
Vol:.(1234567890)

Molecular Neurobiology (2024) 61:3788–3808
https://doi.org/10.1007/s12035-023-03768-z

1 3

Multifaceted Roles of AFG3L2, a Mitochondrial ATPase in Relation 
to Neurological Disorders

Ranita Ghosh Dastidar1   · Saradindu Banerjee2   · Piyush Behari Lal3   · Somasish Ghosh Dastidar2 

Received: 9 September 2023 / Accepted: 1 November 2023 / Published online: 28 November 2023 
© The Author(s) 2023

Abstract
AFG3L2 is a zinc metalloprotease and an ATPase localized in an inner mitochondrial membrane involved in mitochon-
drial quality control of several nuclear- and mitochondrial-encoded proteins. Mutations in AFG3L2 lead to diseases like 
slow progressive ataxia, which is a neurological disorder. This review delineates the cellular functions of AFG3L2 and its 
dysfunction that leads to major clinical outcomes, which include spinocerebellar ataxia type 28, spastic ataxia type 5, and 
optic atrophy type 12. It summarizes all relevant AFG3L2 mutations associated with the clinical outcomes to understand the 
detailed mechanisms attributable to its structure-related multifaceted roles in proteostasis and quality control. We face early 
diagnostic challenges of ataxia and optic neuropathy due to asymptomatic parents and variable clinical manifestations due 
to heterozygosity/homozygosity of AFG3L2 mutations. This review intends to promote AFG3L2 as a putative prognostic 
or diagnostic marker.
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Abbreviations
AAA​	� ATPase associated with diverse cellular 

activities
ADCA	� Autosomal dominant cerebellar ataxia
AFG3L2	� ATPase family gene 3-like 2
AMPA	� Amino-methyl phosphonic acid

AOA2	� Ataxia with oculo-apraxia type 2
ARCA​	� Autosomal recessive cerebellar ataxia
ANS	� Autonomic nervous system
ATP	� Adenosine triphosphate
CHOP	� C/EBP homologous protein
CNS	� Central nervous system
COX 1/ 2	� Cytochrome C oxidase subunit 1/2
CT Scan	� Computed tomography scan
CYTB	� Cytochrome b
DOA	� (Autosomal) Dominant optic atrophy
EM	� Elecron microscope
EMRE	� Essential MCU regulator
ER	� Endoplasmic reticulum
ErbB	� Erythroblastic oncogene B
GABA	� Gamma-aminobutyric acid
IMM	� Inner mitochondrial membrane
IMS	� Inner membrane space
LACE1	� Lactation elevated protein 1
LON	� Protease La
LRRK2	� Leucine-rich repeat kinase 2
m-AAA​	� Mitochondrial AAA​
MCU	� Mitochondrial calcium uniporter
MRI	� Magnetic resonance imaging
MAIP1	� M-AAA protease interacting protein 1
MAPK	� Mitogen-activated protein kinase
MEF	� Mouse embryonic fibroblast
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mito-DLP1	� Mitochondrial dynamin-like protein 1
MPP	� Mitochondrial processing peptidase
mt	� Mitochondrial
mTOR	� Mammalian target of rapamycin
mtUPR	� Mitochondrial unfolded protein response
ND 1/2	� NADH dehydrogenase 1/2
NDUFA9	� NADH ubiquinone oxidoreductase subunit 

A9
NF	� Neurofilament
NMR	� Nuclear magnetic resonance
OMA1	� Overlapping with m-AAA protease 1
OPA	� Optic atrophy
OXA1L	� Oxidase assembly protein 1 long form
OXPHOS	� Oxidative phosphorylation
PARL	� Presenilins-associated rhomboid-like protein
PD	� Parkinson’s disease
PINK1	� PTEN-induced kinase 1
PNS	� Peripheral nervous system
ROS	� Reactive oxygen species
SCAR​	� Spinocerebellar ataxia, autosomal recessive
SCA28	� Spinocerebellar ataxia type 28
SETX	� Senataxin
SOR	� StAR overload response
SPAX5	� Spastic ataxia 5
SPG7	� Spastic paraplegia type 7
SRH	� Second region of homology
StAR	� Steroidogenic acute regulatory protein
STUB1	� STIP1 homology and U-box containing 

protein 1
TM1/2	� Trans-membrane region 1/2
WFS	� Wolframin ER transmembrane glycoprotein
YME1L	� YME1 like 1 ATPase
Nrg1-III	� Neuregulin 1 type III
HCLR	� HslU/ClpX, ClpABC-CTD, Lon, and R

Introduction

Mitochondria, as an organelle, plays a vital role in numer-
ous life-sustaining activities in eukaryotic cells, for example, 
adenosine triphosphate (ATP) synthesis, calcium homeo-
stasis, and beta-oxidation of fatty acids [1, 2]. Regulated 
proteolysis of mitochondrial proteome is essential for proper 
mitochondrial function. Alteration in the mitochondrial pro-
tein level may adversely impact energy production, calcium 
signaling, and other activities in eukaryotic cells leading to 
various diseases such as cardiovascular diseases and late-
onset neurodegenerative diseases [3–6]. Deregulation of 
mitochondrial proteome is correlated with mitochondrial 
diseases such as dominant optic neuropathy, Parkinson’s 
disease (PD), Alzheimer’s disease (AD), Huntington’s dis-
ease, sarcopenia, and bipolar disorder [7–9]. Several pro-
teases play an important role in maintaining mitochondrial 

proteostasis. One example of a protease that is involved in 
mitochondrial proteostasis is AFG3L2. AFG3L2 is a mito-
chondrial ATPase associated with diverse cellular activities 
(AAA) protease, which is found in the inner membrane of 
mitochondria [10]. It can function solely as a homo-hexamer 
or in combination with a protease, paraplegin (encoded by 
SPG7), in the form of a hetero-hexamer [11]. AFG3L2 has a 
varied role in cellular physiology. It is involved in the axonal 
anterograde transport of mitochondria [8], mitochondrial 
protein synthesis, and cellular respiration [12]. AFG3L2 
mutations cause three monogenic disorders which are spi-
nocerebellar ataxia type 28 (SCA28), spastic ataxia type 
5 (SPAX5), and optic atrophy type 12 (OPA12) and have 
been reported for their mechanistic association with other 
diseases such as PD and other eye associated ataxias like 
ophthalmoparesis and oculomotor apraxia [9]. It is involved 
in steroid synthesis regulation via StAR overload response 
(SOR) [13–23]. This review discusses the multifaceted roles 
of AFG3L2 in mitochondrial physiology and its role pri-
marily in spinocerebellar ataxia type 28 (SCA28) and other 
diseases.

AFG3L2: an Inner Mitochondrial Membrane 
ATPase

AFG3L2 is an inner mitochondrial membrane (IMM) 
ATPase and a zinc metalloprotease. YME1L, OMA1, 
and paraplegin are a few other examples of mitochondrial 
ATPases. These proteases are located in the inner mitochon-
drial membrane. In brief, OMA1, YME1L, AFG3L2, and 
paraplegin are the mitochondrial AAAs that play a vital 
role in mitochondrial proteostasis in their active oligomeric 
forms. AAA proteases located in the IMM are categorized 
into ATP-dependent and ATP-independent proteases. These 
proteases, including AFG3L2, are ubiquitously expressed 
[11]. They are the descendants of highly conserved bacte-
rial FtsH AAA zinc metalloproteases and are sub-grouped 
as ring-shaped P-loop NTPases [11]. They are also called as 
the M41 family of zinc metalloproteases [20].

Location and Structure

AFG3L2 is located in the matrix side of IMM (m-AAA) 
[11]. Other mitochondrial AAAs that play a vital role in 
mitochondrial proteostasis in their active oligomeric forms 
are YME1L and OMA1 [11]. They are located in the IMM 
side of mitochondria (i-AAA). YME1L (Yme1p in yeast) 
is an ATP-dependent protease while the OMA1 is an ATP-
independent protease and both function in their homo-hex-
americ form [21].

AFG3L2 is an m-AAA that co-localizes and interacts 
with another m-AAA, paraplegin. To maintain mitochondrial 
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proteostasis, AFG3L2 can function in both homo-hexamer 
and hetero-hexameric forms with itself or paraplegin [11]. 
The human gene encoding AFG3L2 was mapped at chromo-
some 18p11 by Brunella Franco’s laboratory. A mutant vari-
ant of AFG3L2 that causes SCA28 was mapped in the SCA 
locus on chromosome #18 at 18p11.22-q11.2 by Alfredo 
Brusco’s laboratory in 2006 [24–26]. Nuclear encoded 
Afg3l2, on translocation to the mitochondria, undergoes pro-
cessing by MPP peptidase followed by further autocatalysis 
for its maturation [27]. Unlike paraplegin, no isoform of 
AFG3L2 has been identified till date that is localized outside 
mitochondria, like in ER, suggesting that hetero-oligomers 
can be formed only in mitochondria [28]. Hexamers are 
solely stabilized by ATP binding [29]. Although there is 
variability in the assembly of murine m-AAA proteases that 
is largely dependent on the availability of the individual sub-
units, the hetero-hexamer form of Afg3l2 and paraplegin 
is prevalent in neuronal cells [30]. Kress and Weber-Ban 
have summarized the works of Augustin and co-workers 
that clearly depict the formation of these hexamers, their 
molecular determinants, and their roles in substrate disloca-
tion from membranes. The ATP-bound hexamer subunits are 
considered active states. In the hexamer, three alternating 
ATP-bound subunits together connect with the substrate. 
The other three subunits remain in the inactive form, but 
because of ATP hydrolysis, they become active and take the 
charge of substrate. It has been reported that each subunit 
controls the ATPase activity of their neighboring subunits. 
The alternating hexamer states help in loop movements so 
that always either two or three subunits have the grip on 
substrate. Substrates can be detached from one subunit by 
the allosteric inhibitory effect of others. Subunits of hetero-
hexamers of AFG3L2/paraplegin around the ATPase ring 
manipulate every alternating subunit and generate a firing 
pattern with two alternate groups. Respiratory impairment 
offers an in vivo read-out and is an indicator of deregulation 
of m-AAA protease activity [31, 32] that can be used as a 
diagnostic approach in mitochondrial diseases.

AAA + domains are highly conserved with either classic 
cross-hatching clade or HCLR stippling clade [33]. m-AAAs 
include a least conserved N-terminal distal domain, two 
transmembrane spans, an AAA + ATPase module with 
walker A/walker B motif, the second region of homology 
(SRH) transmembrane spanning domain, and a HExxX or 
HxxEH or HExGH motif containing a C-terminal metal-
loprotease or proteolytic domain (Fig. 1) [11, 34]. Walker 
A motif is an ATP binding GX4GKT/S sequence, and 
walker B motif is hydrophobic (h), i.e., hDD/E sequence 
with transmembrane domains [33]. We have studied the 
conserved regions of AFG3L2 by alignment of amino acids 
of AFG3L2 protein from different organisms, bacteria to 
humans (Fig. 2). The highly conserved regions of AFG3L2 
among different species are shown in blue (Fig. 2). On 

top of the amino acid sequences, alpha-helical regions are 
shown with coil structures, and beta-sheet regions are shown 
with right-sided arrows (Fig. 2). Glynn’s laboratory gen-
erated a reconstituted active AFG3L2 with intact protease 
activity by displacing the transmembrane domains with a 
CCHEX sequence stimulating hexamerization of the cata-
lytic domains of the protease [29, 34]. Their work clearly 
depicts how AFG3L2 can maintain its high specificity and 
yet differentiate between substrates by identifying degron 
sequences accessible for peptide bond cleavage. Recently, 
Puchades and co-workers have elaborated a detailed cryo-
EM structure of a truncated construct of AFG3L2 compris-
ing the ATPase and peptidase domains (core of AFG3L2, 
residues 272–797). For a good understanding of the unique 
characteristics of the stability and activity of AFG3L2, they 
also showed detailed structure of disease-specific mutations 
elucidating the structure–function relation of this m-AAA 
(discussed later in the AFG3L2 mutation section). NMR 
structural analysis has revealed an intermembrane space 
domain of AFG3L2 that is located in the membrane periph-
ery and its furthest region interacts with substrates and pro-
hibitins as and when required [35] aiding in membrane sta-
bilization. The C-terminal protease domain has evolved from 
the i-AAA YME1L that can only recruit soluble substrates 
to the m-AAA AFG3L2 where it recruits membrane-bound 
substrates by charged interactions hence maintaining distinct 
features for these ATPases. Sequential substrate processing 
steps include (i) substrate recruitment by N- and C-termini 
of ATPase domain, (ii) ATP-dependent substrate intercala-
tion by pore loop 1 for translocation, (iii) unfolded substrate 
transfer by pore loop 2 and central protrusion chamber, and 
(iv) substrate cleavage at zinc-associated protease active 
site [36]. Like in other AAA + ATPases, pore-loop 1 forms 
an aromatic spiral staircase that interacts with the substrate 
and drives translocation. To adopt a membrane-proximal 
position, the C-terminus encircles the hexamer conferring 
a complex stability [27]. The substrate translocation is spa-
tially facilitated by the tightly packed aromatic residues 
immediately in front of pore-loop 1, which provides a lucid 
configuration of a central channel. The substrate is further 
transferred to a central protrusion by pore-loop 2 within the 
protease domain. A staircase, like spirals in N-termini of 
ATPase domain, and pore loops 1 and 2 help in the hand-
held translocation of substrate from this domain to the 
catalytic core [27]. These domains work in cooperation to 
drive nucleotide-driven allosteric changes and pull substrate 
through the central channel as ATP is hydrolyzed [36].

Primary Functions

The primary functions of mitochondria include ATP produc-
tion, fatty acid oxidation, and functioning as calcium ion 
reservoir [1, 2]. Nuclear-encoded mitochondrial proteins are 
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Fig. 1   The genomic orientation and the domain structures of human 
AFG3L2 protein. The AFG3L2 protein consists of 17 exons and 797 
amino acids. The gene position is 18p11.21 and a total of 48 kb. The 

figure represents various mutations that cause SCA28 (red), SPAX5 
(blue), optic atrophy (purple), and SCAR (green)
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Fig. 2   Alignment and substitutions of amino acids in the highly con-
served regions of AFG3L2 protein in different study models from 
bacteria to humans. The alignment is depicted for regions of second-
ary structures of Homo sapiens (Hsa, human), Mus musculus (Mmu, 
mouse), Danio rerio (Dre, zebrafish), Drosophila melanogaster 
(Drm, fruit fly), Saccharomyces cerevisiae (Sce, yeast), and E. coli 

(Eco, bacteria). This alignment was done in ESPript 3.0 with PDB 
secondary structure information for similarity index with percent 
equivalency at a global score of 0.7. Blue boxes are highly conserved 
regions with all red-colored amino acids showing conservation across 
those organisms
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synthesized in the cytosol and transported into the mitochon-
dria, whereas the mitochondria-encoded proteins are facili-
tated for co-translational insertion in the inner membrane 
of mitochondria with simultaneous processing to enable 
efficient assembly into respective respiratory complexes 
within the mitochondria [37]. Mitochondrial-encoded pro-
teins being hydrophobic require co-translational insertion 
into the inner membrane and further require quality control 
simultaneously for misfolded or truncated proteins [38]. The 
primary function of the mitochondrial proteases is to engage 
and process unprocessed, misfolded, and damaged polypep-
tides to maintain mitochondrial homeostasis. Mitochondrial 
proteostasis is brought out by protein degradation, partial 
processing with chaperonic rearrangements, or even relo-
calization of proteins to their accurate location within the 
mitochondria [34]. Mitochondrial proteases have pleiotropic 
functions that include protein import, quality control, pro-
tein processing, phospholipid trafficking, ribosome assem-
bly, OXPHOS assembly, MCU complex assembly, mtDNA 
stability, mitophagy, apoptosis, and hypoxic response [4]. It 
is quite intriguing to understand the roles that mitochondrial 
proteases may play to influence varied cellular responses 
and might aid or abet a plethora of diseases that may range 
from cancer and neurological disorders to aging [39–43]. 
Proteostasis imbalance can be brought by a reduction in 
the capacity of protein folding and excessive protein aggre-
gates. Mitochondrial unfolded protein response (mtUPR) 
generates a protective response against this imbalance [44]. 
Hetero-dimer of CHOP and C/EBPβ, family of CCAAT/
enhancer binding proteins, activates the transcription of 
mtUPR responsive genes that includes genes encoding mito-
chondrial proteases YME1L1 and MPPβ [45]. These genes 
contain a CHOP element in their promoters. Due to the lack 
of CHOP element in both Afgl32 and Spg7, these genes are 
not involved in mtUPR [45] although they play key role in 
mitochondrial protein folding.

Mitochondrial Co‑translational Protein Quality 
Control

AAA protease complexes are responsible for maintaining 
the mitochondrial quality control that includes homo- or 
hetero-oligomeric m-AAA proteases [30]. All 13 mito-
chondrial encoded OXPHOS proteins are co-translationally 
processed by AFG3L2 after the insertion of these nascent 
chains into the IMM by OXA1L/OXA1 (coding insertase 
enzyme) [38]. Genetic interaction of AFG3L2, OXA1, and 
F1F0 ATP synthase (complex V of OXPHOS), well docu-
mented in budding yeast Afg3l2p, regulates co-translational 
proteostasis that is quintessential in the maintenance of orga-
nelle homeostasis and affects the bioenergetics of a cell. Kah 
Ying Ng’s work has used MT-ATP6 as a representative sub-
strate to understand this co-translational quality control and 

delineate the steps of regulation in MT-ATP6 pathogenic 
variants [38]. AFG3L2 is involved in the quality control 
of OXA1L-mediated MT-ATP6 insertion in IMM. Loss of 
function of AFG3L2 affects the mitochondrial morphology 
and simultaneously critical pathways leading to mitochon-
drial gene expression impairment.

Protein Aggregates

Many neurodegenerative diseases result from protein mis-
folding leading to aggregation. m-AAAs help in keeping 
a balance by maintaining the proteostasis. For example, in 
a genome-wide RNAi screen, AFG3L2 came up as a gene 
involved in the suppression of mutanthuntingtin protein 
accumulation in the mitochondria, thus indicating thera-
peutic potential [17].

Steroid Synthesis

StAR overload response (SOR) is the process of enrichment 
of mitochondrial proteases and their transcripts by steroi-
dogenic acute regulatory protein (StAR) expression. StAR 
regulates steroid synthesis in adrenal cortex and gonads 
by activating the CYP11a1/P450scc enzyme in the OMM. 
StAR expression also increases the gene transcription of 
LON and AFG3L2/SPG7 [46, 47]. Excessive StAR produc-
tion leads to a sequential degradation process of StAR, due 
to overload, in the OMM by LON followed by in the IMM 
where it is degraded by LON and AFG3L2/paraplegin. This 
avoids SOR in the mitochondrial matrix [47].

Functions Related to Expression

AFG3L2 is ubiquitously expressed. It is evident from previ-
ous studies that Afg3l2 is expressed throughout the mouse 
brain corroborating its essential role in the function of the 
neurons [19]. Further enhanced expression is observed in the 
large cell body containing neurons that include brainstem 
motor neurons, mitral cells of olfactory bulb, pyramidal cells 
of hippocampus and neocortex, Purkinje, and deep nuclei 
cells of cerebellum [19, 48]. However, Afg3l2 expression 
patterns are not strictly related to the occurrence of SCA28 
or SPAX5 development [19]. So, it can be predicted that 
there might be unidentified proteins regulated by AFG3L2 
which can be a participant to the SCA28 or SPAX5 patho-
physiology. Both dominant heterozygous and recessive 
homozygous mutations of AFG3L2 will lead to depletion 
in AFG3L2 protein. Loss of AFG3L2 causes mitochondrial 
network fragmentation [49] affecting mitochondrial antero-
grade transport [8] but is incapable of causing any human 
disease [49]. AFG3L2 is highly expressed in Purkinje cells 
[50] where its deficiency causes SCA28 or SPAX5 [51]. It 
is also expressed in the neighboring Bergmann glial cells 
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where it plays an important role in glutamate homeostasis 
in the synaptic and peri-synaptic extracellular environment 
[52]. Ceftriaxone is a β-lactam antibiotic promoting synap-
tic glutamate clearance. It upregulates glutamate receptor 
EAAT2 in the astrocytic glial cells and ameliorates ataxia in 
heterozygous mutated AFG3L2 by inhibiting glutamate exci-
totoxicity and creating healthy Purkinje cell and glial con-
nections [53]. The neuron-glial cross-talk is well reported 
where cytodifferentiation of Bergmann glial cells proceeds 
in correlation to the cytodifferentiation of Purkinje cells 
[54]. The work of Rugarli laboratories has clearly depicted 
the importance of Bergmann glial cells in ataxia. Bergmann 
glial cells are radial astrocytes neighboring to the Purkinje 
cells in the cerebellum that help in clearing the glutamate 
toxicity at the synaptic clefts of Purkinje cells and Berg-
mann glial cells. This is primarily performed by EAAT1, 
a glutamate-aspartate transporter, and EAAT2, a sodium 
ion-dependent glutamate transporter. AFG3L2 deficiency 
in these regions has shown mitochondrial morphological 
changes like fragmentation but no OXPHOS dysfunction 
[52]. Lack of AFG3L2 also upregulates a necroptotic fac-
tor called ZBP1 leading to neuroinflammation [52, 55] and 
metabolic stress responses. It further affects electrophysi-
ological balance in Purkinje cells due to increased Ca2+ 
influx causing dark cell degeneration and neuronal death of 
Purkinje cells [53] as a secondary effect. Thus, Purkinje cells 
show reduced dendrite formations and the absence of firing 
or excitation during depolarization. Bergmann glial cell is 
an active participant involved in AFG3L2 deficiency-related 
neurological disorders (Fig. 3).

Maltecca and co-workers have shown that Afg3l2 mis-
sense and null mutant mice have no effect on mitochon-
drial protein synthesis but impact on mitochondrial energy 
metabolism by impaired respiratory complex I and III activ-
ity due to inadequate assembling of these complexes. This 
is a result of swollen and giant mitochondria with damaged 
cristae generated in the vacuoles of Purkinje cells as well 
as cell bodies of the spinal cord and dorsal root ganglia that 
are located near to nucleus and cell membrane [56] affecting 
axonal transport (Fig. 3). They have further used carbonyl 
formation as a marker to emphasize the importance of oxi-
dative stress in Afg3l2 mutants [57]. NADH dehydrogenase 
1 (ND1) that causes the initiation of complex I formation is 
degraded in AFG3L2-dependent manner [58]. Early neu-
ronal development in the demyelinated axons involves Nrg1-
III signaling via ErbB receptors [59] while post-myelination 
axonic development involves phosphorylation of neurofila-
ments (NF) utilizing the kinase-phosphatase cycles [60]. 
Afg3l2 mutants impact the axon-glial cross talk because 
damaged axons affect myelination, result in insufficient NF 
phosphorylation and also cause glutamate excitotoxicity in 
glial cells [56, 61].

Mitochondrial proteotoxicity is a causative agent of 
SCA28. Heterozygous M665R mutation of Afg3l2 in a 
mice knock-in model showed enhanced Purkinje cells fir-
ing and changes in the mitochondrial energy metabolism 
that includes a reduction in membrane potential, oxygen 
consumption, and ATP synthesis leading to mitochondrial 
fragmentation. The fragmentation was due to the presence of 
excess OPA1 short forms [62]. Homozygous M665R muta-
tion is lethal. Chloramphenicol, a mitochondrial protein 
synthesis inhibitor, was reported to be able to reverse these 
mitochondrial morphologies like fragmentation in mouse 
embryonic fibroblasts (MEFs) generated from homozygous 
M665R mutation of Afg3l2 in mice. These morphologies 
include mitochondrial network formation and shapes. To 
date, one epigenetic case study on monozygotic twins has 
revealed that hypomethylation of AFG3L2 in one of the 
twins maintains health while changes in methylation at mul-
tiple loci of AFG3L2 called as differential methylation on 
the other caused myocardial infarction [63]. However, this 
observation needs further exploration.

AFG3L2 and Cellular Respiration

In general, AFG3L2 acts as a sensor to maintain organelle 
fitness by regulating mitochondrial proteostasis. This is done 
by coordinating the OxPhos complex assemblies [12]. Under 
stress conditions, membrane potential is compromised lead-
ing to OMA1 activation that cleaves OPA1 required for mito-
chondrial fusion. However, mitophagy due to inhibition of 
anterograde transport in AFG3L2-depleted cells confirms 
that it is a result of mitochondrial fragmentation/fission [8]. 
Rugarli laboratory has successfully shown the role of Afg3l2 
in Purkinje cell survival by supporting mitochondrial pro-
tein synthesis. Deletion of AFG3L2 clearly reduced only the 
levels of mt-encoded CYTB, COX1, COX3, and ND2 in 
the brains but not the levels of nuclear-encoded COX4 and 
NDUFA9 that are mostly related to the electron transport 
chain [50]. Respirasomes are supercomplexes of OxPhos 
present in mitochondrial inner membrane. Truncated COX1 
can still interact with AFG3L2 and form unstable supercom-
plexes. AFG3L2 abundance or depletion can regulate the 
stability of the truncated COX1 and its ability to generate 
stable or unstable respirasomes respectively [64].

Inefficient cell respiration due to loss of AFG3L2 cause 
reduced cell proliferation and defective biogenesis of cell res-
piratory proteins, elevated expression of OMA1, and loss of 
paraplegin [65]. It mainly affects the assembly and hence the 
function of Complex IV of electron transport chain which is 
the rate-limiting step of oxidative phosphorylation. This may 
lead to an uncoupling effect thus reducing the oxygen con-
sumption, affecting the ATP synthesis and activating apoptosis 
[66] (Fig. 3). Deficiency of cytochrome c oxidase (Complex 
IV) causes aging and degenerative disorders. At the molecular 
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level, reduced cytochrome c oxidase affects mitochondrial mem-
brane potential, ATP synthesis, calcium uptake, and ROS pro-
duction. Caveolin-1 acts as an important interacting protein of 
AFG3L2 and promotes translocation of both these proteins to 
the mitochondria especially after enhanced oxidative stress in 
fibroblasts [67]. Curbing their interaction with mutant AFG3L2 

protein affects Complex IV formation after oxidative stress. Loss 
of caveolin-1 inhibits mitochondrial translocation of AFG3L2 
thus affecting mitochondrial protein quality control, collapse of 
OXPHOS, and lowering of ATP production [67].

A study on primary MEFs and primary cortical neurons 
by Bettegazzi and coworkers in Afg3l2-knock out (KO) mice 

Fig. 3   Biological pathways that are affected due to mutations and 
dysfunction of AFG3L2 causing SCA28. (a) The mutation of 
AFG3L2 is responsible for increasing the neurotropic factor ZBP1 
that in turn causes neuroinflammation. (b) MCU and EMRE, two 
complexes found in the mitochondrial inner membrane, can be dis-
rupted by dysfunctional AFG3L2, which leads to disruption of elec-
trophysiological balance by releasing excess Ca2+ from the mito-
chondrial matrix to the cytosol. (c) Mutations in AFG3L2 generate 
an accumulation of misfolded proteins in the mitochondrial matrix 

followed by the activation of OMA1 protease which enhances the 
OPA1 processing to its short form and causes the mitochondrial frag-
mentation. On the other hand, the Complex IV of electron transport 
chain (ETC) is hampered because of AFG3L2 mutation. (d) The dys-
functional AFG3L2 inhibits the assembly of Complex I and Complex 
III of ETC that finally leads to the disruption of axonal transport. (e) 
The defective AFG3L2 is responsible for the disbalance of axon glial 
cross talk due to insufficient neurofilament. PC, Purkinje cells; BG, 
Bergmann glial
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showed that in spite of mitochondrial dysfunction leading to 
increased ROS production, the cells overexpressed antioxi-
dant peroxiredoxin 3 and had higher glutathione levels after 
initial vulnerability of few days. This evidently maintained 
the cell viability as well as the quality control of the cell and 
can be utilized in designing therapeutic targets against aging 
cells found in several neurological disorders [68].

Mitochondrial Stress Response

m-AAA mutations in AFG3L2 or SPG7 lead to proteotoxic 
trigger due to defective mitochondrial mRNA synthesis fol-
lowed by inhibited nascent polypeptide chain quality control. 
This leads to a stress response affecting the inner membrane 
morphology and homeostasis of ribosome [69]. Mitochon-
drial stress response is handled by i-AAAs and m-AAAs dif-
ferently. AFG3L2 is the major protease involved in the i-AAA 
and m-AAA coordinated processing of OMA1 consequently 
controlling the distribution of the long (L-) and short (S-) iso-
forms of OPA1 [70]. i-AAAs YME1 and OMA1 separately or 
cooperatively control the OPA1 processing thus maintaining 
the long (L-) and short (S-) forms of OPA1 and this further 
maintains proteostasis by balancing mitochondrial fission and 
fusion [11, 70]. L-OPA1 is essential for mitochondrial fusion. 
The two forms of OPA1 is balanced based on normal and stress 
conditions under ATP replete or ATP depleted conditions 
respectively. This also affects the lamellar cristae morphology, 
OXPHOS function and protein synthesis (Fig. 3). Richter U and 
co-workers, observed for the first time, the connection between 
OPA1 processing and protein synthesis in mitochondria is 
linked to ribosomes [69]. They showed that AFG3L2 dysfunc-
tion affecting protein quality control triggers stress response 
by OMA1 mediated S-OPA1 formation and leads to riboso-
mal decay [69]. Quantitative overexpression of wild AFG3L2 
or AFG3L2 E575Q mutation (proteolytic mutant inhibiting 
homo-oligomerization but maintaining AAA domain func-
tion) reduces OPA1 processing and mitochondrial ribosomal 
protein synthesis in MT-ATP6 m.9205delTA mutation [69, 71]. 
AAA domain of AFG3L2 with chaperonic function has epi-
static suppression effect on MT-ATP6 m.9205delTA non-stop 
mutation during heat shock stress [69]. AFG3L2 mutations lead 
to enhanced OMA1-dependent S-OPA1 formation and mito-
chondrial fragmentation [72–74] that ultimately causes neuro-
degeneration. Overexpression of AFG3L2 in these mutants does 
not rectify the aberrant protein synthesis [69].

Substrate Identification and Processing

Specialized mechanisms are involved in substrate-specific 
identification, recruitment and degradation/processing of 
substrates but these mechanisms still largely remain unclear 
[31]. Interestingly, given their role in diverse cellular activi-
ties, these AAA + proteases recognize both highly specific 

sequences like the degron sequences and residue patterns 
as well as accessible sequences in unstructured regions thus 
performing both targeted protein degradation and untargeted 
degradation. Degron sequences and residue patterns follow-
ing scissile peptide bond (a covalent chemical bond) region 
are the two ways by which m-AAA proteases maintain their 
specificity. For example, hydrophobic and small polar resi-
dues in P1 position at N-terminal side of substrate MrpL32, 
a mitochondrial ribosome act as a degron that interacts with 
AFG3L2 for degradation [29, 75]. The loss of AFG3L2 
(m-AAA) and YME1L (i-AAA) results in mitochondrial 
fragmentation and impairs cell respiratory biogenesis [65]. 
Accurate mechanisms by which AAAs precisely identify the 
degron sequences still largely remain unexplored for major-
ity of their substrates.

MCU Complex Assembly and Calcium Homeostasis

m-AAA like AFG3L2 are also involved in mitochondrial 
calcium uniporter (MCU) complex assembly [4]. Mutations 
of AFG3L2 affect this assembly leading to Ca2+ overload, 
increased reactive oxygen species (ROS) production due to 
elevated cellular respiration thus releasing proapototic fac-
tors like cytochrome C into the cytosol. Purkinje cells are 
prevalently affected in ataxias due to the imbalance in their 
calcium ion reservoir which in general is linked to calcium 
channels, calcium interacting protein, calcium-related phos-
phatases, and kinases [76]. Mitochondria, due to its close 
proximity to both endoplasmic reticulum (ER) and cell 
membrane promotes calcium influx from ER and cell mem-
brane into the mitochondria, thus act as a calcium buffering 
system. At neuronal synapses, this affects the neurotransmit-
ter release especially in Purkinje cells that cause an elevated 
firing rate [4].

Ca2+ homeostasis is majorly affected in Purkinje cells 
that have highly branched dendrites and receive excitatory 
inputs through glutamate stimulated receptors AMPA and 
mGluR1 [77]. This excitation increases the Ca2+ uptake in 
these cells. Lack of AFG3L2 not only causes mitochondrial 
fragmentation, it possibly keeps mitochondria available and 
functional in the soma of the Purkinje cells close to ER, thus 
making less mitochondria and ATP available in the axons 
and dendrites [61]. This restricts the ATP-dependent Ca2+ 
uptake in these major excitatory regions. This may lead to 
glutamate toxicity leading to apoptosis of these cells causing 
neurodegeneration.

LACE1, the human homolog of yeast Afg1 (mice 
Afg3l1), deletion causes apoptotic resistance while 
LACE1 overexpression enhances apoptosis [78]. It helps 
in the mitochondrial translocation of p53. However, such 
evidence is not yet recorded in AFG3L2. AFG3L2 dele-
tion causes mitochondrial fragmentation while deletion 
of both AFG3L1 (another m-AAA complex component) 
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and AFG3L2 causes oligodendrocyte/glial death due to 
demyelination and motor dysfunction including hair gray-
ing [49]. Konig and Rugarli’s work from Langer labora-
tory found that loss of m-AAAs generates constitutively 
active MCU-EMRE channels that cause calcium overload 
in mitochondria affecting permeability and leading to cell 
death [41, 54].

MCU complex includes pore-forming MCU unit, regu-
latory proteins MICU1 or MICU2, and MCU interacting 
protein EMRE [41, 79–81]. The active MCU includes all 
of these components, and its assembly is brought about 
by m-AAAs. In the absence of the regulatory protein 
(MICU1/MICU2) or its interaction with EMRE, that is 
required prior to the complete complex assembly, MCU 
and EMRE assemble into a constitutively active complex 
that disrupts calcium homeostasis and brings in apopto-
sis [41]. This can be the reason for neurodegeneration 
and muscle disorders. MCUb in mice is a variant found 
as a dominant negative form [82]. It is reported that the 
absence of AFG3L2 increases the cytosolic calcium influx 
in the Purkinje cells causing ataxia due to constitutively 
active MCU-EMRE assembly [4]. It is noteworthy to men-
tion that MICU1 deletion results in the development of 
ataxia and muscle weaknesses [80]. Excitatory increase in 
mitochondrial Ca2+ causes SCA28 by Purkinje cells apop-
tosis [80]. EMRE acts as a novel substrate of AFG3L2, 
and its regulated proteolysis maintains Ca2+ homeostasis. 
AFG3L2/paraplegin duo degrades unassembled EMRE 
utilizing ATP breakdown [6]. The study of regulation of 
Ca2+ homeostasis by AFG3L2 can identify novel MCU 
inhibitors as prospective therapeutic intervention against 
the apoptotic process. While in one hand m-AAA regulate 
MCU complex assembly and hence the mitochondrial cal-
cium uptake, on the other hand, they regulate mitochon-
drial protein synthesis and further influence ROS produc-
tion and cellular death by apoptosis [4]. Maintenance of 
proteostasis is a multi-step process including many mecha-
nisms, and hence, inhibition of mitochondrial Ca2+ uptake 
may not lead to Purkinje cell survival as per the studies 
undertaken by Langer laboratory [4, 41].

Maltecca and co-workers have pinpointed that loss of Afg3l2 
in MEFs causes primarily respiratory dysfunction leading to 
mitochondrial fragmentation and enhanced OPA1 processing 
that affects calcium homeostasis. The lack of calcium diffu-
sion into mitochondria is clearly due to the impaired cross-talk 
between the ER and the mitochondria that can be retrieved by 
OPA1 or MFN1 overexpression. However, this approach also 
exhibit continuing respiratory defects [61]. Later, Maltecca’s 
laboratory and Tempia’s laboratory have proven in SCA28 
cells that OMA1 hyperactivation followed by increased pro-
cessing of OPA1 causes defective mitochondrial fusion due to 
the accumulation of mtDNA-encoded proteins [62, 83]. This 
also reduced the mitochondrial calcium uptake.

Ataxia

National Ataxia Foundation of America reports that approx-
imately 150,000 Americans are affected with sporadic or 
hereditary ataxia. People of any age or sex can suffer from 
ataxia, a slowly progressive neurological disorder. Ataxia is 
an uncontrolled movement disorder caused by the improper 
functioning of the nervous system. There are three kinds of 
ataxia: vestibular ataxia, spinocerebellar ataxia, and proprio-
ceptive or sensory ataxia [84]. These are also categorized as 
vestibulocerebellar, cerebellar motor, and cerebellar cogni-
tive syndromes based on their neuroimages and anatomical 
findings [85]. Vestibular ataxia develops due to impaired 
functioning of vestibular system, which senses movement 
of head and help maintain balance and spatial orientation. 
It involves the inner ear and the ear canals. Abnormality in 
nerves of vestibular system manifests the following symp-
toms: blurred vision, nausea and vomiting, problems with 
standing and sitting, trouble in walking, virtigo, or dizzi-
ness [86]. Spinocerebellar ataxia develops due to impaired 
functioning of cerebellum or spinal cord, which helps main-
taining balance and coordination of body movements [87]. 
Symptoms of cerebellar ataxia include headache, changes 
in voice, slurred speech, fatigue, muscle tremors, dizziness, 
trouble walking, and wide gait. Proprioceptive or sensory 
ataxia develops due to impaired functioning of the nervous 
system that is outside of the brain and spinal cord, which 
helps maintain touch sensation of the skin. Symptoms of 
sensory ataxia include difficulty touching finger to nose with 
closed eyes, inability to sense vibrations, trouble walking in 
dim light, and walking with a heavy step [84].

Inherited ataxias can be autosomal dominant or recessive, 
X-linked, and episodic ataxia [85]. While dominant ataxia 
is easily diagnosed with prominent phenotypes, recessive 
ataxia shows a high heterogeneity in its phenotypic expres-
sion and X-linked ataxia are best identified from trios stud-
ies. Recessive ataxia is often initiated in childhood or early 
adulthood [85]. Strupp laboratory categorizes the pheno-
typic expressions of autosomal recessive cerebellar ataxias 
(ARCAs) into six categories but AFG3L2 related SPAX5 
falls under metabolic or mitochondrial syndrome [85]. Dif-
ficulties in diagnosis and management are more evident in 
identification of autosomal recessive ataxia where combined 
results of next generation sequencing and trios studies help 
in accurate diagnosis and detection [88]. In the past 4 years, 
15 cases of early onset cerebellar ataxia have been diagnosed 
in Kasturba Hospital, Manipal, India. Indian prevalence in 
cerebellar ataxias is reported as 4.8 to 13.8 in 100,000 indi-
viduals [89]. SCA28 is a rare type of ataxia, and AFG3L2 
has been shown to be involved with this disorder in several 
studies across the world [22, 29, 83, 90–92]. However, the 
molecular mechanisms are yet to be deciphered.
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So far, some mechanisms related to AFG3L2 mutagen-
esis that contributes to SCA28 pathophysiology have been 
reported. Being a m-AAA protease in the inner membrane 
of mitochondria, AFG3L2 is involved in mitochondrial 
proteostasis and cellular respiratory biogenesis [65]. Loss 
of these AAA proteases can affect protein synthesis and 
cellular respiration [4]. It is highly expressed in GABA-
ergic Purkinje cells of cerebellar cortex [51] and involved 
in the axonal anterograde transport of mitochondria [8]. 
The neuronal interactome of AFG3L2 includes paraplegin, 
PINK1, EMRE, and MAIP1 as the prevalent interaction 
proteins [4]. Since AFG3L2 demonstrates both autosomal 
dominant and recessive mutational inheritances, it adds on 
to the diagnostic dilemmas at both allelic and phenotypic 
aspects of SCA28 or SPAX5 development and gives added 
challenges to genetic counselling.

AFG3L2 and Its Related Mutations in Ataxia

AFG3L2 is a mitochondrial inner membrane zinc metal-
loprotease, essential for axonal transport of mitochondria 
and neuronal development [4], required for paraplegin 
and PINK1 maturation [93] as well as has chaperonic 
function of ATPase domain [11]. SPG7 mutations cause 
autosomal recessive hereditary spastic paraplegia (HSP 
type 7) affecting Complex I activity and oxidative stress 
[94, 95]. While autosomal dominant AFG3L2 mutations 
cause SCA28, homozygous recessive mutations lead to 
SPAX5 [12, 19, 24]. Disease-relevant AFG3L2 mutations 
are localized in four hotspots of which three hotspots cat-
egorized as autosomal dominant mutations are found in 
three inter-subunit interfaces while all recessive muta-
tions are found in the peripheral active sites of protease 
ring [36] (Fig. 1). These mutations derange the nucleotide 
dependent substrate translocation affecting the substrate 
interacting non-conserved regions. All protease domain 
recessive mutations except N435T condense at the central 
protrusion [36]. However, these spinocerebellar ataxia of 
autosomal recessive types abbreviated as SCAR are diffi-
cult to identify and their mechanisms remain less explored 
and elusive [96]. The domain structure of AFG3L2 listed 
in Table 1 and Fig. 1 gives us a clear depiction of how 
domains can be related to the neurological disorders. 
We can see that mutations in the catalytic domain cause 
optic atrophy or OPA12 while the pro-peptide, inter-TM1 
(Trans-membrane region 1), IMS (Inner membrane space), 
and proteolytic domain mutations are mainly responsible 
for SCA28. SPAX5, being a recessive phenotype, is rarely 
expressed and hence is less documented, but mutations are 
found to be scattered in various domains inter-TM1, IMS, 
and proteolytic domains.

Mutations in Spinocerebellar Ataxias

Spinocerebellar ataxias (SCA) or autosomal dominant 
cerebellar ataxia (ADCA) are rare autosomal dominant 
progressive neurological disorders characterized by gait 
imbalance and motor incoordination of hand, speech, and 
eye movements—a primary cerebellar dysfunction. By 
2010, although over 30 SCA genes were identified that are 
related to these disorders, the cellular and molecular events 
have not been completely deciphered yet [97]. 18p whole 
arm translocation was reported to be causing dystonia with 
symptoms of rigid postures and muscle contractions [98]. 
In 1999, AFG3L2 was mapped at location 18p11, and fur-
ther, the locus of SCA was identified in 2006 where specif-
ically 18p11.22-q11.2 was designated as SCA28 [24–26]. 
Haploinsufficiency has also been reported to cause SCA28 
[99]. A detailed list of mutations in AFG3L2 and their 
relation to domain structures can be seen in Table 1 and 
Fig. 1. The first case of heterozygous deletion of AFG3L2, 
a causative reason for SCA28 due to haploinsufficiency 
which has multiple genomic anomalies, was reported 
in 2014 [100]. However, Lohmann laboratory studying 
SPAX5 related mutations had previously stated that hete-
rozygous AFG3L2 mutation causes SCA28 [101]. AFG3L2 
mutations, although are related to cerebellar ataxias, does 
not exhibit polyglutamine repeats like the majority of SCA 
genes [99]. Patients with no signs of prevalent SCA types 
are screened for SCA28 and symptoms include oculomo-
tor signs of a very slowly progressive ataxia [25]. Cag-
noli and co-workers [102] reported six missense muta-
tions of AFG3L2 in nine unrelated index cases from 366 
European families having ADCA (autosomal dominant 
cerebella ataxia). Similarly, in a Taiwanese cohort, only 
one patient was reported for AFG3L2 mutation among 133 
cerebellar ataxia patients. In another ADCA cohort study, 
Jia et al. [91] did not find any AFG3L2 mutations from 
67 patients. In 2013, a study on the lymphoblastoid cell 
lines of four SCA28 patients revealed 66 genes with sta-
tistically different expression patterns [103]. This was the 
first genome-wide analysis that identified 35 upregulated 
and 31 down-regulated genes that were categorized into 
five functional categories that are related to cell prolifera-
tion, programmed cell death, oxidative stress response, 
cell adhesion, and chemical homeostasis. The differential 
expression is related to phenotypes of SCA28 that include 
impaired growth, increased G0/G1 phase cells, increased 
apoptosis, enhanced lipid peroxidation, and increase in 
mitochondrial regulators TFAM and DRP1 but no altera-
tion in ROS levels and respiratory chain activity.

AFG3L2 gene with 17 exons encodes a 797 amino acid 
protein. By 2010, AFG3L2 gene mutations was identi-
fied to cause SCA type 28 [90]. It has been reported that 
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Table 1   The domains and amino acid position of AFG3L2 mutations 
with related disorders (SCA28 (spinocerebellar ataxia 28), SPAX5 
(spastic ataxia 5), optic atrophy, and SCAR (spinocerebellar ataxia 

autosomal recessive)). The mutational change in genomic sequence is 
documented where available. *Yet to be determined

Domain Amino acid position Disease References

Pro-peptide R41* SCA28 [140]
In b/w pro-peptide and TM1 P78S SCA28 [96]

E98Q SCA28 [96]
G116R
c.346G > A

SCA28 [13]

W128*
c.571G > A

SPAX5 [96]

IMS V191I SCA28 [140]
I216F SPAX5 [96]

In b/w catalytic and TM2 K306E
c.916A > G

Optic atrophy [140]

G337E Optic atrophy [116]
A338T Optic atrophy [140]

Catalytic domain L346F
c.1036C > T

Optic atrophy [140]

T355M
c.1064C > T

Optic atrophy [140]

L356R Optic atrophy [140]
E376K Optic atrophy -
F377S
c.1130 T > C

Optic atrophy [140]

D407G
c.1220A > G

Optic atrophy [140]

D411A Optic atrophy [13]
R416A SCA28 [27]
T430I
c.1289C > T

SCA28 [140]

N432T Optic atrophy [140]
A462V
c.1385C > T

Optic atrophy [140]

R465K
c.1394G > A

Optic atrophy [140]

P466L
c.1402C > T

Optic atrophy [140]

R468C Optic atrophy [140]
P477L SCA28 [96]
A484P SCA28 [96]
P514L
c.1541C > T

Optic atrophy [140]
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Table 1   (continued)

Domain Amino acid position Disease References

Proteolytic domain L556fs
c.1714G > A

SCA28 [96]

A572T SPAX5 [140]

E575Q SCA28 [108]

Y605C
c.1847A > G

Optic atrophy [140]

Y616C SPAX5 [140]

Q620K
c.1858C > A

SCA28 [140]

L621V
c.1875G > A

SCA28 [140]

M625I
c.1894C > T

SPAX5 [96]

R632* SCAR​ [96]

S634*
c.1901_1902delCT

Optic atrophy [140]

T654fs
c.1961C > T

SCA28 [96]

T654I SCA28 [140]

F664S SCA28 [140]

G665V
c.1997 T > C

SCA28 [140]

M666T/V/R
c.1996A > G M666V; c.1997 T > G M666R

SCA28 [140]

G671W/R/E
c.2011G > A (G671R)

External ophthalmoplegia/SCA28 [140]

S674L SCA28 [140]

K687E
c.2062C > A

SCA28 [140]

P688T SCA28 [140]

P688A SCA28 [140]

Y689H/N SCA28 [140]

E691K SCA28 [140]

A694E SCA28 [101]

R695G SCA28 [140]

E700K SCA28 [140]

R702Q SCA28 [140]

I705T
c.2167G > A

SPAX5 [140]

V723M SCAR​ [96]
After proteolytic domain E793*

c.2375dupG
Optic atrophy [96]
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exons 15 and 16 are the mutational hotspots for AFG3L2 
for causing SCA28 [23, 102]. AFG3L2 also has selective 
overexpression in the Purkinje cells and many AFG3L2 
dominant mutations as discussed by Di Bella D and cow-
orkers’ results in SCA28 [51, 87]. Y689H substitution in the 
M41 peptidase domain was reported as pathogenic and to 
cause SCA28 [87]. First missense mutation in exon 4 (not 
the mutation hotspot) of an African origin patient, V191I 
[c.571G > A], was identified in a 68-year-old patient [104]. 
But, it could not be identified whether this was a founder 
mutation. A novel heterozygous partial AFG3L2 deletion of 
exons 14 to 16 was reported to cause loss of cerebellar func-
tion with ptosis [105]. The disease mechanism was related 
to ubiquitin and p62 nuclear inclusions and haploinsuffi-
ciency. Thirteen missense mutations of AFG3L2 mostly in 
exon 16 have been identified till date, but cases are rare in 
Western countries [92]. However, all mutations discovered 
and documented so far are mostly in Caucasian populations. 
A novel G671R [c.2011G > C] mutation that was located in 
a highly conserved region of AFG3L2 gene in five patients 
of a Hungarian family showed similar characteristics to pre-
viously identified cases with no cognitive impairment [106] 
and included pathogenic mutations G671R [c.2011G > A] 
and G671W [c.2011G > T] [102, 107]. A rare compound 
heterozygous mutations of AFG3L2, Y616C [c.1847A > G], 
and V723M [c.2167G > A] caused ptosis in his son as well 
as his asymptomatic single heterozygous mutated mother 
[103]. This mutation can act as a pre-diagnostic marker for 
future case detections. Such compound heterozygous muta-
tion adds more to mitochondrial dysfunction both struc-
turally and phenotypically. Heterozygous loss-of-function 
mutations in AFG3L2 cause SCA28 while homozygous mis-
sense mutation Y616C [c.1847A > G] in AFG3L2 causes 
early onset spastic ataxia-neuropathy syndrome also known 
as SPAX5 [23]. p.A484P variant of AFG3L2 segregated 
with STIP1 homology and U-Box containing protein 1 
(STUB1) variant (Y49C) that causes SCA16 and SCA48 
[108]. A Taiwanese patient showing multiple heterozygous 
mutations, i.e., [2167G > A]; [V723M] (c.[1894C > T]; 
[R632*], suffered from sporadic and slow progressive SCA 
[96] and represented a new subtype. Maltecca and co-work-
ers [99] have identified two mutations—homozygous mis-
sense and homozygous null—that caused lethality in mice 
models due to impaired axon development in both CNS and 
PNS delayed myelination, and weak axonal radial growth 
[56]. In Spg7 deficient mice, Emv66 mutants of AFG3L2 
show exacerbating axonopathy and severe neuromuscular 
defects in hetero- and homozygous conditions respectively 
with loss of PCs and parallel fibers [109]. Heterozygous 
P688T [c.2062C > A] mutation at highly conserved site 
in exon 16 in three patients of a family for the first time 
reported non-neuronal skeletal muscle fiber atrophy type I 
along with SCA28 phenotypes [110].

Mutations in Other Ataxias

Interestingly, SCAR mutations cause spastic ataxia-neurop-
athy syndrome or SPAX5 [23]. Purkinje cell-specific dele-
tion of Afg3l2 leads to mitochondrial fragmentation due 
to impaired mitochondrial ribosome assembly and protein 
synthesis [50]. However, ubiquitous AFG3L2 deletions lead 
to delayed myelination causing lack of axonal development 
and a severe neurological phenotype [56].

Tyrosine phosphorylation of paraplegin by AFG3L2 
helps in paraplegin processing and inhibition of this pro-
cessing can cause ROS production [111]. On the contrary, 
the Q688 variant of paraplegin can bypass the tyrosine phos-
phorylation regulation of AFG3L2 [112]. Another type of 
SCAR found by Calandra and co-workers includes two novel 
AFG3L2 heterozygous mutations (W128* and R695G) that 
cause spastic ataxia with unique eye-of-the-tiger pattern that 
can be related to iron deposition and pantothenate kinase-
related neurodegeneration that affects CoA synthesis path-
way [18]. Long-term observation will be required to see the 
development of SCA28 phenotype if any. Yeast homolog 
Yta10 of AFG3L2 is reported to mislocalize during hypoxia 
[113] and triggers the question about the role of AFG3L2 
in the proteostasis of mitochondrial proteins and the onset 
of SCA28.

Heterozygous Y689H and G671W mutations of 
AFG3L2 cause progressive external ophthalmoplegia due 
to somatic mtDNA disbalance affecting fibroblasts and 
muscles of the eye [107]. AFG3L2 was identified as one 
of the brain-expressed longevity genes [114], and further, 
SNPs in AFG3L2 were identified relating to aging [115]. 
Heterozygous R468C mutation along with heterozygous 
SPG7 deletion leads to aberrant OPA1 processing. Since 
OPA1 is involved in mitochondrial fusion, this mutation 
further causes mitochondrial fragmentation. Phenotypic 
characterization is expressed as early-onset optic atrophy 
associated with Parkinsonism (L-Dopa responsive) and 
spastic ataxia [22]. G337E [c.1010G > A] mutation of 
AFG3L2 causes aberrant processing of OPA1 and OMA1 
leading to optic atrophy [116]. Homodimer of AFG3L2 
causes better OPA1 processing and continues this pro-
cess even in the absence of heterodimer with paraplegin 
or presenilins-associated rhomboid-like protein (PARL) 
[117]. Involvement of OPA1 processing with various 
dimer formations of m-AAAs provides flexibility in mito-
chondrial biogenesis in a tissue/ function-specific man-
ner and therefore improves the quality of life [30]. Thus, 
AFG3L2 clearly plays a vital role in the prevention of 
neurodegeneration in the cerebellum by regulating mito-
chondrial proteostasis and restricting apoptosis. More 
investigation is required to understand this mechanism.
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Diagnosis, Management, and Treatment 
of SCA28

Diagnosis and management of cerebellar ataxia needs a multi-
disciplinary approach with neuroimaging, anatomical studies, 
genetic tests, motor tests, and molecular/biochemical studies 
playing crucial roles [85]. Since SCA28 is a slowly progres-
sive, young-adult onset ataxia that in most of the cases may take 
decades to be identified, the diagnosis usually is restricted to a 
proband whose either parent was affected and hence can be diag-
nosed by genetic testing via exome sequencing for the typical 
pathogenic variant as discussed in this review article. These tests 
necessarily need to include multigene panel and comprehensive 
genetic analysis. Till date, exome or genome sequencing is not 
yet available routinely for SCA28 patients [118]. Clinical exome 
sequencing is the most efficient and economical way to diagnose 
the rare pathogenic variants and to discover likely variants of 
AFG3L2 [119]. The presence of the AFG3L2 mutations through 
family history also becomes challenging due to delayed diagnosis 
or the fact that probably it remained undetected due to the early 
demise of the parent [118, 120]. Neuroimaging may sometimes 
show a shrunken cerebellum [118] but mostly show a normal 
neuroimaging in MRI/CT scan [121]. Hence, a keen investigation 
with family history, physical examinations, genetic testing, and 
neuroimaging might be useful in diagnosing this disease. Very 
recently, c.2167G > A; V723M variant is designated as a likely 
pathogenic variant of AFG3L2 that is related to myopathy, respir-
atory chain complex defects, and ataxia [122] in a single patient 
who is also affected by congenital pituitary hormone deficiency 
and deafness due to involvement of other mutated genes as well.

There is a complete lack of treatment for SCA28 pri-
marily because of its slow progression and difficulty in 
timely diagnosis. Hence, it is of utmost importance to 
manage this disorder well with timely interventions when-
ever diagnosed. These interventions include ambulatory 
aids, stretching exercises, and physical therapy; ergonomic 
home adaptations; speech and psychological therapies; 
weight control assessment; and gastronomic feeding—all 
or as many of these as required along with annual assess-
ment [118]. Very recent studies have identified an impor-
tant variant of the nuclear-encoded AFG3L2 with a SNP 
affecting mRNA half-life and associated with exercise 
response phenotypes [123].

Other Clinical Manifestations of AFG3L2

Spastic Ataxia Syndrome (SPAX5)

SPAX5 or spastic ataxia type 5 is a SCAR caused by the 
homozygous recessive missense mutations of AFG3L2. 
This syndrome is an early-onset type with cerebellar 

dysfunction but is characterized by spasticity and epi-
lepsy. Since AFG3L2 mutations affect both homo- and 
hetero-hexamerization of AFG3L2, it includes the sever-
ity of both SCA28 and spastic paraplegic ataxia due to 
the involvement of SPG7 in hetero-hexamerization. 
AFG3L2 dysfunction can severely damage mitochondrial 
functioning causing massive fragmentation and reduced 
calcium uptake [83]. The mutation specifically at Y616C 
[c.1847A > G] of AFG3L2 leads to phenotypically different 
manifestations from SCA28 and causes spastic ataxia [23]. 
However, homozygous mutations such as W128, I216F, 
and I705T also cause SPAX5 and are listed in Table 1, 
and compound heterozygous mutation can cause SPAX5 
too. Compound heterozygous Y616C [c.1847A > G] with 
p.V723M [c.2167G > A] mutation [23] also is reported to 
cause SCAR. SPAX5 manifestation shows a severe reduc-
tion in AFG3L2 expression in a case study with biallelic 
compound heterozygous p.V212Gfs*4 [c.634dupG] with 
p.V723M [c.2167G > A] mutation [124]. The severity of 
this syndrome may surely affect other genes since it is the 
outcome of dysfunction of m-AAA proteases. Homozy-
gous M625I [c.1875G > A] mutation is reported as a rare 
mutation of AFG3L2 related to progressive myoclonus 
epilepsies [125, 126].

Parkinson’s Disease

Unique frameshift AFG3L2 mutation, c.1958dupT in exon 
15, causes mild Parkinsonism with cognitive decline, cer-
ebellar ataxia, bradykinesia, and polyneuropathy [127]. 
The direct relation of this mutation with the phenotype of 
the patient is currently unclear, and this being a case study 
shows a weak association with PD. However, AFG3L2 
haploinsufficiency and surely not the dominant-negative 
effect of missense AFG3L2 mutation reported in SCA28 
is likely the reason for this pathogenesis [127]. AFG3L2 
aids in PINK1 maturation by generating a 52kD pro-
cessed fragment that can localize in IMM and hence may 
indirectly be linked to PD. PINK1, a protein associated 
with the elevation of autophagy, is synthesized in cyto-
sol and interacts with alpha-synuclein [128]. Cofilin, an 
actin-binding protein, mediates PINK1/PARK2-dependent 
mitophagy [126]. PINK1 accumulation due to dysregula-
tion of AFG3L2 and mitochondrial membrane potential 
[129] can affect this process leading to cancer progression. 
PINK1 undergoes a stepwise degradation from cytosol to 
mitochondrial matrix that is controlled by MPP, PARL, 
AFG3L2, and ClpXP respectively [93]. Under stress con-
ditions, PINK1 which is partially cleaved by mitochondrial 
processing peptidase (MPP) is transported to IMM and 
undergoes presenilin-associated rhomboid-like protein 
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(PARL) and AFG3L2-dependent processing forming a 
52 kD fragment [15, 130]. During membrane depolariza-
tion or ATP depletion, the absence of PINK1 cleavage by 
MPP recruits uncleaved PINK1 to the outer mitochondrial 
membrane (OMM). PINK1 further recruits Parkin, a E2 
ubiquitin ligase causing the mitochondrial fragmentation 
of damaged mitochondria [3]. A well-known fact today 
is that the loss-of-function of Parkin leads to PD, both 
due to the absence of PINK1-Parkin interaction and alpha-
synuclein accumulation [131, 132]. Whether AFG3L2 
mutations causing SCA28, SPAX5, or optic atrophy can 
cause additional risk of PD by generating altered PINK1 
cleavage is an intriguing aspect to test. Mendelian disease 
mapping in a family by pedigree analysis must be per-
formed to establish causation. AFG3L2 loss leads to tau 
hyperphosphorylation [8] although the mechanism behind 
its relation to AD is not yet studied. Mutation in PARK8 
gene locus encoding LRRK2 plays a vital role in PD [133].

Mitochondrial Disease

In a case study including a consanguineous family, 
c.1714G > A A572T mutation on AFG3L2 was identified 
in the first-ever exome sequencing analysis to be involved 
in a new mitochondrial phenotype that caused high lactate 
and respiratory chain defects [134]. Cerebellar atrophy was 
noticed in the neuroimaging. In a detailed study, this muta-
tion was seen to cause microcephaly with early onset sei-
zures and involves basal ganglia that are not noticed in other 
mutation types. This has further led to refractory epilepsy 
and death. This study emphasizes that this AFG3L2 mutation 
can be added as a genetic marker along with neuroradio-
logical and biochemical spectrum for a rare mitochondrial 
disease with neurodegenerative phenotype.

Optic Neuropathy and Other Eye Associated Ataxias

Optic neuropathy or dominant optic atrophy (DOA) is a 
dominant and inherited mitochondrial disease majorly 
caused due to mutations in OPA1. The cleavage of this 
protein is dependent on i-AAA YME1L and m-AAAs 
AFG3L2 and paraplegin. SPG7 mutations are more often 
related to this disease. Other mutations include OPA3 [135, 
136], OPA5 [137], and WFS1 [138]. c.1402C > T R468C in 
AFG3L2 was identified as a novel mutation in two patients 
in a family from two generations who additionally had dys-
chromatopsia but no sign of either SCA28 or SPAX5 [9, 13, 
14]. It is possible that these patients may develop cerebel-
lar ataxia later in their life. In that case, this mutation can 
act as a pre-diagnostic marker for SCA28 or SPAX5 and 
surely as a marker for optic neuropathy-related blindness. 
It will also be interesting to find whether this mutation is 

present in any SCA28 or SPAX5-affected patients. Eight 
variants of AFG3L2 responsible for DOA are located in dif-
ferent domains and establish AFG3L2 as a candidate gene 
for DOA detection [139].

Caporali and co-workers performed an exhaustive study 
on the role of AAAs in optic neuropathy where their studies 
showed using both yeast and patient fibroblast that AFG3L2 
mutations indirectly affect OPA1 processing, resulting in 
mitochondrial fragmentation not seen in SCA28 patients. 
This has been proposed as the crucial mechanism behind 
the pathogenicity for the studied variants. It clearly summa-
rized 38 AFG3L2 variants in patient cohorts from their own 
as well as other studies where pathogenic variants related 
to optic neuropathy were clustered in the ATPase domain 
affecting either of the functions related with ATP hydroly-
sis, ATP binding, and substrate interaction. The rest of the 
variants associated with SCA28 and SPAX5 were clustered 
in the proteolytic domain [140]. The patient cohort that was 
studied included 12 different families with familial or spo-
radic mutations and followed for two to five generations to 
understand the genetic mechanism. Mutations of AFG3L2 
related with DOA are varied and include dominant, reces-
sive, and dominant de novo mutations involved in both spo-
radic and familial cases and can be pure or syndromic forms. 
Optic atrophy-12 (OPA12) is an autosomal dominant neu-
rologic disorder caused by AFG3L2 mutation in 18p11.21 
location [140]. A heterozygous AFG3L2 mutation together 
with a homozygous SETX mutation causes AOA2 (ataxia 
with oculomotor apraxia type 2) with myoclonus [141]. This 
further corroborates the potential of AFG3L2 as a prognostic 
and/or diagnostic marker for various mitochondrial diseases 
and neurodegenerative disorders related to aging.

Conclusion

AFG3L2, a AAA protease, is an ATP-dependent proteolytic 
complex which is involved in the mitochondrial quality con-
trol and protein processing. Two isoenzymes are found in 
human AAA protease—(i) a complex made up of paraplegin 
and AFG3L2 which is a hetero-oligomeric complex and (ii) 
a homo oligomeric complex consisting of AFG3L2. Heredi-
tary spastic paraparesis (HSP) is mainly associated with the 
dysfunction of paraplegin, whereas mutation of AFG3L2 is 
involved with primarily causing SCA28. Most of the studies 
imply that AFG3L2 mutations are majorly linked with auto-
somal dominant SCA28, and some mutations are involved 
in developing the SPAX5 or SCAR and optic atrophy. As 
several mutations are reported in exons 15 and 16 repeatedly, 
these exonic regions are considered the hotspots of SCA28 
pathogenesis. Trios studies for genetic analysis are highly 
recommended as routine diagnosis during pregnancy and 
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in infant check-up sessions to enable the early detection of 
the at-risk asymptomatic individuals. Detection of recessive 
mutations in AFG3L2 would be possible only by genetic 
testing for cases like a child born to asymptomatic parents, 
adopted child, paternity issues, and maternity issues in case 
of surrogate motherhood. As AFG3L2 is mainly associated 
with the mitochondrial biogenesis and dynamics, its mal-
function leads to a variety of neurodegenerative disorders. 
The effect of the absence of AAA proteases on the metabolic 
or mitochondrial mechanisms in neuronal dysfunctions is 
poorly studied. This study explores the future prospects of 
AFG3L2, as well as its roles in the development of diseases 
and their therapies. Finding out the molecular basis of the 
pathophysiology of neuronal disorders should be a major 
goal to understand the underlying mechanisms. Hence, more 
studies are required on AFG3L2 and its mutations.
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