TABLE 5.
Performance comparison with SOTA methods on TN-SCUI datasets. , , and indicate the best, second-best, and third-best performance.
| Network | TN-SCUI datasets | #Params (M) | Model size (MB) | |
|---|---|---|---|---|
| IoU | Dice | |||
| U-Net Ronneberger et al. (2015) | 0.718 | 0.806 | 29.59 | 118 | 
| SegNet Badrinarayanan et al. (2017) | 0.726 | 0.819 | 17.94 | 71.8 | 
| FATNet Wu et al. (2022) | 27.43 | 109 | ||
| Swin-UNet Cao et al. (2021) | 0.744 | 0.835 | 25.86 | 105 | 
| TransUNet Chen et al. (2021b) | 0.837 | 88.87 | 401 | |
| EANet Wang et al. (2022) | 47.07 | 118 | ||
| UNeXt-L Valanarasu and Patel (2022) | 0.693 | 0.794 | ||
| PL-Net† (Our) | 0.742 | 0.830 | ||
| PL-Net (Our) | ||||
The bold values indicates the best performance.