TABLE 6.
Performance comparison with SOTA methods on ACDC datasets. , , and indicate the best, second-best, and third-best performance.
| Network | ACDC datasets | #Params (M) | Model size (MB) | |||
|---|---|---|---|---|---|---|
| RV | Myo | LV | Average | |||
| U-Net Ronneberger et al. (2015) | 0.743 (0.792) | 0.717 (0.812) | 0.861 (0.897) | 0.774 (0.834) | 29.59 | 118 | 
| SegNet Badrinarayanan et al. (2017) | 0.738 (0.790) | 0.720 (0.817) | 0.774 (0.836) | 17.94 | 71.8 | |
| FATNet Wu et al. (2022) | 0.743 (0.799) | 0.702 (0.805) | 0.859 (0.899) | 0.768 (0.834) | 27.43 | 109 | 
| Swin-UNet Cao et al. (2021) | 25.86 | 105 | ||||
| TransUNet Chen et al. (2021b) | 0.715 (0.812) | 88.87 | 401 | |||
| EANet Wang et al. (2022) | 0.742 (0.791) | 0.864 (0.902) | 47.07 | 118 | ||
| UNeXt-L Valanarasu and Patel, (2022) | 0.719 (0.779) | 0.675 (0.810) | 0.840 (0.882) | 0.745 (0.824) | ||
| PL-Net† (Our) | 0.723 (0.778) | 0.692 (0.796) | 0.845 (0.887) | 0.753 (0.820) | ||
| PL-Net (Our) | ||||||
The bold values indicates the best performance.