
pre-clustering of gene expression profiles, the similarity of neighboring spots is learned in low-
dimensional latent embedding and a cell type-aware module.

Cellpose [20]: Cellpose is an interface to state-of-art nuclei segmentation algorithm that
can perform cell segmentation on a variety of image types. The model does not require model
retraining or parameter adjustments. This generalized machine learning segmentation method
can also reuse the two-dimensional (2D) model for three-dimensional (3D) extension without
using 3D-labeled data.

StarDist [27]: StarDist is a cell detection method that predicts a shape representation with-
out requiring any refinement. The StarDist algorithm employs a thin neural network based on
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U-Net [28]. Although the algorithm is simple to learn and apply, the localization accuracy can
compete with other cutting-edge methods.

2.6 Performance metrics

To evaluate the performance in cell segmentation of ST-CellSeg, we consider three evaluation
metrics: adjusted Rand index (ARI), normalized mutual information (NMI), and Silhouette
coefficient (SC). In addition, floating point operations per second (FLOPs) is used as a mea-
sure to evaluate the time complexity of the proposed algorithm.

Adjusted Rand index (ARI): ARI is the variant of Rand index metric. This metric is used
to generally evaluate the similarity between two clusters. The score of ARI is between 0 and 1
where 0 represents a random result, 1 represents a complete agreement between the clusters,
and negatives value indicates the index is smaller than the expected one [29]. The equation for
calculating the ARI can be defined as

D 1 9 o141 9 6
)= ==

where n; indicates the number of cells assigned to the i cluster, njindicates the number of
cells with true label j, and n;; indicates the size of cells having true label i and assigned to i
cluster.

Normalized mutual information (NMI): NMI is the normalization of mutual information
(MI) score [30] which is used to measure the similarity and exploit the grouping property.
NMI normalizes MI by generalizing the means of true labels and predicted labels. The formula
of NMI is defined as

2MI(Y, C)

NMIY ©) = vy + 7))

(11)
where Yis the predicted cell labels, C is the ground truth cell labels, H(Y) and H(C) are the
entropy of true and predicted cell labels, respectively. The MI (Y,C) = H(Y)-H(Y|C). Thus, the
value domain of NMI is [0,1], higher NMI score indicates the predicted labels are similar to
the ground truth.

Silhouette coefficient (SC): SC is commonly used as a performance metric to evaluate per-
formance of clustering algorithms. This coefficient measures the degree of separation between
clusters by calculating the tightness and separation between clusters [31]. The score is between
—1 and 1 where larger value indicates a higher degree of separation among clusters. The for-
mula to obtain SC is defined as

_ (bi B ai)
SG= max(a,, b,)’

i) 7

(12)

where a is dissimilarity within the i cluster and b is the dissimilarity between the i"" cluster
and its nearest cluster.

Time complexity analysis. We use both the floating-point operations per second
(FLOPs) and actual time spent on the analysis by each of the algorithms. FLOPs indicating the
number of floating operations per second are used to measure the complexity of model com-
putation. This metric can be an indirect measure to calculate the speed of neural network
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model. The FLOPs, takes value of 1 if the method is a floating-point operation, and 0
otherwise.

3. Results

We verify our method on three datasets and compare its performance in cell segmentation
with six mainstream spatial transcriptome segmentation algorithms. To evaluate the effective-
ness of our method, we conduct a series of ablation experiments to discuss the effect of differ-
ent clustering methods using different scaling coefficients. Moreover, we count the number of
computations of our method and the selected baseline methods to measure the time complex-
ity of the algorithm.

3.1. Cell segmentation performance

We compare the differences between ST-CellSeg and six spatial transcriptome cell segmenta-
tion algorithms such as ClusterMap, SpaGCN, STAGATE, Baysor, CellPose, and StarDist on
three datasets: STARmap 903-gene, STARmap 8-gene, and MERFISH 140-gene. The experi-
mental results are shown in Table 3. The results show that the proposed method performs bet-
ter than the six selected algorithms in all three cluster analysis metrics ARI, NMI, and SC for
both STARmap 8-gene and MERFISH 140-gene data sets. ClusterMap shows the best perfor-
mance for STARmap 903-gene data set when ARI metric is used. This shows that our ST-Cell-
Seg is effective in cell segmentation.

Fig 3 illustrates the visualization of the ground truth, cell segmentation and classification
results for ST-CellSeg and ClusterMap. The reason for choosing ClusterMap as a comparison
is that the clustering analysis of this method on various datasets is the best among the six
selected baseline methods, as shown in Table 3. Comparing Panel (a)-the ground truth of the
STARmap 8-gene dataset, the cell segmentation results of the proposed method ST-CellSeg
(Panel (b)), which focuses on multiscale information of local manifolds, are more compact in
comparison to those of ClusterMap (Panel (c))). The biological significance of the segmented
cells can be visually verified by the dimension reduction of the gene types and numbers con-
tained in each cell. Thus, if the data dimension reduction results are compact, the segmented
cells can be considered to have biological significance. Panels (d) and (e) are the results of the
data dimension reduction after applying ST-CellSeg and ClusterMap segmentation, respec-
tively. The results of ST-CellSeg are more compact and the segmented cells are considered to
be biologically meaningful. The visualization results demonstrate that our method has a better
performance on the cell segmentation task compared to the selected baseline methods. The
segmentation visualization results of the other five baselines can be found in S1 Table.

Table 3. Cell segmentation performance of ST-CellSeg in comparison to six baseline models.

Datasets STARmap 903-gene
Methods/Metric ARI NMI
ST-CellSeg 0.84 0.96
ClusterMap 0.86 0.85
SpaGCN 0.73 0.81
STAGATE 0.78 0.80
Baysor 0.75 0.77
Cellpose 0.69 0.75
StarDist 0.67 0.63

https://doi.org/10.1371/journal.pcbi.1012254.t1003

STARmap 8-gene MERFISH 140-gene

SC ARI NMI SC ARI NMI SC

0.86 0.85 0.95 0.90 0.81 0.91 0.91
0.85 0.83 0.93 0.86 0.81 0.90 0.90
0.83 0.71 0.84 0.80 0.74 0.80 0.80
0.80 0.77 0.84 0.78 0.77 0.80 0.78
0.80 0.80 0.82 0.83 0.74 0.84 0.76
0.69 0.61 0.68 0.70 0.69 0.68 0.65
0.70 0.59 0.71 0.74 0.64 0.63 0.66
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Fig 3. Visualization for the ground truth and cell segmentation performance of ST-CellSeg and ClusterMap on STARmap 8-gene data. (a) ground truth.
(b) -(c) Cell segmentation results of ST-CellSeg and ClusterMap on the STARmap 8-gene dataset, respectively. Each color represents a cluster obtained through
the clustering segmentation of cells. (d)-(e) Results of the data dimension reduction after applying ST-CellSeg and ClusterMap segmentation. Each color

represents a specific cell type.

https://doi.org/10.1371/journal.pchi.1012254.9003

3.2. Ablation studies

The innovation of our method lies in the sensing range of multiple scales. To verify the effective-
ness of our innovation, we conduct a series of ablation experiments to compare the perfor-
mance of the single-scale and multi-scale versions of the method. The experimental results are
shown in Table 4. Overall, the multi-scale method performs better than the single-scale method.

With the increasing R, the performance becomes relative better for all the three data sets.

3.3. Time complexity of model computation

To evaluate the computational efficiency of ST-CellSeg in comparison to baseline methods, we
calculate the floating-point operations per second (FLOPs) and the actual time of each method

Table 4. Ablation analysis of ST-CellSeg in terms of cluster methods and three different levels of sensing scales.

Datasets
Methods/Metric
DBSCAN (R, 3R, 5R)
DBSCAN (R, 3R)
DBSCAN (R)

https://doi.org/10.1371/journal.pcbi.1012254.1004

STARmap 903-gene

ARI
0.84
0.82
0.79

NMI SC

0.96 0.86
0.93 0.85
0.90 0.85

STARmap 8-gene

ARI
0.85
0.83
0.83

NMI
0.95
0.93
0.91

SC

0.90
0.87
0.85

MERFISH 140-gene

ARI
0.81
0.79
0.79

NMI
0.91
0.90
0.89

SC

0.91
0.91
0.90
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Table 5. Floating point operations per second (FLOPs) of ST-CellSeg and five baseline models on the three different datasets.

Datasets ST-CellSeg ClusterMap SpaGCN STAGATE Cellpose StarDist
STARmap 903-gene data 6.36M 7.78M 8.37M 6.93M 8.64M 8.98M

STARmap 8-gene data 11.59M 18.35M 23.45M 19.54M 19.31M 18.21M
MERFISH 140-gene data 16.87M 18.35M 18.63M 17.65M 23.65M 24.25M

https://doi.org/10.1371/journal.pcbi.1012254.1005

when applying to STARmap 903-gene, STARmap 8-gene, and MERFISH 140-gene data. The
results reported in Table 5 show that ST-CellSeg has lowest FLOPs in each dataset. In terms of
the actual computational time, as shown in the S2 Table, ST-CellSeg has smaller computa-
tional time than ClusterMap on CPU-based machine. Although it has comparable computa-
tional time to the other 5 baselines, they work on the GPU-based machine. Thus, the proposed
method is overall more efficient than the other six baselines in cell segmentation.

4. Conclusion and discussion

We present a method called ST-CellSeg for cell segmentation tasks of spatial transcriptomics.
ST-CellSeg is a manifold learning method that uses local multiscale information. We validate
ST-CellSeg on three datasets including STARmap 903-gene and compare its performance to
six baseline methods. The cell segmentation results show that the proposed method outper-
forms other algorithms on three clustering metrics ARI, NMI, and SC. The results of visual cell
segmentation show that the cells obtained by ST-CellSeg segmentation are more compact and
have more biological significance. Moreover, the results of ablation experiments show that the
introduction of local multiscale information helps to improve the performance of cell segmen-
tation, which proves the effectiveness of ST-CellSeg. In addition, we count the time complexity
of different methods, and ST-CellSeg is overall faster than the comparison methods. Further-
more, as shown in S3 Table, the proposed method can handle the data sets with different cell
shapes, use spatial information for cell segmentation and does not require GPU acceleration
for data analysis. Hence, the ST-CellSeg is not only more accurate in segmentation results, but
also efficient in computation.

Supporting information

S1 Table. The segmentation results of various methods for a more detailed comparison.
(PDF)

S2 Table. Comparison of cell segmentation times for different methods on different spatial
transcriptomics datasets. In this supplementary material section, we provide additional
details on the runtime comparison of cell segmentation methods using different computa-
tional platforms. The table presented below showcases the runtime performance of ST-CellSeg
(CPU), ClusterMap (CPU), SpaGCN (GPU), STAGATE (GPU), Baysor (CPU), Cellpose
(GPU), and StarDist (GPU) on two spatial transcriptomics datasets: STARmap 903-gene data
and MERFISH 140-gene data.

(PDF)

$3 Table. Comparison of cell segmentation methods based on different features and tech-
niques. The table presents a comparison of various cell segmentation methods based on differ-
ent features and techniques. ST-CellSeg, ClusterMap, SpaGCN, STAGATE, Baysor, Cellpose,
and StarDist are evaluated in terms of their ability to handle cell shape, incorporate spatial
information, operate without requiring labels, utilize deep learning techniques, and support
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GPU acceleration.
(PDF)
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