
Article https://doi.org/10.1038/s41467-024-48855-4

Toddlers strategically adapt their
information search

Francesco Poli 1,2 , Yi-Lin Li3, Pravallika Naidu3, Rogier B. Mars 1,
Sabine Hunnius1 & Azzurra Ruggeri 4,5,6

Adaptive information seeking is essential for humans to effectively navigate
complex and dynamic environments. Here, we developed a gaze-contingent
eye-tracking paradigm to examine the early emergence of adaptive
information-seeking. Toddlers (N = 60, 18-36 months) and adults (N = 42)
either learnt that an animal was equally likely to be found in any of four
available locations, or that it was most likely to be found in one particular
location. Afterwards, they were given control of a torchlight, which they could
move with their eyes to explore the otherwise pitch-black task environment.
Eye-movement data and Markov models show that, from 24 months of age,
toddlers become more exploratory than adults, and start adapting their
exploratory strategies to the information structure of the task. These results
show that toddlers’ search strategies are more sophisticated than previously
thought, and identify the unique features that distinguish their information
search from adults’.

Humans’ ability to explore is arguably (still) superior to any other form
of artificial1–3 or natural4 intelligence. What confers an advantage to
human exploration may be the ability to entertain a multitude of
exploratory strategies and select the one that promises to maximize
learning given the specific situation presented5,6—which has been
referred to as ecological active learning competence7. This ability is
fundamental to acquire information efficiently and effectively8,9, to
build complex systems of knowledge10,11, and to shape the world
around us in innovative ways12. Adaptive information-seeking is espe-
cially crucial during the first years of life, when children know the least
and need to learn the most. However, it is still unknown whether the
drastic learning that occurs in the very early stages of life is supported
by this adaptive information-seeking competence.

Current evidence on whether adaptive information search is
alreadypresent fromearly in life is conflicting. Some studies have shown
that young children cannot optimally select the best exploration strat-
egy when multiple options are available13,14. For example, when given a
clue that could narrow their search (e.g., empty cup), toddlers do not

preferentially choose the one cup that offers a guaranteed reward14.
However, other studies have documented early signs of adaptive search
in infants and toddlers. For example, infants are more likely to solicit
information from a knowledgeable adult compared to an ignorant or
unreliable one15,16. Similarly, they rely on social partners when presented
with cognitively demanding tasks, but tackle them on their own
otherwise17. After failing to activate a toy, 16-month-old infantswhowere
made to believe that the failurewas due to their own inability weremore
likely to seek for help, while infants who were made to believe that
the toy was malfunctioning were more likely to test the same behavior
on other toys18. Relatedly, after observing an object unexpectedly pass
through a wall, infants engaged in behaviors directed at testing their
solidity (i.e., banging the object on a table)19. Taken together, these
studies show that early search behavior is not rigid, as different envir-
onments elicit different responses. However, these between-subjects
designs do not examine whether toddlers can dynamically adapt to
changes in the environment, flexibly switching between different search
strategies depending on the specific characteristics of the task at hand.
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So far, this adaptive competence has been investigated only in
older children and adults, relying on tasks that require participants to
tailor their search strategies to the changing characteristics of the
environment7. For example, information search can target specific
hypotheses (e.g., “Is it the penguin?” when trying to find out what
animal can endure the lowest temperatures) or narrowdown the range
of hypotheses under consideration (e.g., by asking “Does it have
wings?”). From 3 years of age, children flexibly switch between dif-
ferent types of questions depending on the context5,20, indicating that
they are indeed able to adjust their exploration strategies to the sta-
tistical structure of a task.

In this paper, we introduce an experimental paradigm that allows
us to investigate how toddlers adapt their exploration strategies to the
characteristics of given environments. We devised a gaze-contingent

eye-tracking task that allowed toddlers between 18 and 36 months of
age, as well as adults, to actively and dynamically explore the envir-
onment presented on the screen (Fig. 1A). Although previous studies
have already exploited gaze-contingent paradigms to probe infants’
cognitive abilities withminimal task and verbal demands21,22, this study
allows toddlers to actively and independently control their explora-
tion. During training (Fig. 1B), participants either learnt that an animal
was equally likely to be found in any of four available locations (Uni-
form condition), or that it wasmost likely to be found in one particular
location (Skewed condition). At test, they were given control of a gaze-
contingent “torchlight”, which they could move with their eyes to
actively explore the otherwise pitch-black task environment to find the
hidden animal (Fig. 1C). An informative cue (i.e., a treasure chest)
reliably predicted the location of the target animal. In the Uniform
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Fig. 1 | The gaze-contingent torchlight task. A Participants were presented with
two within-subject conditions, Skewed and Uniform, each consisting of two blocks
(numbered 1–4) composed of training and test trials. Each trial had a specific level
of darkness (a qualitative indication is reported by the squares on the right).
BDuring the training phase, participants observed 8 trials where an animal jumped
out of a treasure chest, moved upward, and disappeared at the top of the screen in
one of four differently colored areas. The animal then briefly reappeared at its
disappearance location. Throughout training, the screen gradually became darker
to familiarize participants with the gaze-contingent torchlight (the lighter circle
shows an example of the torchlight). In the Skewed condition, the animal con-
sistently appeared in the same colored area. In the Uniform condition, the animal
appeared in a different colored area each time. In both conditions, the treasure
chest always reliably indicated the target location. C At test, the screen was com-
pletely dark, and participants could only hear the animal jumping out of the
treasure chest. Theywere then given up to 10 s to search for the target animal using

the torchlight (i.e., the search phase). Since they knew the animal appeared only
briefly, participantsweremotivated tofind its hiding locationbefore it appeared, so
as not to miss it. In the Skewed condition, the animal appeared as soon as parti-
cipants identified its location; in the Uniform condition, the animal appeared only
after participants had found the cue (i.e., the treasure chest) and used that infor-
mation to identify the correct target location. D Examples of the most efficient
search in the Skewed (left) andUniform (right) conditions. In the Skewedcondition,
the first look is already located within the correct portion of the screen, indicating
that the participant exploited the information structure acquired during familiar-
ization to correctly anticipate the target location. In the Uniform condition, the
participant engages inmore scanning behavior to find the cue, which informs them
about the location of the target. [Treasure chest images with copyright from
Babysofja via Creative Market and animal images freely available from Prora via
Pixabay].
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condition, participants did not know where the animal was hidden.
Hence, the most efficient search strategy consisted in scanning across
the different locations to find the cue, and in using this information to
constrain their subsequent search and identify the correct target
location (Fig. 1D). In the Skewed condition, where the animal always
hid in the same location on all trials, participants had collected suffi-
cient statistical information tomake an informed prediction about the
most likely target location, and could direct their information search
accordingly.

Here, we find that both toddlers’ and adults’ exploratory patterns
varied across conditions, thus demonstrating adaptive exploration
skills. Specifically, participants in the Uniform condition engaged in
more visual scanning to find the informative cue, and devised more
complex search patterns (as predicted by a reinforcement-learning
model, see “Results” section). Conversely, in the Skewed condition,
participants produced fewer scanning eye-movements and adopted
simpler search patterns. Also, in the Skewed condition, participants
engaged more in anticipatory looks to the most likely cue and target
location, by gazing towards the correct portion of the screen even
before the search phase had started. Overall, this paradigm allowed us
to examine 18- to 36-month-old toddlers’ active search for information,
capturing the emergence of active and adaptive exploration and

tracing its early development into the advanced search strategies that
we can observe later in childhood and adulthood.

Results
Toddlers and adults adapt their search to the information
structure of the environment
Both toddlers and adults performed the task successfully, correctly
identifying the location of the hidden animal in both conditions (see
“Performance” in the “Methods” section). Crucially, they adapted their
exploratory strategy to the different information structures of the task
(i.e., the different likelihood distributions associated with the Skewed
and Uniform conditions). In particular, as age increased, toddlers
engaged in more scanning behavior, searchingmore for the cue in the
Uniform compared to the Skewed condition (z = 3.29, β =0.04, 95% CI
[0.01, 0.06], p <0.001) (Fig. 2A). The difference between Uniform and
Skewed conditions in the number of scanning movements emerged
from approximately 24 months of age (24.08 months, t(748) = 2.67,
β = 0.20, 95% CI [0.05, 0.34], p =0.008) (Fig. 2B), indicating that tod-
dlers were seeking information adaptively from 2 years of age onward.

When comparing toddlers’ and adults’ scanning behavior
(Fig. 2C), we found that adults performed more scanning movements
than toddlers in both conditions (Uniform: t(1334) = 6.60, β =0.38,

C

BA

Age (Months)Age (Months)

Not significant

Significant

Uniform

Skewed

D
iff

er
en

ce
 b

et
w

ee
n 

co
nd

iti
on

s

N
um

be
r

N
um

be
r

DScanning Movements

Scanning Movements

Anticipatory Looks

Fig. 2 | Scanning movements and anticipatory looks in toddlers and adults.
A Predictive estimates of the number of scanning movements across age show an
interaction between age and condition. Dots indicate themean number of trials for
each toddler, shaded areas indicate the standarderror.B Johnson-Neyman intervals
show that the difference between conditions is significant from 24 months of age
onward. C Predictive means and standard errors for the number of scanning
movements show that both adults and toddlers performed more scanning

movements in the Uniform condition compared to the Skewed condition. Points
show the distribution of the data (jittered). Vertical lines indicate the standard
error. D Predictive means and standard errors for the percentage of correct
anticipatory looks show that both adults and toddlers producedmore anticipatory
looks in the Skewed condition compared to theUniformcondition. Points show the
distribution of the data (jittered). Vertical lines indicate the standard error.
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SE = 0.06, p < 0.001; Skewed: t(1334) = 3.10, β =0.21, SE = 0.07,
p =0.011), but both groups showed a comparable pattern of results
with more scanning movements in the Uniform condition (z = 9.59,
β = 0.48, 95% CI [0.38, 0.58], p <0.001). This replicates previous evi-
dence reporting adaptive behavior in school-age children and adults9,
and validates our measure of adaptive behavior, thus strengthening
the results obtained with toddlers.

Following previous work23, we analyzed whether participants
performed anticipatory looks (i.e., looks before the start of the search
phase) onto the correct portion of the screen (i.e., column). Since
model comparison showed that toddlers’ age (in months) did not
improve model fit (see “Methods” section), we directly compared
toddlers’ and adults’ anticipatory looks across conditions (Fig. 2D).
Adults and toddlers showed a comparable pattern of results, with
more anticipatory looks in the Skewed compared to the Uniform
condition (Adults: t(1459) = −8.09, β = −1.55, SE = 0.19, p <0.001; Tod-
dlers: t(1459) = −4.28, β = −0.72, SE = 0.17, p < 0.001).

Taken together, these findings indicate that both toddlers and
adults adapted their visual search strategies to the information struc-
ture of the search space. However, the increased scanning behavior in
theUniformconditionmight reflect randomsearchdriven by a general
state of confusion, rather than an adaptive response. We addressed
this concern by using Markov models, which allowed us to test parti-
cipants’ performance against the most effective strategy and random
behavior.

Toddlers and adults devise more complex exploratory patterns
when the environment is less predictable
To testwhether participants learned toflexibly adjust their exploration
across conditions, we pitted participants’ exploratory eye-movements
against the behavior of a reinforcement learningmodel. Specifically, in
two sets of simulations, the model was introduced to either the
Skewed or the Uniform condition, and learned how to efficiently
search the target through trial and error. These simulations (see
“Methods” section and Fig. 3c) indicated that more predictable envir-
onments (i.e., the Skewed condition) are easier to learn and should
result in simpler patterns of information search, as the location of the
target is fully predictable without the aid of the cue. Conversely, less
predictable environments (i.e., the Uniform condition) are harder to
learn, and call for more complex patterns of information search,
because they require to engage in a broader exploration directed at
finding the cue. We additionally defined a random search pattern,
which consists of stochastic eye-movements that are completely
independent of where the cue and the target are located. Hence, these
movements result in randomtransitions fromany location to anyother
in a completely unpredictable manner, thus corresponding to the
highest possible level of complexity.

After simulating how efficient search patterns can be learned (as
well as a random search pattern) with a reinforcement-learningmodel,
we estimated the complexity of these patterns using Markov models.
Markov models allow us to compute a transitional probability matrix
which specifies the probability to go from a given location (i.e., state)
on the screen to any other location (Fig. 3A, B; see “Methods” section
for details). More complex exploratory patterns result is more com-
plex transitional probability matrices, as indexed by their entropy.
Indeed, we find that random search is the most complex (log-
entropy = 2.77), followed by the most efficient search for the uniform
condition (log-entropy = 2.46), while efficient search for the Skewed
condition is the least complex (log-entropy = 2.34).

After computing the complexity of the most efficient search
patterns and the random search pattern, we fitted two distinct Markov
models for Skewed and Uniform conditions, separately for three age
groups: toddlers below 24 months of age (for whom we did not find
statistically significant evidence of adaptive behavior from the beha-
vioral analyses, N = 14), toddlers above 24 months of age (N = 46), and

adults (N = 42). We obtained six transitional probability matrices that
specified the exploratory patterns of each condition for each age
group (Fig. 3B). To obtain a measure of the complexity of the
exploratory patterns, we computed the entropy of the transitional
probability matrices.

We compared participants’ performance to themost efficient and
random search patterns (Fig. 3D). For the Skewed condition, we found
that the exploratory patterns of both adults and older toddlers were
more complex than required by the most efficient search (model log-
entropy = 2.34; adults: mean log-entropy = 2.413, 95% CI = [2.403,
2.423]; toddlers: mean log-entropy = 2.455, 95% CI = [2.446, 2.465]).
Similarly, for the Uniform condition, the complexity of the exploratory
pattern of adults and older toddlers weremore complex than required
by the most efficient search (model log-entropy: 2.46, adults: mean
log-entropy = 2.485, 95% CI = [2.475, 2.495], toddlers: mean log-
entropy = 2.524, 95% CI = [2.514, 2.534]). In all cases, participants’ pat-
terns were far more systematic than random search (log-
entropy = 2.77).

We found that both adults and older toddlers produced more
complex patterns when searching for information in the Uniform
compared to the Skewed condition (adults: z = 10.32, β =0.07, SE =
0.01, p <0.001; older toddlers: z = 9.83, β =0.07, SE = 0.01, p < 0.001),
while younger toddlers showed the opposite effect (z = −3.51,
β = −0.02, SE = 0.01, p = 0.006) and overall produced far simpler
exploration patterns than adults (z = 39.69, β = 0.27, SE = 0.01,
p <0.001) and older toddlers (z = 45.26, β =0.32, SE = 0.01, p <0.001).
Although the difference between conditions was of the same magni-
tude for older toddlers and adults, older toddlers produced more
complex patterns than adults in both conditions (Uniform: z = 5.57,
β = 0.04, SE = 0.01, p < 0.001; Skewed: z = 6.07, β =0.04, SE = 0.01,
p <0.001).

Finally, we tested for qualitative differences between adults’ and
toddlers’ search patterns. Specifically, we analyzed the differences in
transitional probability matrices between adults and toddlers with a
logistic regression (Fig. 4). This allowed us to show that toddlers dis-
played an increased exploration of the cue locations compared to
adults (z = 2.86, β = 1.66, SE = 0.58, p =0.004), indicating an enhanced
tendency to seek information.

Overall, these results show that, from 24 months of age, toddlers
increase the complexity of their exploration search when the envir-
onment is less predictable (i.e., in the Uniform condition)—just like
adults do—thus displaying adaptive search behavior. At the same time,
they devise more exploratory patterns than adults, systematically
targeting their exploration toward the relevant portions of the screen
(i.e., the cue locations). This shows the unique traits that distinguish
toddlers’ information search from adults’.

Discussion
Adaptiveness is a fundamental aspect of human exploratory
behavior24. It allows us to tailor our information-seeking and learning
strategies to the ever-changing constraints and characteristics of the
world7,25, maximizing learning success and effectiveness while opti-
mizing the deployment of cognitive resources26. In the current work,
we showhow the ability to seek information adaptively emerges across
the first years of life.We used a gaze-contingent task in which 18- to 36-
month-old toddlers and adults controlled a torchlight using their gaze.
Compared to previous studies20, this paradigm allowed us to test
active learning abilities inmuch younger children, and to look atmore
fine-grained, model-based measures of information search. We found
that active information search is already successful at 18 months of
age, as indicated by toddlers’ ability to find the target by exploiting the
informative cue. Moreover, we found that adaptiveness in toddlers’
information search emerged at the age of 24 months, as suggested by
the increase in scanning behavior in the Uniform condition, and the
increase in anticipatory looks in the Skewed condition.
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Fig. 3 | Results from the Markov models. A The Markov model computes the
probability of transitioning from each state (i.e., the 8 locations on the screen,
indicatedherewith numbers from0 to 7) to any other state.BThe transitionmatrix
is the output of the Markov model, after observing the data. The data was divided
by condition (Skewed vs. Uniform) and age (younger toddlers, older toddlers, and
adults), resulting in six transitionmatrices. Ameasure of entropywas computed for
each matrix, thus quantifying the complexity of the exploratory patterns. C To
better assess participants’ performance, we compared it to a reinforcement-
learning model that learned to find the target animal in the Skewed and Uniform

conditions. In the Skewed condition, the model learned that locations close in
space to the target location (e.g., locations 1 and 4, when the target appears in
location 0) are valuable, as they directly lead to the target. In the Uniform condi-
tion, themodel learned that the cue locations (in purple) are valuable, as theymight
contain information that leads to the target. D Complexity of the exploration
patterns for participants (in colours) and for the reinforcement-learning model
(dashed grey lines). Complexity was higher for the Uniform compared to the
Skewed condition for adults and older toddlers, but not for younger toddlers.
Shaded areas indicate the standard error.
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Previous research indicates that children under the age of
3 struggle to effectively narrow down their search for a hidden reward
among multiple options13,14. For instance, in a recent study14, toddlers
were presented with four cups (A, B, C, and D) arranged in two pairs (A
and B versus C andD). One cup in eachpair contained a hidden sticker,
but the specific cup was unknown. When one cup was revealed to be
empty (e.g., cup B), toddlers should have realized thatfinding a sticker
in cup A was certain, while finding one in cup C or D was only possible.
However, their behavior did not demonstrate a preference for cup A.
Although similar in structure to our task, these studies differed in two
important ways. First, success in previous tasks required logical abil-
ities that relied on abstract, combinatorial thought, while the current
task required probabilistic reasoning about statistical regularities—an
ability that emerges earlier in infancy27; Second, the current task does
not involve any explicit choice or action planning besides eye move-
ments, while previous studies required both. These simplifications
allowed us to capture the early emergence of adaptive information
seeking, tapping as little as possible into other competences.

Although previous studies identified simpler forms of active
learning from early infancy16,28–31, the developmental change in adap-
tive information-seeking across the first years of life was still poorly
understood. By examining a crucial period in children’s cognitive
development, the current researchnot only reveals toddlers’ advanced
exploratory strategies, but also the dynamics of their developmental
change. This developmental changemight dependonmultiple factors.
First, recent findings show that infants possess the ability to exploit
past experiences to discover better learning strategies32,33. After 8-
month-old infants learned thatmultiple environments shared the same
probabilistic structure, they were able to rely on this knowledge to
quickly identify informative stimuli in new environments32. In this
sense, adaptive information-seeking competence might be gradually
learned after failing with simpler, more rigid exploration strategies,
such as random or hypothesis-probing exploration. Second, cognitive
flexibility is still drastically developing across toddlerhood34,35. A key
challenge for younger children is resolving how to respond flexibly
when a task presents conflicting information, such as conflicting rules
or bivalent stimuli35. These skills develop across the second and third
year of life36, and they might be at the foundation of toddlers’ emer-
ging ability to flexibly switch information-seeking strategy based on
the different probabilistic structure of each environment.

Finally, the results of theMarkovmodels show that, by 24months
of age, toddlers demonstrate a sophisticated, adult-like ability to
search for information adaptively, but they also display unique learn-
ing characteristics. The exploration patterns detected by the Markov

models indicate that 24-to-36-month-old toddlers’ exploration was
driven to the informative cue locations more so than adults’ explora-
tion, demonstrating that toddlers displayed a greater tendency
towards gaining information. Moreover, toddlers increased the com-
plexity of their exploratory patterns more than adults, and more than
expected from the theoretical estimates of efficient behavior.
Although this might be considered a bug or faulty process, it emerges
as a feature when considering the ecological37 and bounded6,38 nature
of the human mind. In fact, in toddlers’ propensity to incur unneces-
sary costs might reside the unique opportunity to discover unex-
pected information and generate ex-novo solutions39,40. These results
call for further research to test the distinctive drives of young chil-
dren’s exploration and hypothesis generation.

Methods
Participants
To compute the sample size, we simulated synthetic data using
information frompilot data (N = 5) and data from a studywith a similar
design and population (N = 37), as well as theoretical constraints (code
is available at https://osf.io/rfx5u/). We simulated the expected results
1000 times and identified that power above 80% was expected to be
reached with a sample of toddlers ≥59 (Mean power = 86.60%, CI =
[84.33, 88.65]) and a sample of adults ≥28 (mean power = 85.00%,
CI = [82.63, 87.16]) due to reduced noise in adult data. Forty-two
adults (M = 37.02 years, SD = 16.77, range = 18 − 73 years, F = 24,M = 18)
with normal to corrected vision and no mobility disorders as
prerequisites, as well as 60 toddlers (mean = 27.36 months, SD =0.37,
range = 17.8–35.8 months, F = 35, M = 25) were recruited from the
online database of the Max Planck Institute for Human Development,
Berlin, Germany. Informed consentwasobtained fromadults and from
children’s legal guardians prior to participation. Participating adults
and families received €10 for their participation. The study was
approvedby the local ethical committee of theMaxPlanck Institute for
Human Development, Berlin, Germany.

Design
Participants were presented with two experimental conditions in a
within-subjects design (order of conditions counterbalanced). Each
condition included two blocks composed of eight training trials and
four test trials (Fig. 1). In every trial (training and test), the screen was
divided into four columns of different colors (blue, orange, green, and
yellow), and a treasure chest was located at the bottom of one of the
four columns. In the trials of the Skewed condition, the treasure chest
was always located in the same column (although this location was

BA
*

C

Fig. 4 | Differences between toddlers’ and adults’ search patterns.
A Comparison between the transition matrices of adults and toddlers, where red
indicates transitions (i.e., eyemovements fromone location to the other) that were
more frequent in toddlers, and green indicates transitions that weremore frequent
in adults. B The overall frequencies of transitions that were more likely to be

performed by toddlers and adults. C A logistic regression showed that adults were
more exploitative (i.e., more likely to make a transition to a target area), while
toddlers were more exploratory (i.e., more likely to make a transition to the cue
areas). * indicates a p-value < 0.001 for a two-tailed z test.
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different in the two blocks). In the Uniform condition, the treasure
chest was located in a different column on every trial, in a pseudo-
randomized order. Each of the four blocks featured a different animal
(elephant, giraffe, zebra, and lion). For an illustration of the paradigm,
see Supplementary Movie 1.

Procedure
Each trial started when participants first looked at the screen. In the
training trials, the treasure chest openedproducing a sound, an animal
jumped out of the treasure chest accompanied by jumping noises, and
then jumped all the way up, disappearing from the upper part of the
screen. This hiding sequenceall happenedwithin the samecolumnand
lasted 4 s. After an inter-stimulus interval (ISI) of 3.5 s, the animal
reappeared from the same location where it had disappeared, waved,
and smiled, accompaniedby a happy sound, before disappearing again
(length of the reappearing sequence: 1.5 s). If participants were still
looking at the screen after the end of the trial, a new trial was imme-
diately played by the experimenter. Across the 8 training trials within a
block, the luminosity of the screen diminished: The screen got darker
trial after trial, although even in the last training trial all the elements
and colors were still visible. On each trial, after the hiding sequence
(i.e., when the animal disappeared), a circular area on the screen
(diameter = 200px) turned to full luminosity, creating the impression
of a torchlight. Themovement of this torchlight was contingent to the
gaze of the participants (i.e., the area of the screen where participants
were foveating turned to maximal luminosity), and participants could
move the torchlight around with their eyes to explore the screen. The
torchlight remained on the screen during the ISI and during the
reappearance sequence, until the end of the trial.

Test trials were identical to training trials, except for two key
differences. First, the screen was now pitch black. Participants could
still hear the sounds accompanying the hiding sequence (i.e., the
treasure chest opening and the animal jumping), but they could not
see anything. Second, the duration of the ISI was contingent to the
participants’ gaze. In the Skewed condition test trials, the reappearing
sequence did not start until (and unless) participants fixated on the
correct target location for a minimum of 200ms. In the Uniform
condition test trials, the reappearing sequence did not start until (and
unless) participantsfixated the correct target location after havingfirst
foveated on the cue (i.e., the treasure chest) for a minimum of 150ms.
With these criteria, we made sure that participants in the test trials of
the Uniform condition found the target animal only by applying the
correct exploratory strategy (i.e., finding the cue first), and not by
chance. If the criteria were not met after 10 s, the sound associated
with the reappearing sequence was played, but the sequence was not
shownon the screen. In thisway, we communicated to the participants
that the trial was over, and that they were not successful in finding the
animal.

During familiarization trials, the screen was always visible,
although it became increasingly darker. Thus, it was always possible to
track the location of the target animal without the need to rely on the
informative cue. However, during test trials, where the screen was
completely dark, participants could not rely on tracking the animal
anymore. In the Skewed condition, they could use the previously-
observed evidence to predict its most likely location. In the Uniform
condition, finding the animal required scanning across cue locations.

Familiarization and calibration
Before the study began, the experimenter engaged the participating
toddlers in a short play session to familiarize them with the lab
environment. Both toddlers and adults were positioned approximately
60 cm away from the screen. Toddlers were seated on the caregiver’s
lap or on a high chair, with the caregiver sitting next to them. A Tobii
Eye-tracking device (model: IS4 Large peripheral) was positioned
below a 24” screen, and a webcam was placed above the monitor to

record the sessions. Black curtains covered the table on which the
monitor was placed, as well as the wall behind it.

First, participants performed a 3-point calibration. For toddlers,
caregivers were instructed not to look at the screen. In case toddlers
looked away from the screen during calibration, the experimenter
guided their attention back to the screen. After calibration, the study
started. During toddlers’ first training trial of the first block, at the end
of the hiding sequence (i.e., when the animal hid), the experiment said:
“Where is the elephant?Canyou search for itwith your eyes?” and after
a few trials, the experimenter said: “Oh, it gets darker, but you can
use your eyes like a torchlight” or “Oh, it gets darker, but when
you look you can lighten it up.” The level of the experimenter’s
engagement depended on the child’s attention and responsiveness.
For adults, instructions were the following: “Once I start the game, you
will see different animals jumping out from the treasure chests and
hiding on the top of the screen. All you have to do is find these hidden
animals.”

The study was programmed in Python (version 3.6) and a con-
nection to the eye-tracker was established via Tobii research (Tobii Pro
SDK). Code for running the study and stimuli is available online:
https://osf.io/rfx5u/.

Analysis
Model comparison. Four dependent variableswere extracted for each
test trial from the raweye-trackingdata: (1) A yes-no variable specifying
whether participants successfully found the target during the search
phase of each trial (i.e., successful search, mean =0.43); (2) The time
(in seconds) that participants employed to correctly identify the target
(mean= 3.09, range = [1.22, 10.49]); (3) The number of scanning eye-
movements between the different columns during the search phase
(i.e., scanning movements, mean= 2.72, range = [0; 19]); (4) A yes-no
variable specifying whether participants were already looking at the
correct column when the torchlight appeared on screen (i.e., antici-
patory looks, mean=0.30).

For the regressionmodels, we used the bam function of themgcv
package in R. On toddlers’ data, a comparisonwas performed between
4 models: (1) a model including only the main effect of experimental
condition (Skewed vs Uniform); (2) a model additionally including the
main effect of age; (3) a model additionally including the interaction
between condition and age; (4) A null model with no predictors. All
models included trial number, block number, subject number, and
presentation order of the conditions as random effects. Successful
search and anticipatory looks were analyzed with logisticmodels, time
to the target was analyzed with linear models, and scanning move-
ments were analyzed with Poisson models. The goodness of fit of the
models was evaluated with AIC as it is reported in Table 1. Only the
best-fitting model was reported and interpreted.

To compare toddlers’ and adults’ data, the regression model
included the main effects of experimental condition (Skewed vs Uni-
form), age group (Toddlers vs Adults) and their interaction. Random
effects for trial number, block number, participant number, and order
of presentation of the conditions were added. Thismodel was superior
to null models including only the random effects (successful search:
AIC = 1204 vs AIC = 1394; time to target: AIC= 1026 vs AIC = 1123;
scanning movements: AIC = 6849 vs AIC= 7008; anticipatory looks:
AIC = 1659 vs AIC = 1760).

Performance results (successful search and time to target) are
reported below, while results for scanning movements and antici-
patory looks are reported in the main paper. All tests were two-tailed.
Data always met the assumptions of the statistical tests used.

Performance. The best-fitting model of toddlers’ performance was
generalized logistic regression where successful search on each test
trial (yes/no)was predictedby condition (Skewed vs.Uniform) and age
(inmonths), with participant number, trial number, blocknumber, and
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condition order as random effects.We find that toddlers’ performance
was above zero in both conditions (z = −4.68, β = −3.00, 95% CI [−4.26,
−1.74], p <0.001), and that they performed better in the Skewed
compared to the Uniform condition (z = 5.79, β = 1.13, 95% CI [0.75,
1.52], p <0.001). Therewas no significant effect of age on performance
(z = 1.50, β =0.03, 95% CI [−0.01, 0.08], p =0.135).

When comparing toddlers’ and adults’ performance across con-
ditions, post-hoc tests (Tukey method) were implemented with the
emmeanspackage inR. They showed that adults performedbetter than
toddlers in both conditions (Uniform: t(1361) = 12.20, β = 2.56, SE =
0.21, p <0.001; Skewed: t(1361) = 13.48, β = 4.41, SE = 0.33, p < 0.001),
but they showed a comparable pattern of results, with better perfor-
mance in the Skewed condition than in the Uniform condition
(t(1361) = −9.09, β = −3.01, SE = 0.33, p < 0.001).

When analyzing the time employed to find the target, only trials in
which the target was successfully found were included in this analysis.
The model comparison showed that toddlers’ age (in months) did not
improve model fit (Table 1). Hence, we directly report the results of a
generalized linear model with condition (Skewed vs. Uniform), age
group (Toddlers vs. Adults), and their interaction as independent
variables, and participant number, trial number, block number, and
condition order as random effects. With post-hoc tests (Tukey
method),we found thatboth toddlers (t(563) = 4.48, β = 0.50, SE = 0.11,
p <0.001) and adults (t(563) = 7.18, β =0.39, SE = 0.05, p < 0.001) were
faster in the Skewed condition.

Reinforcement-learning model. We used a reinforcement-learning
model to simulate how the most efficient search patterns could be
learned in the Skewed and Uniform conditions. We define S as the set
of 8 discrete spatial states on the screen (i.e., the locations, or AOIs),
with the particular neighborhood structure reflecting the spatial con-
figuration (Fig. 3A). Specifically, we denote S = {0, 1, 2, 3, 4, 5, 6, 7}. From
each state s in S, the set of available actionsA(s) corresponds tomoving
to a neighboring state. The neighbors for each state are predefined
based on the spatial configuration.

The learning process is modeled through Q-Learning, utilizing a
3-dimensional Q-tableQ, indexed by s, a, cwhere s is the state, a is the
action, and c is the cue to the target. Assuming that the model is
motivated by finding the target (i.e., the target is rewarding), the
update rule for Q is:

Q s,a,cð Þ=Q s,a,cð Þ+α r + γmaxa0Q ðs0,a0,cÞ � Q s,a,cð Þ� � ð1Þ

Here r is whether the target (i.e., reward) is observed, α is the learning
rate, and γ is the discount factor. The term maxa0Qðs0,a0,cÞ represents
the maximum Q-value for the next state s’, considering all possible
actions a’. After updating theQ-table, the agent takes the next step to a
new state s0 following an ε-greedy strategy. Specifically, the agent acts
to maximize the expected Q-value 50% of the times, and explores
randomly the remaining 50% of the times (i.e., ε =0.5).

Importantly, the reward r is received based on the following
conditions: In the Skewed condition, r = 1when the agent transitions to
the predetermined target state, and r =0 otherwise. In the Uniform
condition, r = 1 only if the agent visits the cue state c before transi-
tioning to the target state. If this condition is not met, r =0. Hence,
visiting the cue functions as a flag, determining whether the sub-
sequent reward (i.e. observing the target) will be obtained when vis-
iting the target state. This aspect makes the reinforcement-learning
model non-Markovian, as future steps depend on the past (i.e., whe-
ther the cue state was visited).

Q-values are updated after each step based on the reward
received and the expected future rewards (which are a function of the
Q-values of the next state). The updating formula inherently accounts
for the delayed nature of the rewardbecause it propagates the value of
future rewards back to earlier states. In the uniform condition, the
agent has no initial knowledge of the importance of the cue. However,
through exploration, it occasionally visits the cue and then the target,
receiving a reward. The Q-learning algorithm updates the Q-values to
reflect this: the value of actions leading to the cue (when followed by
actions leading to the target) increases. Over time, as the agent
experiences more such successful sequences, the Q-values for actions
leading to the cue state increase further, reflecting its importance in
obtaining future rewards.

To determine the values of α and γ that supported the most
efficient search, we performed a grid-search algorithm across values of
α (in the range from 0 to 1) and γ (in the range from 0.5 to 1). Speci-
fically, we trained eachmodel over 300episodes. For each episode, the
state s, action a, and cue c are initialized randomly from their respec-
tive domains. After training, the Q-values were fixed, such that no
additional updating was possible, and we tested the model’s ability to
identify the target on 1000 additional episodes. We evaluated the
model performance in terms of number of steps required to identify
the target, where a lower number of steps indicates the ability to
successfully identify the target in a shorter period of time. The most
efficient search was achieved by the model with parameter values
α = 0.12 and γ = .83, with a mean number of 6.7 steps taken to find the
target, which was 3.4 steps lesser than the average performance
(10.1 steps).

We extracted the states visited by the most efficient model for
both the Skewed and Uniform condition over the training episodes.
These sequences of states indicate the model’s exploration patterns,
which are then compared to the participants’ exploration patterns via
Markov models. We included all episodes starting from the initial
learning phase (in which the model is still unaware of the environ-
mental structure) until the endof training (when themodel has learned
to navigate the environment successfully). This allowed us to focus on
the episodes in which learning was occurring, making the results more
comparable to data from humans, who also had to learn how to navi-
gate the dark environments.

Markov models. The Markov model is a probabilistic model that
handles sequential data by assuming that each observation is depen-
dent solely on the current state of a discrete variable that evolves over
time (i.e., as a Markov chain41). The Markov model is characterized by
the number of states and transition probabilities, which determine the
likelihood of transitioning from one state to another. Markov models
were fitted on the sequences of eye movements to the AOIs on the
screen. Specifically, four sequences of AOIs were obtained from the
raw data, one for each age group (toddlers and adults) and condition
(Skewed vs Uniform; i.e., 2×2 design). We ran eachMarkov model with
30 different initializations and number of iterations using the ‘Multi-
nomialHMM’ function of the hmmlearn Python package, and fixing the
emission matrix to predetermined values, such that each of the 8
locations on the screen corresponded to one state of the Markov

Table 1 | AIC scores of the regression models for successful
search and scanning movements

Success-
ful search

Time to
target

Scanning
movements

Antici-
patory
looks

Model AIC ΔAIC AIC ΔAIC AIC ΔAIC AIC ΔAIC

Null 790 608 3917 979

Condition 756 34 593a 15 3876 41 962a 27

Condition + age 755a 35 595 13 3864 53 966 23

Conditiona age 757 33 597 11 3853a 64 968 21

ΔAIC is computed as the difference from the null model.
aIndicates the best-fitting models.
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model. This returned 30 different estimations of transitional prob-
abilities for each of the four datasets. For eachof these estimations, we
computed their entropy according to the formula:

H Pð Þ= �
X

i, j2V
Pi,j logðPi, jÞ ð2Þ

where the sum runs over all pairs i,j of vertices V between the states of
the transition probability matrix P.

We used the entropy estimates as dependent variable in a linear
model with age group, condition, and their interaction as predictors,
and we compared the model to a null model that did not include any
predictor. We reported results from the full model (AIC = 127), as it
performed better than then null model (AIC = 278).

To compute the entropy of the most efficient search for the
Skewed and Uniform condition, we used the sequence of states visited
by the reinforcement-learning model as input for the Markov models.
Again, the complexity of the most efficient search was computed by
taking the entropy of the transitional probability matrix of themodel’s
exploration patterns, separately for Skewed and Uniform condition.
The complexity of random search was simply computed by taking the
entropyof a transitional probabilitymatrix inwhichall transitionswere
equally likely (i.e., 12.5%).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data can be found on OSF: https://osf.io/rfx5u/42.

Code availability
Code for the task implementation, statistical analyses, and computa-
tional modeling can be found on OSF: https://osf.io/rfx5u/.
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