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Abstract

Biological networks constructed from varied data can be used to map cellular function, but each 

data type has limitations. Network integration promises to address these limitations by combining 

and automatically weighting input information to obtain a more accurate and comprehensive 

representation of the underlying biology. We developed a deep learning-based network integration 

algorithm that incorporates a graph convolutional network framework. Our method, BIONIC 

(Biological Network Integration using Convolutions), learns features that contain substantially 

more functional information compared to existing approaches. BIONIC has unsupervised and 

semisupervised learning modes, making use of available gene function annotations. BIONIC 

is scalable in both size and quantity of the input networks, making it feasible to integrate 

numerous networks on the scale of the human genome. To demonstrate the use of BIONIC 

in identifying new biology, we predicted and experimentally validated essential gene chemical–

genetic interactions from nonessential gene profiles in yeast.

High-throughput functional genomics projects produce massive amounts of biological data 

for thousands of genes, often represented as gene–gene interaction networks, which link 

genes or proteins of related function1. These functional interaction networks have varying 

rates of false-positives and -negatives and integrating them promises to generate more 

accurate and complete functional networks. However, the diversity of experimental methods 

makes unifying this information a major challenge.

Existing network integration methods have not yet solved this problem. For example, many 

integration algorithms produce networks that retain only global topological features of 

the original networks, which can be at the expense of important local relationships2–5, 

whereas others fail to effectively integrate networks with partially disjoint node sets6,7. 

Some methods incorporate too much noise in their output, for instance by using more 

dimensions than necessary to represent their output, which can be detrimental to gene 

function and functional interaction prediction quality2–6. Most data integration approaches 

do not scale in the number of networks or in the size of the networks required for real 

world settings4,6,8. Supervised methods have traditionally been the most common network 

integration approach5,8–10 and, while highly successful, they require labeled training data to 

optimize their predictions of known gene functions, which may not be available. Moreover, 

annotations can be biased and limited, working only with known functional descriptions 

and reinforcing the existing understanding of gene relationships rather than identifying new 

ones.

To address the potential bias of supervised approaches, unsupervised biological network 

integration methods have recently been expl ored2–4,6,7,11. Theoretically, unsupervised 

network integration methods can provide a number of desirable features such as 

automatically retaining high-quality gene relationships and removing spurious ones, 

inferring new relationships based on the shared topological features of many networks in 

aggregate and outputting comprehensive results that cover the entire space of information 

Forster et al. Page 2

Nat Methods. Author manuscript; available in PMC 2024 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



associated with the input data, all while remaining agnostic to any particular view of 

biological function. However, practically, unsupervised methods still face challenges, such 

as scalability. Recently, new unsupervised data representation methods have been developed 

that focus on learning compact features over networks12,13. However, this approach 

produces general-purpose node features that are not necessarily optimal for the task of 

interest. Advances in deep learning have addressed this shortcoming with the development 

of the graph convolutional network (GCN), a general class of neural network architectures 

that are capable of learning features over networks14–17 in a scalable manner. Compared to 

general-purpose node feature learning approaches12,13, GCNs have substantially improved 

performance for a range of general network tasks14,17.

Here we present a general, scalable deep learning framework for network integration called 

BIONIC (Biological Network Integration using Convolutions), which uses GCNs to learn a 

single, unified feature vector for each gene, given many different input networks. BIONIC 

addresses the aforementioned limitations of existing integration methods and produces 

integration results that accurately reflect the underlying network topologies and capture 

functional information. To demonstrate the use of BIONIC, we integrate three diverse, 

high-quality gene and protein interaction networks, to obtain integrated gene features that 

we compare to a range of function prediction benchmarks. We analyze our findings in the 

context of those obtained from a wide range of integration methodologies12,17, and we show 

that BIONIC features perform well at both capturing functional information and scaling in 

terms of the number of networks and network size, while maintaining gene feature quality. 

Finally, we applied BIONIC network integration toward the analysis of chemical–genetic 

interactions18, which allowed us to make predictions about the cellular targets of previously 

uncharacterized bioactive compounds.

Results

BIONIC architecture

BIONIC uses the GCN neural network architecture to learn optimal gene (protein) 

interaction network features individually and combines these features into a single, unified 

representation for each gene (Fig. 1). First, the input data, if not already in a network 

format, are converted to networks (for example, by gene expression profile correlation) 

(Fig. 1a). Each input network is then run through a sequence of GCN layers (Fig. 1b) 

to produce network-specific gene features. The number of GCN layers used (three layers 

in our experiments: Methods and Supplementary Data File 1) determines the size of the 

neighborhood (that is, genes directly connected to a given gene) used to update the gene 

features14, where one layer would use only the gene’s immediate neighbors, two layers 

would use the second order neighborhood and so on. Residual connections are added 

from the output of each network-specific GCN layer in the sequence to the output of the 

final GCN in the sequence (Extended Data Fig. 1). This allows BIONIC to learn gene 

features based on multiple neighborhood sizes rather than just the final neighborhood, 

while additionally improving training by preventing vanishing gradients19. The network-

specific features are then summed through a stochastic gene dropout procedure to produce 

unified gene features that can be used in downstream tasks, such as functional module 
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detection or gene function prediction. To optimize the functional information encoded in its 

integrated features, BIONIC must have relevant training objectives that facilitate capturing 

salient features across multiple networks. Here, BIONIC uses an unsupervised training 

objective, and if some genes have functional labels (such as complex, pathway or bioprocess 

membership annotations), BIONIC can also use these labels to update its learned features 

through a semisupervised objective.

For the unsupervised objective, BIONIC uses an autoencoder design and reconstructs 

each input network by mapping the integrated gene features to a network representation 

(decoding) and minimizing the difference between this reconstruction and the original input 

networks. By optimizing the fidelity of the network reconstruction, BIONIC forces the 

learned gene features to encode as much salient topological information present in the input 

networks as possible, which reduces the amount of spurious information encoded. Indeed, 

for a set of three yeast networks20–22, inputting these networks into BIONIC individually 

tends to produce features with higher performance on several benchmarks compared to 

the original network format (Extended Data Fig. 2). This is likely due to the tendency for 

BIONIC to progressively embed related genes closer together during the training process, 

while ensuring unrelated genes remain far apart (Extended Data Fig. 3). By reconstructing 

the input networks, BIONIC is also trained to model the latent factors from each network 

that will best reconstruct all input networks.

For the semisupervised objective, BIONIC predicts labels for each gene using the integrated 

gene features and then updates its weights by minimizing the difference between the 

predictions and a set of user-specified ground-truth functional labels. Here, BIONIC 

performs multi-label classification, where a given gene may be assigned more than one 

class label. BIONIC ignores the classification error for any genes lacking ground-truth labels 

and so is able to incorporate as much (or as little) labeled information as is available. The 

semisupervised classification objective is used in conjunction with the unsupervised network 

reconstruction objective when gene labels are available, and the unsupervised objective is 

used on its own when no gene labels are available.

Evaluation criteria

For the following analyses, we assessed the quality of the input networks and network 

integration method outputs using three evaluation criteria: (1) gene coannotation prediction; 

(2) gene module detection and (3) supervised gene function prediction. First, we used 

an established precision-recall evaluation strategy22,23 to determine how well gene– gene 

relationships produced by the given method overlapped with gene pairs coannotated to the 

same term in a particular functional standard. Second, we evaluated the capacity of each 

method to produce biological modules by comparing clusters computed from the output 

of each method to known modules such as protein complexes, pathways and biological 

processes. These two evaluations measure the intrinsic quality of the outputs generated 

by the integration methods, that is without training any additional models on top of 

the outputs. Finally, the supervised gene function prediction evaluation determines how 

discriminative the method outputs are for predicting known gene functions. Here, a portion 

of the genes and corresponding labels (known functional classes such as protein complex 
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membership) were held out and used to evaluate the accuracy of a support vector machine 

(SVM) classifier24, which is trained on the remaining gene features, output from the given 

integration method, to predict the held-out labels7. This constitutes an extrinsic evaluation, 

indicating how effectively the method outputs can be used in conjunction with an additional 

classification model.

In the following experiments, to ensure a fair choice of hyperparameters across BIONIC 

and the integration methods we compared to, we performed a hyperparameter optimization 

step using an independent set of Schizosaccharomyces pombe networks as inputs25–27 and 

a set of Gene Ontology (GO) curated pombe protein complexes28 for evaluation. The best 

performing hyperparameters for each approach were used (Methods).

Evaluation of BIONIC features and input networks

We first used the unsupervised BIONIC to integrate three diverse yeast networks: a 

comprehensive network of correlated genetic interaction profiles (4,529 genes, 33,056 

interactions)22, a coexpression network derived from transcript profiles of yeast strains 

carrying deletions of transcription factors (1,101 genes, 14,826 interactions)21 and a protein–

protein interaction network obtained from an affinity-purification mass-spectrometry assay 

(2,674 genes, 7,075 interactions)20, which combine for a total of 5,232 unique genes 

and 53,351 unique interactions (Fig. 2 and Supplementary Data File 2). Compared to the 

input networks, BIONIC integrated features have equivalent or superior performance on all 

evaluation criteria over three different functional benchmarks: IntAct protein complexes29, 

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways30 and GO Biological 

Processes28 (Fig. 2a and Supplementary Data File 3). The coannotation and module 

detection benchmarks contain between 1,786 and 4,170 genes overlapping the integration 

results. The module detection benchmarks define between 107 and 1,809 modules. The 

IntAct, KEGG and GO Biological Process gene function prediction benchmarks cover 567, 

1,770 and 1,211 genes overlapping the integration results, and 48, 53 and 63 functional 

classes, respectively (Supplementary Data File 2). As an additional test, BIONIC produces 

high-quality features that accurately predict a diverse set of yeast biological process 

annotations per gene22 (Fig. 2b). Some categories in this last test do better than others. 

These performance patterns were mirrored in the individual input networks, indicating that 

this is the result of data quality, rather than method bias.

We observed that features obtained through BIONIC network integration often outperformed 

the individual input networks at capturing functional modules (Fig. 2a) and captured more 

modules (Fig. 2c and Supplementary Data File 4), demonstrating the use of the combined 

features over individual networks for downstream applications such as module detection. 

Here we treated the network adjacency profiles (rows in the adjacency matrix) as gene 

features. We then examined how effectively the input networks and integrated BIONIC 

features captured known protein complexes, by matching each individual known complex to 

its best-matching predicted module and quantifying the overlap (Fig. 2c). We then compared 

the overlap scores from each network to the BIONIC overlap scores to identify complexes 

where BIONIC performs either better or worse than the input networks. Of 344 protein 

complexes tested, BIONIC strictly improved 196, 309 and 222 complex predictions and 
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strictly worsened 82, 17 and 98 complex predictions compared to the input protein–protein 

interaction, coexpression and genetic interaction networks, respectively. The distributions of 

complex overlap scores for each dataset indicate that BIONIC predicts protein complexes 

more accurately than the input networks on average. Indeed, if we use an overlap score of 

0.5 or greater to indicate a successfully captured complex, the integrated BIONIC features, 

containing information from three networks, capture 121 complexes, compared to 88, 3 

and 74 complexes for the individual protein–protein interaction, coexpression and genetic 

interaction networks, respectively (Fig. 2c). We also repeated this module analysis while 

optimizing the clustering parameters on a per-module basis, an approach that tests how 

well each network and BIONIC perform at capturing modules under optimal clustering 

conditions for each module. Here too, the integrated BIONIC features capture more modules 

and with a greater average overlap score than the individual input networks (Extended Data 

Figs. 4 and 5 and Supplementary Data File 5).

To better understand how BIONIC is able to improve functional gene module detection 

compared to the input networks, we examined the LSM2–7 complex, which was identified 

in our module detection evaluation (Fig. 2a) as an example to show how BIONIC 

effectively combines gene–gene relationships across different networks and recapitulates 

known biology. The LSM2–7 complex localizes to the yeast nucleoli and is involved in 

the biogenesis or function of the small nucleolar RNA SNR5 (ref. 31). LSM2–7 is made 

up of the protein products of six genes: LSM2, LSM3, LSM4, LSM5, LSM6 and LSM7. 

We found that the cluster that best matched the LSM2–7 complex in each input network 

only captures a subset of the full complex (Supplementary Data File 4). The BIONIC 

module, however, contains five out of six members of the LSM2–7 complex, along with 

two additional members: LSM1 and PAT1, which are functionally associated with the 

LSM2–7 complex32. The missing member, LSM5, is in the local neighborhood of the 

cluster in the BIONIC feature space. We examined the best-matching clusters and their local 

neighborhood, consisting of genes that show a direct interaction with predicted members of 

the LSM2–7 complex, in the input networks, and in a profile similarity network obtained 

from the integrated BIONIC features of these networks (Fig. 2d). We found that both the PPI 

and genetic interaction networks captured two members of the LSM2–7 complex, with two 

additional members in the local neighborhood. The coexpression network only identified 

one complex member, and the local neighborhood of the best-matching module did not 

contain any additional known complex members. Finally, BIONIC used the interaction 

information across input networks to better identify the LSM2–7 module, with the addition 

of two functionally related proteins. This analysis demonstrates the use of BIONIC for 

identifying meaningful biological modules by effectively combining information across 

input networks. Indeed, when we optimized the module detection procedure to specifically 

resolve the LSM2–7 complex, we found that BIONIC was able to capture the complex with 

a higher overlap score (0.83) than any of the input networks (0.33, 0.17 and 0.50 for the 

PPI, coexpression and genetic interactions networks, respectively), and it outperformed other 

integration methods (0.43, 0.22, 0.44, 0.60 and 0.68 for the Union, iCell, deepNF, Mashup 

and multi-node2vec methods, respectively) (Supplementary Data File 5).
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We also performed an analysis to examine how BIONIC features encode the input 

networks and found that the input networks are generally encoded uniformly across feature 

dimensions (Supplementary Note 1 and Extended Data Fig. 6).

Evaluation of BIONIC and established unsupervised integration methods

We compared network integration results from the unsupervised BIONIC (Fig. 2) to 

those derived from several different established integration approaches: a naive union of 

networks (Union), a nonnegative matrix tri-factorization approach (iCell)2, a deep learning 

multi-modal autoencoder (deepNF)11, a low-dimensional diffusion state approximation 

approach (Mashup)7 and a multi-network extension of the node2vec (ref. 13) model (multi-

node2vec)33 (Fig. 3). These unsupervised integration methods cover a wide range of 

methodologies and the main possible output types (networks for Union and iCell, features 

for deepNF, Mashup and multi-node2vec). BIONIC performs as well as, or better than 

the tested integration methods across all evaluation types and benchmarks (Fig. 3a). We 

also evaluated BIONIC and the other integration approaches on a per-biological process 

basis (Fig. 3b). Here we found BIONIC generally outperforms the established integration 

approaches on each biological process, with the exception of several biological processes 

when compared to deepNF. Averaging over the performance for each biological process, 

we found BIONIC performs on par with deepNF (average precision of 0.53 for BIONIC 

compared to 0.52 for deepNF). DeepNF performs competitively on the per-biological 

process evaluations (Fig. 3b), but it underperforms on the global performance evaluations 

(Fig. 3a). The per-biological process evaluations assess how well a method predicts large-

scale biological process coannotation, whereas the global performance evaluations measure 

how well a method predicts smaller-scale functional modules (that is, protein complexes). 

This discrepancy in performance indicates deepNF is able to capture broad-scale functional 

organization, but it fails to resolve smaller functional modules. BIONIC performs well on 

both of these evaluations, however, indicating it can learn gene features that resolve both 

broad and detailed functional organization. To ensure these results are consistent under 

different input networks, we integrated a set of yeast-two-hybrid networks and found similar 

performance patterns (Supplementary Note 2 and Extended Data Fig. 7).

Evaluation of BIONIC in a semisupervised setting

We also tested how BIONIC performs in a semisupervised setting (Fig. 4). Here, we 

compared BIONIC trained with no labeled data (unsupervised), BIONIC trained with a 

held-out set of functional labels given by IntAct, KEGG and GO (semisupervised), and 

a supervised integration algorithm using the same labels (GeneMANIA5). For each of 

these methods, we integrated the yeast protein–protein interaction, coexpression and genetic 

interaction networks from the Fig. 2 analysis. In each benchmark, 20% of genes (IntAct, 

KEGG, GO) were randomly held out and used as a test set, while the remaining 80% 

of genes were used for training. The unsupervised BIONIC did not use any gene label 

information for training, but it was evaluated using the same test set as the supervised 

methods to ensure a consistent performance comparison. To control for variability in the 

train-test set partitioning, this procedure was repeated ten times and the average performance 

across test sets was reported (Methods). We found that adding labeled data can substantially 

improve the features BIONIC learns and these features also outperform the integration 
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results produced by the supervised GeneMANIA method. We also found that even without 

labeled data, BIONIC performs as well as, or exceeds, GeneMANIA performance. Notably, 

the performance of the unsupervised and semisupervised BIONIC is similar for gene 

function prediction. This indicates unsupervised BIONIC features are already sufficiently 

discriminative for classifiers to perform well. Thus, BIONIC can be used effectively in 

both an unsupervised and semisupervised setting, which demonstrates its versatility as a 

biological network integration algorithm. We also analyzed the performance of BIONIC in a 

scenario where labels are noisy (Supplementary Note 3 and Extended Data Fig. 8).

Scalability of BIONIC and established integration approaches

An effective integration algorithm should be able to scale to many network inputs and 

networks with many nodes. To test network input scalability, we randomly sampled 

progressively larger sets of yeast gene coexpression networks (Fig. 5a and Supplementary 

Data File 2) and assessed the performance of the resulting integrations of these sets. We 

similarly tested node scalability by randomly subsampling progressively larger gene sets 

of four human protein–protein interaction networks34–37 (Fig. 5b and Supplementary Data 

File 2). BIONIC can integrate numerous networks (Fig. 5a), and networks with many 

nodes (Fig. 5b), outperforming all other methods assessed for progressively more and larger 

networks. To achieve this scalability, BIONIC takes advantage of the versatile nature of 

deep learning technology by learning features for small batches of genes and networks at 

a time, reducing the computational resources required for any specific training step. To 

learn gene features over large networks, BIONIC learns features for random subsets of 

genes at each training step and randomly subsamples the local neighborhoods of these genes 

to perform the graph convolution (Methods), maintaining a small overall computational 

footprint. This subsampling allows BIONIC to integrate networks with many genes, whereas 

methods such as Mashup can only do so with an approximate algorithm that reduces 

integration performance (Supplementary Fig. 1). To integrate many networks, BIONIC uses 

a network-wise sampling approach, where a random subset of networks is integrated at a 

time during each training step. This reduces the number of parameter updates required at 

once, since only GCNs corresponding to the subsampled networks are updated in a given 

training step. We also tested the extent of BIONIC scalability in terms of computational 

resources (Supplementary Note 4 and Extended Data Fig. 9).

BIONIC predictions of chemical–genetic interactions

We asked whether BIONIC can generate new, testable biological hypotheses. Chemical–

genetic approaches analyze the effects of mutations on cell growth in response to compound 

treatment and can be used to systematically predict the molecular targets of uncharacterized 

compounds38. For example, if a conditional temperature sensitive (TS) mutant carries a 

mutation that compromises the activity of a compound’s target gene, it is often specifically 

hypersensitive to the compound39,40.

Previously, we generated a dataset of chemical–genetic screens, consisting of a pool of 

deletion mutants of 289 nonessential genes (diagnostic pool) and 1,522 compounds18. Using 

this data, we used BIONIC to predict chemical sensitivities for a wider set of 873 essential 

genes across a subset of 50 compounds. For the compound selection procedure, we used the 
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unsupervised BIONIC integrated protein–protein interaction network, coexpression network 

and genetic interaction network features from the Fig. 2 analysis which we refer to as 

the physical, expression, and genetic (PEG) features. We selected compounds to study by 

identifying those that BIONIC predicts well within the diagnostic pool data. We did this by 

partitioning sensitive genes from each compound into train and test sets, and we used the 

BIONIC features to predict the test set genes using the training genes as input (Methods). 

The top 50 compounds, for which sensitive genes were most successfully predicted, were 

selected for further analysis. Sensitive essential gene predictions for each of the 50 chosen 

compounds were generated in a similar way to the compound selection procedure, with 

predictions being made on yeast essential genes rather than the diagnostic pool genes 

(Methods).

The BIONIC essential gene sensitivity predictions were experimentally validated using 

profiles for the compound set from a chemical– genetic screen using a collection of TS 

yeast mutants (Supplementary Data File 6). A DNA barcoded collection of 1,181 mutants 

containing TS alleles spanning 873 genes was constructed in a yeast genetic background 

that conferred drug hypersensitivity (pdr1Δpdr3Δsnq2Δ). The TS mutant collection was 

pooled and screened against the compound set. Mutant-specific barcodes were amplified 

from each compound-treated pool, and Illumina sequencing was used to quantify the 

relative abundance of TS mutant strains in the presence of each compound. Sequencing 

data was processed using BEAN-counter software to quantify chemical–genetic interactions 

and eliminate nonspecific technical effects41. Further statistical analysis was conducted to 

identify chemical–genetic interactions that satisfied a ‘far outlier’ cutoff (Methods), which 

were then compared to the sensitive genes predicted by BIONIC.

Out of 156 essential genes experimentally identified as sensitive to the set of 50 screened 

compounds, BIONIC successfully predicted 35. BIONIC significantly predicts sensitive 

genes for 13 out of 50 compounds under an ordered Fisher’s exact test. We also assessed 

more broadly whether BIONIC can correctly predict the biological process a given 

compound’s sensitive genes are annotated to. BIONIC sensitive gene predictions were 

statistically enriched (Fisher’s exact test) for 27 out of 62 annotated biological processes 

across compounds (Fig. 6a). We compared the quality of BIONIC’s predictions to a random 

baseline (Fig. 6b). Here, we generated 1,000 random permutations of the BIONIC PEG 

feature gene labels and computed sensitive essential gene predictions for the 50 screened 

compounds, as described previously. We found BIONIC sensitive gene and bioprocess 

predictions were substantially more accurate than the random permutations, indicating the 

BIONIC PEG features encode relevant information for the prediction of chemical–genetic 

interactions. We looked at the 13 significantly predicted compounds in more detail to 

see which sensitive gene predictions BIONIC correctly predicted and the corresponding 

ranks of those genes in the prediction list (Fig. 6c). We observed that for eight out of 13 

compounds, the correct BIONIC predictions rank in the top ten most sensitive interactions. 

BIONIC predictions and experimental results for the 50 selected compounds can be found in 

Supplementary Data File 7.

We examined the best predicted compound, NP329, in more detail. NP329 is a 

pseudojervine from the RIKEN Natural Product Depository42, and among its top ten 

Forster et al. Page 9

Nat Methods. Author manuscript; available in PMC 2024 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



most sensitive interactions with the diagnostic pool mutants were the FLC2, DFG5, 

GAS1 and HOC1 (ref. 18) genes. The FCL2 product is a putative calcium channel 

involved in cell wall maintenance43, DFG5 encodes a glycosylphosphatidylinositol (GPI)-

anchored membrane protein required for cell wall biogenesis in bud formation44, GAS1 
encodes a β-1,3-glucanosyltransferase required for cell wall assembly45–47, and HOC1 
codes for an alpha-1,6-mannosyltransferase involved in cell wall mannan biosynthesis48. 

By comparing NP329’s diagnostic pool gene sensitivity profiles with the compendium 

of genetic interactions mapped in yeast and analyzing our data using the CG-TARGET 

software for chemical–genetic profile interpretation18,49, the top three high-confidence GO 

bioprocesses predicted to be perturbed by NP329 were ‘cell wall biogenesis’ (GO:0042546), 

‘cell wall organization or biogenesis’ (GO:0071554) and ‘fungal-type cell wall organization 

or biogenesis’ (GO:0071852). This strongly implicates the pseudojervine NP329 as a 

disrupter of proper cell wall biogenesis in yeast.

To further study this compound–process interaction, we hierarchically clustered the BIONIC 

PEG features and we focused on the essential genes present in the Fig. 2b ‘glycosylation, 

protein folding/targeting, cell wall biosynthesis’ bioprocess (Fig. 6d). We observed that 

six out of 16 NP329 sensitive essential genes lie in the bioprocess, as do 18 out of 20 

BIONIC predicted sensitive essential genes. Within this bioprocess, BIONIC successfully 

predicts four (BIG1, KRE5, KRE9, ROT1) out of the six NP329 sensitive essential genes. 

These results indicate that BIONIC is able to both predict a relevant biological process 

targeted by the compound and the specific sensitive genes. Moreover, the four sensitive 

genes successfully predicted by BIONIC were all closely clustered together based on the 

integrated BIONIC features (Fig. 6). ROT1 encodes an essential chaperone required for N- 

and O-glycosylation in yeast50 and is required for normal levels of β-1,6-glucan51. Both 

KRE5 and BIG1 are also required for proper β-1,6-glucan synthesis52,53. These interactions 

further indicate NP329 can interfere in the proper synthesis of β-1,6-glucan, an essential cell 

wall component. Since the chemical structure of NP329 is extremely similar to the steroidal 

alkaloid jervine, we tested the effect of jervine on the production of β-1,6-glucan. KRE6 
is a nonessential gene that, like its paralog SKN1, encodes a glucosyl hydrolase required 

for β-1,6-glucan biosynthesis54. We found that treatment of cells with 5 μg ml−1 of jervine 

reduced β-1,6-glucan levels to the same extent as a kre6 deletion mutant, likely by inhibiting 

KRE6 and its paralog SKN1 (Extended Data Fig. 10). In a more detailed analysis, we found 

that point mutations in KRE6 or SKN1 can lead to jervine resistance, which further suggests 

that jerveratrum-type steroidal alkaloids target Kre6 and Skn1 (ref. 55). These results show 

that BIONIC can predict relevant chemical–genetic interactions and has the potential to link 

compounds to their cellular targets.

Discussion

BIONIC is a deep learning algorithm that extends the GCN architecture to integrate 

biological networks. BIONIC produces gene features that capture functional information 

well when compared to other unsupervised methods12,17 as determined by a range of 

benchmarks and evaluation criteria. BIONIC can use labeled data in a semisupervised 

fashion when it is available, and it can be purely unsupervised otherwise. BIONIC scales to 
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a greater number of input networks and network sizes compared to established unsupervised 

methods.

BIONIC can be used to predict pairs of related genes (coannotation prediction), identify 

functional gene modules (module detection) and accurately predict functional gene labels 

(gene function prediction). One of the main goals of this work is to generate fully integrated 

features encoding functional information for a particular organism, such that the resulting 

features can be used to predict numerous different aspects of cell and organism function56. 

As a proof-of-concept, we integrated three different yeast networks, incorporating protein–

protein interaction, coexpression and genetic interaction data. We also used BIONIC features 

to generate predictions for essential gene chemical sensitivities and a substantial number 

were experimentally validated, indicating BIONIC is effective at prediction and hypothesis 

generation.

BIONIC is capable of capturing relevant functional information across input networks. 

However, input networks do not have uniform quality and some networks may only 

describe certain types of functional relationship effectively (such as those within a particular 

biological process) while obscuring other relationships. Indeed, while BIONIC is able to 

capture a greater number of functional modules in an integrated network compared to a 

single input network (Fig. 2c and Extended Data Fig. 5), it does not capture every functional 

module present in the input networks (Fig. 2c, Extended Data Fig. 5 and Supplementary 

Data Files 4 and 5). This is likely due to some networks obscuring signals present in other 

networks. Implementing more advanced input network feature weighting should ensure 

that high-quality information is preferentially encoded in the learned features and that 

low-quality information is not. This may help to identify which functional relationships 

are driven by which networks and network types, thereby indicating which parts of the 

functional range have good or poor coverage and identifying areas to target for future 

experimental work.

The naive union of networks approach performs well, motivating its inclusion as a baseline 

in any network integration algorithm assessment. While the union network contains all 

possible relationships across networks, it likely contains relatively more false-positive 

relationships in the integrated result, since all false-positives in the input networks are 

retained by the union operation. Thus, the union should work well for high-quality networks, 

but perform poorly with noisy networks.

Our chemical–genetic analysis demonstrates the potential of BIONIC to provide target 

predictions from limited experimental data. While BIONIC performs well at predicting 

essential gene chemical– genetic interactions, further improvements in performance could 

potentially be made through an optimized choice of input networks that specifically indicate 

these chemical sensitivities. BIONIC chemical–genetic interaction predictions could also 

be used to instead generate a set of putative nonsensitive genes for a given compound, 

indicating bioprocesses where the compound is not active. This would reduce the size of 

the experimental space when screening, resulting in more rapid and less expensive data 

generation. Finally, strong BIONIC chemical–genetic interaction predictions that are not 
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reflected in the experimental data could indicate experimental false negatives that require 

additional investigation.

BIONIC learns gene features based solely on their topological role in the given networks. 

A powerful future addition to BIONIC would be to include gene or protein features such 

as amino acid sequence57, protein localization58, mutant morphological defect59 or other 

nonnetwork features to provide additional context for genes in addition to their topological 

role. Continued development of integrative gene function prediction using deep learning-

based GCN and encoder–decoder technologies will enable us to map gene function more 

richly and at larger scales than previously possible.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41592-022-01616-x.

Methods

BIONIC method overview

An undirected input network can be represented by its adjacency matrix A where Aij = Aji > 0
if node i and node j share an edge and Aij = Aji = 0 otherwise. BIONIC first preprocesses 

each input network to contain the union of nodes across all input networks and ensures the 

corresponding row and column orderings are the same. In instances where networks are 

extended to include additional nodes not originally present in them (so all input networks 

share the same union set of nodes), the rows and columns corresponding to these nodes are 

set to 0.

BIONIC encodes each input network using instances of a GCN variant known as the 

graph attention network (GAT)17. We selected this architecture because of its considerable 

performance improvements over existing architectures on a range of node classification 

tasks17. The GAT has the ability to learn alternative network edge weights, allowing it to 

downweight or upweight edges based on their importance for the network reconstruction 

task. In the original formulation, the GAT assumes binary network inputs. We modify the 

GAT to consider a priori network edge weights. The GAT formulation is then given by:

GAT(A, H) = σ αHW ⊤

(1)

where

αij =
Aijexp σ a⊤ W hi ∥ W hj

∑k = 1 Aikexp σ a⊤ W hi ∥ W hk

(2)
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Here, W  is a trainable weight matrix that projects aggregated node features into another 

feature space, k represents nodes in the neighborhood of i, a is a vector of trainable attention 

coefficients that determine the resulting edge weighting, ⊤ is the transpose operation, hi

is the feature vector for node i (that is, the ith row of feature matrix H), ∥ denotes the 

concatenation operation and σ corresponds to a nonlinear function (in our case, a leaky 

rectified linear unit (LeakyReLU)) that produces more sophisticated features than linear 

maps. Equation (1) corresponds to a node neighborhood aggregation and projection step that 

incorporates an edge weighting scheme (equation (2)). In practice, several edge weighting 

schemes (known as attention heads) are learned and combined simultaneously, resulting in:

GAT(A, H) = ∥k = 1
K σ α(k)HW (k) ⊤

(3)

where K is the number of attention heads. This is done to stabilize the attention learning 

process, as per the author’s original results17. In our experiments, we use ten attention 

heads per GAT encoder, each with a hidden dimension of 68, as per our hyperparameter 

optimization results (Obtaining integrated results and Supplementary Data File 1).

Initial node features HInit are one-hot encoded so that each node is uniquely identified (that 

is, HInit = I where I is the identity matrix). These features are first mapped to a lower 

dimensional space through a learned linear transformation to reduce memory footprint 

and improve training time. BIONIC encodes each network by passing it through several 

sequential GAT layers to learn node features based on higher-order neighborhoods. Outputs 

from each GAT pass are then summed to produce the final network-specific features 

(Extended Data Fig. 1). Based on the hyperparameter optimization results, we used three 

GAT layers in our experiments. We found BIONIC to be robust to the number of layers 

(Supplementary Fig. 2). After all networks are separately encoded, the network-specific 

node features are combined through a weighted, stochastically masked summation given by:

Hcombined = ∑
j = 1

N
sjm(j) ⊙ H(j)

(4)

Here, N is the number of input networks, sj is the learned scaling coefficient for feature 

representations of network j, ⊙ is the element-wise product, H(j) is the matrix of learned 

feature vectors for nodes in network j and m(j) is the node-wise stochastic mask for network 

j, calculated as:

mi
(j) =

1, if node i is unique to network j or mi
(k ≠ j) = 0

0, if node i is not in unextended network j
X

∑k = 1
N mi

(k)
, X ∼ Bernoulli (0.5), otherwise

(5)
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The mask m is designed to randomly drop node feature vectors produced from networks 

with the constraint that a node cannot be masked from every network, and node features 

from nodes not present in the original, unextended networks are dropped. This masking 

procedure forces the network encoders to compensate for missing node features in other 

networks, ensuring the encoders learn cross-network dependencies and map their respective 

node features to the same feature space. The network scaling vector s in equation (4) enables 

BIONIC to scale features in a network-wise fashion, affording more flexibility in learning 

the optimal network-specific node features for the combination step. s is learned with the 

constraint that its elements are positive and sum to 1, ensuring BIONIC does not over- or 

negatively scale the features.

We found that learning the integrated features in this joint manner (learning and combining 

network-specific features end-to-end) performs better than simply concatenating the 

network-specific features (that is, late fusion), indicating that BIONIC is able to learn 

complementary information across input networks (Supplementary Fig. 3).

To obtain the final, integrated node features F , BIONIC maps Hcombined to a low-dimensional 

space through a learned linear transformation. In F , each column corresponds to a 

specific learned feature and each row corresponds to a node. We found the quality of 

the integrated features was generally robust to the number of feature dimensions, with 

performance saturating at 512 features (Supplementary Fig. 4). We also assessed the 

denoising capabilities of BIONIC (Supplementary Fig. 5). Here we progressively added 

false-positive edges to a yeast PPI network20 and determined how well these noisy networks 

can predict protein complex coannotation relationships compared to the BIONIC features 

learned by encoding these same networks. We found that the low-dimensional feature 

learning approach is more robust to input network noise than the noisy networks themselves.

To obtain a high-quality F , BIONIC uses an unsupervised training objective. When gene 

labels are provided, an additional semisupervised training objective is also used. For the 

unsupervised training objective, BIONIC decodes F  into reconstructions of the original 

input networks and minimizes the discrepancy between the reconstructions and the inputs. 

The decoded network reconstruction is given by:

A = F ⋅ F⊤

(6)

The unsupervised loss is then given by:

Lunsupervised = 1
n2 ∑

j = 1

N
b(j) ⊙ A − A(j) ⊙ b(j)⊤

F

2

(7)

where n is the total number of nodes present in the union of networks, b(j) is a binary mask 

vector for network j indicating which nodes are present (value of 1) or extended (value of 0) 
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in the network, A(j) is the adjacency matrix for network j and ∥ ⋅ ∥F is the Frobenius norm. 

This loss represents computing the mean squared error between the reconstructed network A
and input A(j) while the mask vectors remove the penalty for reconstructing nodes that are 

not in the original network j (that is, extended), then summing the error for all networks.

For the semisupervised training objective, BIONIC first predicts gene labels by mapping F
to a matrix of class predictions as follows:

Y = S FW classifiler

(8)

where S is the sigmoid function and W classifiler is a trainable weight matrix. The resulting class 

prediction matrix Y  has genes as rows and class labels as columns. The ground-truth label 

matrix Y  indicates the correct labels for a set of genes in the input networks. Y  is extended to 

include zero vectors for any genes present in the input networks but not present in the labels, 

ensuring it has the same shape as Y . The semisupervised loss is then given by:

Lsemisupervised = 1
nC ∑

i = 1

n
∑

j = 1

C
blabelsi ⊙ − Y ijlog Y ij + 1 − Y ij log 1 − Y ij

(9)

where n is the total number of nodes present in the union of networks, C is the number of 

classes, blabelsi is a binary mask indicating whether node i was present in the original label 

set (value of 1) or was extended (value of 0) and log indicates the natural logarithm. This 

loss represents the masked binary cross entropy between the predicted labels Y  and the true 

labels Y  ignoring the loss of any nodes not originally present in Y .

The final loss BIONIC trains to minimize is a weighted sum of the unsupervised and 

semisupervised losses:

L = λLunsupervised + (1 − λ)Lsemisupervised

(10)

where λ is a value in the range [0, 1] indicating the relative weights of the two losses. When 

no labeled data are available, λ is set to 1.

Implementation details

BIONIC was implemented using PyTorch60, a popular Python-based deep learning 

framework, and relies on functions and classes from the PyTorch Geometric library61. It 

uses the Adam62 optimizer to train and update its weights. To be scalable in the number of 

networks, BIONIC uses an optional network batching approach where subsets of networks 

are sampled and integrated at each training step. The sampling procedure is designed so that 

each network is integrated exactly once per training step. Network batching yields a constant 
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memory footprint at the expense of increased runtime with no empirical degradation of 

feature quality. This feature is provided for additional scalability over what is demonstrated 

in this work and was not used in any of our reported experiments. Additionally, BIONIC 

is scalable in the number of network nodes. It uses a node sampling approach (equivalent 

to mini-batch training, where nodes are samples) to learn features for subsets of nodes in a 

network, and a neighborhood sampling procedure to subsample node neighborhoods. Node 

sampling ensures only part of a network needs to be retained in memory at a time while 

neighborhood sampling reduces the effective higher-order neighborhood size in sequential 

GAT passes, again reducing the number of nodes required to be retained in memory at any 

given time, further reducing BIONIC’s memory footprint.

For very large networks where the initial node feature matrix (that is, the identity matrix) 

cannot fit into memory due to limitations with PyTorch matrix operations, BIONIC 

incorporates a singular value decomposition-based approximation. First, the union of 

networks is computed by creating a network that contains the nodes and edges of all 

input networks. If an edge occurs in multiple networks, the maximum weight is used. A 

low-dimensional singular value decomposition approximation of the normalized Laplacian 

matrix of the union network is computed and used as the initial node features for each 

network. Finally, BIONIC uses sparse representations of network adjacency matrices (except 

for the input node feature matrix, see above), further reducing memory footprint. All 

BIONIC integration experiments in this paper were run on an NVIDIA Titan Xp graphical 

processing unit with 12 GB of video RAM, no more than 16 GB of system RAM and a 

single 2.4 GHz Intel Xeon CPU.

Network preprocessing

The yeast protein–protein interaction network20 and human protein–protein interaction 

networks34–37 were obtained from BioGRID63, genetic interaction profiles22 were obtained 

directly from the published supplementary data of Costanzo et al.22, and gene expression 

profiles21 were obtained from the SPELL database64. These networks were chosen since 

they had the most functional information compared to other networks in their class (that 

is, protein–protein interaction networks, coexpression networks and genetic interaction 

networks). To create a network from the genetic interaction profiles, genes with multiple 

alleles were collapsed into a single profile by taking the maximum profile values across 

allele profiles. Pairwise Pearson correlation between the profiles was then calculated, and 

gene pairs with a correlation magnitude greater than or equal to 0.2 were retained as 

edges, as established22. For the gene expression profiles, networks were constructed by 

retaining gene pairs with a profile Pearson correlation magnitude in the 99.5th percentile. 

Coexpression and genetic interaction networks had their edge weights normalized to the 

range [0, 1].

Obtaining integrated results

The naive union of networks benchmark was created by taking the union of node sets 

and edge sets across input networks. For edges common to more than one network, the 

maximum weight was used. For all other methods, automated hyperparameter optimization 

was performed to ensure hyperparameters were chosen consistently and fairly. Here, 
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a S. pombe genetic interaction network27, coexpression network26 and protein–protein 

interaction network25 were used as inputs to the integration methods. To perform one 

iteration of the hyperparameter optimization, a random combination of hyperparameters 

was uniformly sampled over a range of reasonable values for each method and used to 

integrate the three pombe networks. The integration results were then evaluated using a 

pombe protein complex standard (obtained from https://www.pombase.org/data/annotations/

Gene_ontology/GO_complexes/Complex_annotation.tsv). The evaluations consisted of a 

coannotation prediction, module detection and gene function prediction assessment 

(Evaluation methods). This procedure was repeated for 50 combinations of hyperparameters, 

for each method. For methods that produced features (deepNF, Mashup, multi-node2vec and 

BIONIC), a feature dimension of 512 was used to ensure results were comparable across 

methods. For methods that required a batch size parameter (deepNF and BIONIC), the batch 

size was set to 2,048 to ensure reasonable computation times. Hyperparameter combinations 

were then ranked for each method across the three evaluation types and the hyperparameter 

combination corresponding to the highest average rank across evaluation types was chosen. 

The hyperparameter optimization results are found in Supplementary Data File 1. Note 

that the union method was not included in the hyperparameter optimization because 

it has no hyperparameters. Additionally, the Mashup method used 44 hyperparameter 

combinations rather than 50, as six hyperparameter combinations exhausted the available 

memory resources and did not complete.

All integration results reported were obtained by integrating networks using the set of 

hyperparameters identified in the hyperparameter optimization procedure. BIONIC features 

used in the Figs. 2, 3 and 6 analyses are found in Supplementary Data File 8. Coannotation 

prediction, module detection and gene function prediction standards used in Figs. 2–5 are 

found in Supplementary Data File 9.

Benchmark construction

Functional benchmarks were derived from GO Biological Process ontology annotations, 

KEGG pathways and IntAct complexes for yeast, and CORUM complexes for human 

(Supplementary Data File 3). Analyses were performed using positive and negative gene 

pairs, clusters or functional labels obtained from the standards as follows: the GO Biological 

Process benchmark was produced by filtering Inferred from Electronic Annotation (IEA) 

annotations, as they are known to be lower quality, removing genes with dubious open 

reading frames and filtering terms with more than 30 annotations (to prevent large terms, 

such as those related to ribosome biogenesis, from dominating the analysis65). We found 

the performance evaluations to be robust to this threshold (Supplementary Fig. 6). For the 

coannotation benchmark, all gene pairs sharing at least one annotation were retained as 

positive pairs, while all gene pairs not sharing an annotation were considered to be negative 

pairs. KEGG, IntAct and CORUM benchmarks were produced analogously, without size 

filtering.

For the module detection benchmark, clusters were defined as the set of genes annotated 

to a particular term, for each standard. Modules of size 1 (singletons) were removed from 

the resulting module sets as they are uninformative. For the per-module analyses in Fig. 2c, 
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Extended Data Figs. 4 and 5 and Supplementary Data Files 4 and 5, we also removed any 

modules of size 2 since these modules had highly variable Jaccard scores.

The supervised standards were obtained by treating each gene annotation as a class label, 

leading to genes with multiple functional classes (that is, a multi-label classification 

problem). The standards were filtered to only include classes with 20 or more members 

for GO Biological Process and KEGG, or ten members for IntAct. This was done to remove 

classes with very few data points, ensuring more robust evaluations.

The granular function standard in Figs. 2b, 3b and 6 was obtained from the Costanzo et al.22 

supplementary materials. Any functional category with fewer than 20 gene members was 

removed from the analysis to ensure only categories with robust evaluations were reported.

Evaluation methods

We used a precision-recall-based coannotation framework to evaluate individual networks 

and integrated results. We used precision-recall instead of receiving operator curve because 

of the substantial imbalance of positives and negatives in the pairwise benchmarks for 

which the receiving operator curve would overestimate performance. Here, we computed 

the pairwise cosine similarities between gene profiles in each network or integration result. 

Due to the high-dimensionality of the datasets, cosine similarity is a more appropriate 

measure than Euclidean distance since the contrast between data points is reduced in 

high-dimensional spaces under Euclidean distance66. Precision-recall operator points were 

computed by varying a similarity threshold, above which gene or protein pairs are 

considered positives and below which pairs are considered negative. Each set of positive 

and negative pairs was compared to the given benchmark to compute precision and recall 

values. To summarize the precision-recall curve into a single metric, we computed average 

precision (AP) given by:

AP = ∑
i = 1

n
Ri − Ri − 1 P i

(11)

where n is the number of operator points (that is, similarity thresholds) and P i and Ri are 

the precision and recall values at operator point i, respectively. This gives the average of 

precision values weighted by their corresponding improvements in recall. We chose this 

measure over the closely related area under the precision-recall curve measure since this 

interpolates between operator points and tends to overestimate actual performance67.

The module detection evaluation was performed by clustering the integrated results from 

each method and comparing the coherency of resulting clusters with the module-based 

benchmarks. Since the benchmarks contain overlapping modules (that is, one gene can 

be present in more than one module) that prevent the use of many common clustering 

evaluation metrics (since these metrics assume unique assignment of gene to cluster), 

the module sets are subsampled during the evaluation to ensure there are no overlapping 

modules (the original module sets are used as-is for the per-module-optimized experiments 
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in Extended Data Fig. 5 and Supplementary Data File 5). Next, the integrated results are 

hierarchically clustered with a range of distance metrics (Euclidean and cosine), linkage 

methods (single, average and complete) and thresholds to optimize benchmark comparisons 

over these clustering parameters (this is done for all methods that are compared). The 

resulting benchmark-optimized cluster sets are compared to the benchmark module sets by 

computing adjusted mutual information: an information theoretic comparison measure that 

is adjusted to normalize against the expected score from random clustering. The highest 

adjusted mutual information score for each integration approach is reported, ensuring the 

optimal cluster set for each dataset across clustering parameters is used for the comparison 

and that our results are not dependent on clustering parameters. Finally, this procedure is 

repeated ten times to control for differences in scores due to the cluster sampling procedure. 

The sets of clustering parameter-optimized BIONIC clusters obtained from the Fig. 2 

integration for each standard are in Supplementary Data File 4.

To perform the supervised gene function prediction evaluation, ten trials of five-fold 

cross validation were performed using SVM classifiers each using a radial basis function 

kernel24. The classifiers were trained on a set of gene features obtained from the given 

integration method with corresponding labels given by the IntAct, KEGG and GO Biological 

Process supervised benchmarks in a one-versus-all fashion (since each individual gene 

has multiple labels). Each classifier’s regularization and gamma parameters were tuned in 

the validation step. For each trial, the classifier results were evaluated on a randomized 

held-out set consisting of 10% of the gene features not seen during training or validation 

and the resulting classification accuracy was reported. We repeated this entire procedure 

for a random forest68 and a gradient boosted trees69 classifier and found BIONIC also 

outperforms the compared integration methods, indicating the SVM classifier is not biased 

toward improving BIONIC performance (Supplementary Fig. 7).

The granular functional evaluations in Figs. 2b and 3b were generated by computing the 

average precision (as mentioned in the precision-recall evaluation framework description) 

for the gene subsets annotated to the given functional categories.

To perform the module comparison analysis in Fig. 2c, we additionally applied the module 

detection analysis performed in Fig. 2a to the input networks. Here, the interaction profiles 

of the networks were treated as gene features and the clustering parameters were optimized 

to best match the IntAct complexes standard. We compared the resulting module sets from 

the input networks and BIONIC features to known protein complexes given by the IntAct 

standard. For each complex in the standard, we reported the best-matching predicted module 

in each dataset as determined by the overlap (Jaccard) score between the module and the 

known complex (Supplementary Data File 4). To generate the Venn diagram, we defined a 

complex to have been captured in the dataset if it had an overlap score of 0.5 or greater with 

a predicted module.

To perform the LSM2–7 module analysis in Fig. 2d, we analyzed the predicted module in 

each dataset that had the highest overlap score with the LSM2–7 complex. We created a 

network from the BIONIC features by computing the cosine similarity between all pairs 

of genes and setting all similarities below 0.5 to zero. The resulting nonzero values were 
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then treated as weighted edges to form a network. We extracted a subnetwork from each of 

the protein–protein interaction, coexpression, genetic interaction and newly created BIONIC 

networks, consisting of the best scoring predicted module and the genes showing direct 

interactions with those in the predicted module. We laid out these networks using the spring-

embedded layout algorithm in Cytoscape70. The edges in the protein–protein interaction 

network correspond to direct, physical interactions, and the edges in the coexpression and 

genetic interaction networks correspond to the pairwise Pearson correlation of the gene 

profiles, as described above.

To perform the semisupervised network integration experiment in Fig. 4, we first generated 

randomized train and test sets. Here, 20% of genes were randomly held out in each gene 

function benchmark (IntAct, KEGG and GO Biological Process) separately and retained 

for downstream evaluations. These benchmarks consist of functional labels for a set of 

yeast genes (protein complex membership in IntAct, pathway membership in KEGG and 

biological process annotation in GO Biological Process) and are the same benchmarks 

used in the gene function prediction evaluation (Figs. 2a and 3a). The remaining 80% 

of genes were used for training GeneMANIA and BIONIC. To generate test sets for the 

coannotation prediction benchmarks, we removed any coannotations where both genes were 

present in the training set. To generate test sets for the module detection benchmarks, we 

removed any modules consisting entirely of genes in the training set. We then integrated 

the three yeast networks from the Figs. 2 and 3 analysis (a protein–protein interaction20, 

gene coexpression21 and genetic interaction network22) using the supervised GeneMANIA, 

BIONIC without using any labeled data (unsupervised) and a semisupervised mode of 

BIONIC that uses the labeled data (semisupervised). Each integration result was then 

evaluated using the held-out test data. For the coannotation prediction and module detection 

evaluations, the integrated features from BIONIC (both unsupervised and semisupervised) 

and the integrated network from GeneMANIA were evaluated. Both GeneMANIA and the 

semisupervised BIONIC generate gene label predictions directly, without the need for an 

additional classifier such as in the Fig. 2a gene function prediction evaluation. However, 

the unsupervised BIONIC does not generate gene label predictions (since it is given no 

labeled information to begin with). To ensure a consistent comparison with GeneMANIA 

and the semisupervised BIONIC, we trained a classification head on top of the unsupervised 

BIONIC. The classification head architecture is identical to the semisupervised BIONIC 

classification head, however, in the unsupervised case we only allow gradients from the 

classification loss objective to backpropagate to the classification head, not the rest of 

the model. This ensures a comparable classification model can be trained on top of the 

unsupervised BIONIC model, without the labeled data affecting the model weights such 

as in the semisupervised case. GeneMANIA does not generate multi-label predictions, 

and so we used GeneMANIA to generate label predictions for each class individually 

and then performed Platt scaling to convert these binary class predictions to multi-label 

predictions7,71. The gene function prediction evaluations were then performed by comparing 

the gene label predictions from the integration methods, to the held-out test labels. This 

entire procedure, starting with the train-test set partitioning, to the final evaluations, was 

repeated a total of ten times to control for performance variability due to the partitioning 

procedure.
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Network scaling experiment

To perform the network scaling experiment, we uniformly sampled subsets of the yeast 

coexpression networks (Supplementary Data File 2). We performed ten integration trials 

for each network quantity, and these trials were paired (that is, each method integrated the 

same randomly sampled sets of networks). The average precision scores of the resulting 

integrations with respect to the KEGG pathways coannotation standard (Supplementary Data 

Files 3) were then reported. The Mashup method did not scale to the seven-network input 

size or beyond on a machine with 64 GB of RAM.

Node scaling experiment

The node scaling experiment was performed by uniformly subsampling the nodes of 

four large human protein–protein interaction networks34–37 (Supplementary Data File 2) 

for a range of node quantities and integrating these subsampled networks. Ten trials 

of subsampling were performed for each number of nodes (paired, as above) and the 

average precision scores with respect to the CORUM complexes coannotation standard 

(Supplementary Data File 3) were reported. The Mashup method did not scale to 4,000 

nodes or beyond on a machine with 64 GB of RAM.

Gene chemical sensitivity predictions

Chemical–genetic profiles against a diagnostic set of 310 nonessential yeast gene deletion 

mutants were obtained from a previous study18. The genes were chosen using the 

COMPRESS-GI algorithm, which selected a set of 157 genes capturing most of the 

functional information within genome-wide genetic interaction data72, along with 153 

genes that were manually selected to complement the set. Haploid deletion mutants for 

the gene set were constructed in a genetic background that conferred drug hypersensitivity 

(pdr1Δpdr3Δsnq2Δ) using synthetic genetic analysis technology, and each mutant strain was 

barcoded with a unique 20 bp DNA identifier adjacent to a common priming site. The 

mutant collection was grown and stored as a pooled library in yeast extract peptone-glycerol 

(15% v/v). A set of approximately 10,000 compounds from the RIKEN Natural Product 

Depository (NPDepo) were interrogated. Screens were done in 96-well format, where a 

single well contained the entire pool of 310 mutants at a density of 4.65 × 105 cells 

per ml and 196 μl of YPGal media (1% yeast extract, 2% peptone, 2% galactose). Each 

well was treated with 2 μl of compound (1 mg ml−1 stock dissolved in dimethylsulfoxide 

(DMSO)). After 48 h of growth in 30 °C, genomic DNA was extracted from each 

compound-treated pool with an automated high-throughput nucleic acid purification robot 

(QIAcube HT, Qiagen). Mutant-specific barcodes and well-specific index tags were PCR-

amplified using multiplex primers and a communal U2 primer. PCR products were pooled 

in 768-plex and gel-purified from 2% agarose gels using a Geneclean III kit. Amplicons 

were quantified using a Kapa quantitative PCR kit and were sequenced with an Illumina 

Hiseq 2500 machine at the RIKEN Center for Life Science Technologies. Sequencing 

data was processed using the BEAN-counter software41, which generated chemical–genetic 

interaction z-scores normalized against DMSO-only (1% DMSO) treated samples. False 

discovery rates were estimated for biological process22 predictions, for each compound, and 

those compounds with a false discovery rate of <25% were retained, resulting in a set of 

Forster et al. Page 21

Nat Methods. Author manuscript; available in PMC 2024 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1,522 compounds and 289 genes (high-confidence set)18. Next, interquartile range (IQR) 

scores were calculated from the chemical–genetic scores as follows:

IQRscorei = CGsi − CGs
Q3CGs − Q1CGs

(12)

Here, CGsi is the chemical–geneticscore for the ith replicate, CGs is the median of all 

chemical–genetic scores, Q3CGs is the 75th percentile of chemical–genetic scores and Q1CGs is 

the 25th percentile of chemical–genetic scores. Tukey’s test73 was used to determine outliers 

based on the IQR of the distribution of IQR scores in the screen. Genes with at least one 

replicate that had a negative (sensitive) chemical–genetic score more than three times the 

IQR of the compound profile (that is, ‘outlier’ genes) were retained.

To predict chemical–genetic interactions using BIONIC, we first selected a set of 50 

compounds to generate predictions on and experimentally validate. For each diagnostic 

pool compound, we filtered out any genes not present in the integrated BIONIC features 

(the same features used for the Figs. 2 and 3 analyses, referred to as PEG features). Any 

compounds with fewer than two outlier sensitive genes were then removed. For each of the 

remaining compounds, we randomly split the sensitive genes into train and test sets. Next, 

for a given compound, we computed BIONIC predictions for the test set genes. We did 

this by averaging the corresponding BIONIC PEG features for each gene in the training set 

under a cosine distance metric to get a representative feature vector in gene feature space 

for the given compound. The BIONIC predictions for the compound were then obtained by 

identifying the top 20 nearest genes to this feature vector (excluding genes in the training 

set).

To obtain a score for the BIONIC predictions, an ordered Fisher’s exact test was performed 

between the test set genes and the BIONIC predictions as follows:

p = min f(n, k):n, k = 1, k1 , …, 20, k20

(13)

where

f(n, k) =

K
k

N − K
n − k
N
n

(14)

p corresponds to the minimum P  value obtained for progressively larger subsets of 

BIONIC’s 20 predictions, starting from the top prediction to the full set of 20 predictions. n
is the number of total predictions made by BIONIC and k is the number of those predictions 

that are correct. ki corresponds to the number of correct predictions for the first i genes in the 
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BIONIC predictions. f is the probability mass function of the hypergeometric distribution. 

Here, K corresponds to the number of genes found to be sensitive to the given compound. 

N is the total number of yeast essential genes in the analysis, specifically, essential genes 

for which TS mutants could be made and are also present in the BIONIC features (847 total 

genes). We chose the ordered Fisher’s exact test over the commonly used unordered version 

because BIONIC produces a ranked list of predictions. Taking into account the ordering of 

BIONIC predictions is a fairer assessment, since, for example, a compound may only have a 

small number of sensitive genes (fewer than 20). In this case, BIONIC’s top predictions may 

include these essential genes, however, an unordered Fisher’s exact test would not consider 

this ranking and treat the full set of 20 predictions as equivalent, whereas the ordered test 

would consider the ranking.

The above process was repeated five times for new randomly sampled train and test gene 

splits, or up to the maximum number of train-test splits possible for compounds with fewer 

than five sensitive genes. Final P  values were obtained for each compound by averaging over 

the P  values from each trial. Compounds were ranked by most significant P  values and the 

top 50 compounds were selected for further screening. Sensitive essential gene predictions 

for a given compound were then generated by using the full set of sensitive diagnostic pool 

genes as the training set, computing a representative compound feature vector by averaging 

the training set BIONIC gene features, and identifying the top 20 nearest essential genes to 

this compound feature vector.

The BIONIC gene chemical sensitivity predictions were benchmarked against experimental 

data obtained from chemical–genetic screens using a collection of TS mutants for essential 

genes. We previously constructed a drug-hypersensitive, barcoded set of TS mutants for 

1,181 TS alleles spanning 837 essential genes40. Similar to the diagnostic set of nonessential 

genes, this collection also contained the pdr1Δpdr3Δsnq2Δ triple deletion and a 20 bp 

barcode was inserted next to a common priming site upstream of a natMX cassette 

integrated at the pdr3Δ locus. We conducted chemical–genetic screens against the 50 

compounds initially selected for BIONIC analysis using the same method that was used to 

generate the diagnostic set profiles, except that the TS mutant pools were incubated at 25 °C 

instead of 30 °C for 48 h. We calculated chemical–genetic interaction z-scores and removed 

nonspecific technical effects using BEAN-counter software41. IQR scores were calculated as 

described above. Negative (sensitive) interactions that were more than four times the IQR 

(classified as ‘far outliers’) were used to validate the gene chemical sensitivities predicted by 

BIONIC.

The significance of BIONIC sensitive essential gene predictions for each compound was 

determined by using an ordered Fisher’s exact test, as detailed above. The Benjamini–

Hochberg procedure74 was applied to the resulting P  values at a false discovery rate of 5%.

To generate biological process22 predictions as reported in Fig. 6a,b, a Fisher’s exact 

test was performed between the full set of 20 BIONIC gene predictions and biological 

process gene annotations. We used the same annotations as in Figs. 2b and 3b (ref. 22). If 

the BIONIC sensitive gene predictions were enriched for one or more bioprocesses, and 

these bioprocesses overlapped with the annotated bioprocess of the true sensitive genes, 
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we considered this a correct bioprocess prediction. To generate the random benchmark in 

Fig. 6b, the gene labels of the BIONIC integrated features were randomly permuted and 

new essential sensitive gene predictions for the 50 selected compounds were generated in 

the same manner as the original BIONIC predictions (detailed above). This process was 

repeated for 1,000 random gene label permutations to generate the benchmark distributions. 

The circle plot in Fig. 6d was produced by first hierarchically clustering the integrated 

BIONIC gene features, subsetted to essential genes annotated to the glycosylation, protein 

folding/targeting, cell wall biosynthesis bioprocess. Two clustering thresholds were chosen 

to generate clusters, broadly indicating the hierarchical organization of the BIONIC gene 

features. The first, most granular clustering threshold was adaptively chosen to generate 

clusters best-matching known protein complexes, as defined by the IntAct complexes 

standard29. For each protein complex in the standard, the clustering threshold was optimized 

to produce the cluster best matching this protein complex. For clusters not matching known 

complexes, the largest complex optimized threshold was used. The second, higher clustering 

threshold was set to a cophenetic distance of 0.9.

The BIONIC essential gene sensitivity predictions can be found in Supplementary Data File 

7.

Quantification of β-1,6-glucan levels

Wild-type (ℎis3Δ in the BY4741 background) and the kre6Δ strain (YOC5627) of S. 

cerevisiae were grown in yeast extract peptone at 25 °C with shaking at 200 r.p.m. to 1 

× 107 cells per ml. Wild-type cells were treated with 5 μg ml−1 jervine (J0009; Tokyo 

Chemical Industry, Tokyo, Japan) for 4 h. We used jervine since it is chemically similar to 

NP329 and is more commercially available than NP329. The samples were centrifuged at 

15,000g for 3 min, and the supernatant was discarded. The pellet was washed and suspended 

in PBS, adjusted to 1 × 106 cells per ml and autoclaved for 20 min. After centrifugation 

at 15,000g for 1 min, the supernatant was stored on ice (sample A) and the pellet was 

further extracted. The β-1,6-glucan was extracted from the pellet using a slightly modified 

version of the protocol of Kitamura et al.75. First, 500 ml of 10% TCA was added to the 

culture, which was incubated on ice for 10 min. After centrifugation at 15,000g for 3 min, 

the samples were washed twice with deionized water. The pellet was suspended in 500 μl 

of 1 N NaOH and incubated at 75 °C for 1 h. The solution was mixed with 500 μl of 1 M 

HCl and Tris buffer (10 mM Tris-HCl, pH 7). After centrifugation at 15,000g for 1 min, the 

supernatant was stored on ice (sample B). The total amounts of β-1,6-glucan in samples A 

and B were measured according to the method of Yamanaka et al.76.

Reporting summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Forster et al. Page 24

Nat Methods. Author manuscript; available in PMC 2024 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data

Extended Data Fig. 1 |. Detailed view of individual BIONIC network encoder.
A more detailed view of an individual network encoder, including residual connections. 

A network specific graph convolutional network is used to encode the input network for 

increasing neighborhood sizes. The first GCN in the sequence learns features for a given 

node based on the node’s immediate neighborhood (1st order features). The next GCN 

learns features based on the node’s second order neighborhood (2nd order features), and so 

on. The node feature matrices learned by each GCN pass are summed together to create 

the final learned, network-specific features. Summing the outputs of the various GCNs in 

this way creates residual connections, allowing features from multiple neighborhood sizes to 

generate the final learned features, rather than just the final neighborhood size. This figure 

shows three GCN layers, but BIONIC uses the same pattern of connections for any number 

of GCN layers. Note that the GCN layers for a given encoder share their weights, so in 

effect, there is a single GCN layer for each encoder.

Extended Data Fig. 2 |. Comparison of individual network features produced by BIONIC.
A comparison of individual networks (denoted ‘Net’), their corresponding features encoded 

using the unsupervised BIONIC (denoted ‘BIONIC’), as well as the BIONIC integration 

of these networks (denoted ‘GI+COEX+PPI BIONIC’). BP = Biological Processes, GI = 

Genetic Interaction, COEX = Co-expression, PPI = Protein-protein Interaction. These are 
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the same networks and evaluations used in Fig. 2. Data are presented as mean values. Error 

bars indicate the 95% confidence interval for n = 10 independent samples.

Extended Data Fig. 3 |. Dynamics of BIONIC feature space through training.
Comparison of pairwise gene similarities (cosine similarity in the case of BIONIC, direct 

binary adjacency in the case of the network), as defined by IntAct Complexes for known 

co-complex relationships (positive pairs) and no co-complex relationships (negative pairs), 

between a yeast PPI network (as used in the Fig. 2 analyses) and the unsupervised BIONIC 

features produced from this network. The BIONIC similarities are shown throughout the 

training process (epochs), whereas the input network is constant so its pairwise similarities 

do not change. ‘Network’ denotes the input PPI network, ‘BIONIC’ denotes the features 

learned from this network using BIONIC.
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Extended Data Fig. 4 |. Coverage of BIONIC and input network captured modules.
Coverage of functional gene modules by individual networks and the unsupervised BIONIC 

integration of these networks (denoted BIONIC), as determined by a parameter optimized 

module detection analysis where the clustering parameters were optimized for each module 

individually. The number of captured modules is reported for a range of overlap scores 

(Jaccard threshold). Higher threshold indicates greater correspondence between the clusters 

obtained from the dataset and their respective modules given by the standard. PPI = protein-

protein interaction. These are the same networks and BIONIC features as Fig. 2.
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Extended Data Fig. 5 |. Captured modules comparison for BIONIC and input networks for 
optimal clustering parameters.
Known protein complexes (as defined by the IntAct standard) captured by individual 

networks and the unsupervised BIONIC integration of these networks (denoted BIONIC). 

Hierarchical clustering was performed on the datasets and resulting clusters were compared 

to known IntAct complexes and scored for set overlap using the Jaccard score (ranging from 

0 to 1). The clustering algorithm parameters were optimized for each module individually, 

unlike the analysis in Fig. 2 where the clustering parameters were optimized for the standard 

as a whole. Each point is a protein complex, as in Fig. 2c. The dashed line indicates 
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instances where the given data sets achieve the same score for a given module. Histograms 

indicate the distribution of overlap (Jaccard) scores for the given dataset, and the labelled 

dashed line indicates the mean of this distribution. The individual modules shown here as 

well as for the KEGG Pathways and IntAct Complexes module standards can be found 

in Supplementary Data File 4. The LSM2–7 complex is indicated by the arrows. PPI = 

protein-protein interaction. This analysis uses the same networks and BiONIC features as 

Fig. 2.
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Extended Data Fig. 6 |. Interpretability of BIONIC feature space.
Co-annotation evaluations of the unsupervised BIONIC features subset to different clusters 

of feature dimensions (denoted ‘Cluster’). The number of feature dimensions for each 

cluster is given in parenthesis. The performance of the original BIONIC features (denoted 

BIONIC (512)) is also displayed. Data are presented as mean values. Bars indicate 95% 

confidence interval for n = 10 independent samples.

Extended Data Fig. 7 |. Integration method performance for yeast-two-hybrid network inputs.
Performance comparison of 5 yeast-two-hybrid network integrations across functional 

standards, evaluation types and unsupervised integration methods. Data are presented as 

mean values. Bars indicate 95% confidence interval for n = 10 independent samples. BP = 

Biological Process, multi-n2v = multi-node2vec.
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Extended Data Fig. 8 |. Effects of label poisoning on BIONIC semi-supervised and unsupervised 
performance.
Semi-supervised BIONIC comparisons. a) A label poisoning experiment, where 

progressively more permutation noise is added to the label sets the semi-supervised BIONIC 

is trained on. ‘Noise’ indicates the proportion of permutation noise applied (multiply by 

100 for percentages). Data are presented as mean values. Bars indicate 95% confidence 

interval for n = 10 independent samples. b) UMAP plots comparing the embedding space 

of the TFIID complex and the 100 nearest neighbors of this complex for unsupervised and 
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semi-supervised BIONIC over a range of label noise values. SS = average silhouette score of 

TFIID members.

Extended Data Fig. 9 |. Computational scalability of BIONIC.
Graphics processing unit (GPU) memory usage in gigabytes (left) and average wall clock 

epoch time in minutes (right) for a range of network sizes and number of networks. GB 

= gigabyte, min = minutes. Gray squares indicate a scenario where BIONIC exceeded the 

maximum memory of the GPU and failed to complete. The experiments were run on a Titan 

Xp GPU with a 2.4 GHz Intel Xeon CPU and 32 GB of system memory.
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Extended Data Fig. 10 |. β-1,6-glucan levels in yeast strains.

The amount of glucan per cell was calculated using pustulan as a standard. Data are 

presented as mean values. Error bars indicate standard deviation for n = 3 biologically 

independent samples. kre6Δ compared to wild type p-value = 0.01473, Jervine compares 

to wild type p-value = 0.01520. * Significant difference (p-value < 0.05 after Bonferroni 

correction, Welch’s one-sided t-test).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. BIONIC algorithm overview.
a, BIONIC integrates networks as follows: Step 1. Gene interaction networks input into 

BIONIC are represented as adjacency matrices. Step 2. Each network is passed through a 

graph convolution network (GCN) to produce network-specific gene features that are then 

combined into an integrated feature set that can be used for downstream tasks such as 

functional module detection. The GCNs can be stacked multiple times (denoted by N) to 

generate gene features encompassing larger neighborhoods. Step 3a. Unsupervised. BIONIC 

attempts to reconstruct the input networks by decoding the integrated features through a 
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dot product operation. Step 4a. Unsupervised. BIONIC trains by updating its weights to 

reproduce the input networks as accurately as possible. Step 3b. Semisupervised. If labeled 

data are available, BIONIC predicts functional labels for each gene using the learned gene 

features. Step 4b. Semisupervised. BIONIC trains by updating its weights to predict the 

ground-truth labels and minimize classification error. b, The GCN architecture functions by: 

Step 1. Adding self-loops to each network node; Step 2. Assigning a ‘one-hot’ feature vector 

to each node for the GCN to uniquely identify the nodes; and Step 3. Propagating node 

features along edges followed by a low-dimensional, learned projection to obtain updated 

node features that encode the network topology.
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Fig. 2 |. Comparison of BIONIC integration to three input networks.
a, Functional evaluations for three yeast networks, and unsupervised BIONIC integration. 

Data are presented as mean values. Error bars indicate the 95% confidence interval for 

n = 10 independent samples. Number of captured modules are indicated above the module 

detection bars as determined by a 0.5 overlap (Jaccard) score cutoff. b, Evaluations 

over high-level functional categories, split by category. Numbers above columns indicate 

gene overlap with integration results and the average performance of each method is 

reported (right of each row). c, Top row: comparison of overlap scores between known 
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complexes and predicted modules. Each point is a protein complex. The axes indicate the 

overlap (Jaccard) score, where 0 indicates no members of the complex were captured, 

and 1.0 indicates the complex was captured perfectly. The diagonal indicates equivalent 

performance. Points above the diagonal are complexes where BIONIC outperforms the 

given network, and points below the diagonal are complexes where BIONIC underperforms. 

The arrows indicate the LSM2–7 complex, shown in d. A Venn diagram describes the 

overlap of captured complexes (score of 0.5 or higher) between the input networks and 

BIONIC integration. Numbers in brackets denote the total captured complexes for each 

method. Bottom row: the distribution of overlap scores between predicted and known 

complexes. The dashed line indicates the mean. d, Functional relationships between 

predicted LSM2–7 complex members and genes in the local neighborhood, as given by 

the three input networks and BIONIC integration. The predicted cluster best matching the 

LSM2–7 complex in each network is circled. The overlap score of the predicted module 

with the LSM2–7 complex is shown. Edges correspond to protein–protein interactions in 

PPI20, Pearson correlation between gene profiles in coexpression21 and genetic interaction22 

networks, and cosine similarity between gene features in the BIONIC integration. The 

complete LSM2–7 complex is depicted on the right. Edge weight corresponds to the strength 

of the functional relationship. PPI, protein–protein interaction; COEX, coexpression; GI, 

genetic interaction; BP, biological process.
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Fig. 3 |. Comparison of BIONIC to existing integration approaches.
a, Coannotation prediction, module detection and gene function prediction evaluations for 

three yeast networks integrated by the tested unsupervised network integration methods. 

The input networks and evaluation standards are the same as in Fig. 2. Data are presented 

as mean values. Error bars indicate the 95% confidence interval for n = 10 independent 

samples. Numbers above the module detection bars indicate the number of captured 

modules, as determined by a 0.5 overlap (Jaccard) score cutoff. b, Evaluation of integrated 

features using high-level functional categories, split by category. Numbers above columns 
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indicate gene overlap with integration results and the average performance of each method 

across categories is reported (right of each row). PPI, protein– protein interaction; BP, 

biological process.
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Fig. 4 |. Supervised performance of BIONIC compared with an existing supervised integration 
approach.
Performance comparison between a supervised network integration algorithm trained with 

labeled data (GeneMANIA), BIONIC trained without any labeled data (unsupervised) 

and BIONIC trained with labeled data (semisupervised). Bars indicate the average 

performance over ten trials of random train-test splits for the given benchmark (Methods). 

Data are presented as mean values. Error bars indicate the 95% confidence interval. 

n = 10 independent samples for the coannotation prediction and gene function prediction 

evaluations, and n = 100 for the module detection evaluation. BP, biological process.
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Fig. 5 |. Network quantity and network size performance comparison across integration methods.
a, Performance comparison of unsupervised integration methods across different numbers 

of randomly sampled yeast coexpression input networks on KEGG pathways gene 

coannotations. b, Performance comparison of unsupervised integration methods across four 

human protein–protein interaction networks for a range of subsampled nodes (genes) on 

CORUM complexes protein coannotations. In these experiments, the Mashup method failed 

to scale to seven or more networks (a) and 4,000 or more nodes (b), as indicated by 

the absence of bars in those cases (Methods). Data are presented as mean values. Error 

Forster et al. Page 46

Nat Methods. Author manuscript; available in PMC 2024 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



bars indicate the 95% confidence interval for n = 10 independent samples. multi-n2v, multi-

node2vec.
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Fig. 6 |. BIONIC essential gene chemical–genetic interaction predictions.
a, From left to right, the number of correct unsupervised BIONIC sensitive essential 

gene predictions across the 50 screened compounds, the number of compounds BIONIC 

significantly predicted sensitive essential genes for (ordered Fisher’s exact test) and the 

number of correctly predicted sensitive essential gene annotated bioprocesses, based on 

the bioprocess enrichment of BIONIC predictions for each compound. b, A comparison 

of correctly predicted sensitive genes (left) and correctly predicted biological process 

annotations (right) between BIONIC predictions (dashed line) and n = 1,000 random 
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permutations of BIONIC features gene labels (histogram). Correct prediction ratio is the 

number of correct predictions divided by the number of total sensitive essential genes 

(left) or annotated biological processes (right) across the 50 screened compounds. c, 

Rank of BIONIC sensitive essential gene predictions for the 13 significantly predicted 

compounds. The number of correctly predicted genes out of total sensitive genes are shown 

in parentheses beside each compound name. The statistical significance of the BIONIC 

predictions for each compound is displayed in the bar plot on the right. d, Hierarchical 

organization of essential genes in the glycosylation, protein folding/targeting, cell wall 

biosynthesis bioprocess based on integrated BIONIC features. Smallest circles correspond to 

genes, larger circles indicate clusters of genes. Six genes sensitive to the NP329 compound 

are indicated with orange borders, and corresponding BIONIC predictions lying in the 

bioprocess are indicated as purple circles. Captured protein complexes in the bioprocess are 

annotated and the corresponding overlap score (Jaccard) with the true complex is given in 

parentheses. Source data for this figure are provided in Supplementary Data File 7.
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