Skip to main content
. 2024 Jun 27;12:1414605. doi: 10.3389/fbioe.2024.1414605

TABLE 6.

Performance comparison with SOTA methods on ACDC datasets. Red , Green , and Blue indicate the best, second-best, and third-best performance.

Network ACDC datasets #Params (M) Model size (MB)
RV Myo LV Average
U-Net Ronneberger et al. (2015) 0.743 (0.792) 0.717 (0.812) 0.861 (0.897) 0.774 (0.834) 29.59 118
SegNet Badrinarayanan et al. (2017) 0.738 (0.790) 0.720 (0.817) 0.864 (0.902) 0.774 (0.836) 17.94 71.8
FATNet Wu et al. (2022) 0.743 (0.799) 0.702 (0.805) 0.859 (0.899) 0.768 (0.834) 27.43 109
Swin-UNet Cao et al. (2021) 0.754 (0.805) 0.722 (0.820) 0.865 (0.903) 0.780 (0.843) 25.86 105
TransUNet Chen et al. (2021b) 0.750 (0.800) 0.715 (0.812) 0.872 (0.905) 0.779 (0.839) 88.87 401
EANet Wang et al. (2022) 0.742 (0.791) 0.732 (0.825) 0.864 (0.902) 0.779 (0.839) 47.07 118
UNeXt-L Valanarasu and Patel, (2022) 0.719 (0.779) 0.675 (0.810) 0.840 (0.882) 0.745 (0.824) 3.99 15.2
PL-Net† (Our) 0.723 (0.778) 0.692 (0.796) 0.845 (0.887) 0.753 (0.820) 3.77 15.6
PL-Net (Our) 0.761 (0.807) 0.738 (0.828) 0.872 (0.907) 0.790 (0.847) 15.03 60.7

The bold values indicates the best performance.