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Immuno-oncologic profiling of pediatric
brain tumors reveals major clinical
significance of the tumor immune
microenvironment

Adrian B. Levine1,2,3,4,10, Liana Nobre5,6,10, Anirban Das1,7, Scott Milos1,
Vanessa Bianchi1, Monique Johnson1, Nicholas R. Fernandez 1, Lucie Stengs1,
Scott Ryall1,2, Michelle Ku1, Mansuba Rana1, Benjamin Laxer1, Javal Sheth1,
Stefanie-Grace Sbergio1,2, Ivana Fedoráková8, Vijay Ramaswamy 1,7,
Julie Bennett 1,7,9, Robert Siddaway 1,3, Uri Tabori 1,5,7,11 &
Cynthia Hawkins 1,2,3,11

With the success of immunotherapy in cancer, understanding the tumor
immune microenvironment (TIME) has become increasingly important; how-
ever in pediatric brain tumors this remains poorly characterized. Accordingly,
wedeveloped a clinical immune-oncology gene expression assay andused it to
profile a diverse range of 1382 samples with detailed clinical and molecular
annotation. In low-grade gliomas we identify distinct patterns of immune
activationwith prognostic significance in BRAFV600E-mutant tumors. In high-
grade gliomas, we observe immune activation and T-cell infiltrates in tumors
that have historically been considered immune cold, as well as genomic cor-
relates of inflammation levels. In mismatch repair deficient high-grade glio-
mas, we find that high tumor inflammation signature is a significant predictor
of response to immune checkpoint inhibition, and demonstrate the potential
for multimodal biomarkers to improve treatment stratification. Importantly,
while overall patterns of immune activation are observed for histologically and
genetically defined tumor types, there is significant variability within each
entity, indicating that the TIME must be evaluated as an independent feature
from diagnosis. In sum, in addition to the histology andmolecular profile, this
work underscores the importance of reporting on the TIME as an essential axis
of cancer diagnosis in the era of personalized medicine.

Understanding the tumor immune microenvironment (TIME) is
increasingly important in cancer biology and for patient management.
The TIME has a major role in determining tumor subgroups, prog-
nostic and predictive values, and is key for guiding therapy selection in
many disease types, such as melanoma and colorectal cancer1,2. As a

result, in many adult solid tumors, the TIME has been integrated into
the analysis and determination of immune-based therapeutic
approaches3–5. Pediatric brain tumors are the most common solid
tumors in this age group. Although our understanding of initiating
events, cell of origin, and mechanisms of tumor progression has
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significantly increased in the last two decades, the TIME has been
relatively understudied in these cancers and the extent of immune
activation across each tumor type is largely unknown6. Importantly,
there are numerous immunotherapies in development that target
different aspects of the TIME; however, it is not known which targets
will be most effective in pediatric brain tumors6. This is especially of
interest as certain types of traditionally lethal tumors have shown
dramatic responses and prolonged survival using immunotherapy
approaches7,8.

In contrast to recent large-scale multi-modality studies char-
acterizing the TIME in adult gliomas and other central nervous system
(CNS) tumors9–14, studies thus far in pediatric tumors havebeen limited
by small sample sizes, heterogeneous methodologies, and lack of
immunotherapy treatment data. Reflecting the experience of pathol-
ogists, studies have consistently identified greater numbers of infil-
trating myeloid cells and lymphocytes in low-grade gliomas (LGG)
compared to high-grade gliomas (HGG)15–18. There are conflicting
results regarding diffuse midline glioma (DMG), a highly lethal infil-
trative glioma19, with some reporting an overall immunologically
neutral environment20,21, and others suggesting some degree of
inflammatory cell infiltration22,23. Additionally, deconvolution-based
approaches24 applied to large datasets of methylation25 and RNA
sequencing data23 have provided an approximation of the proportion
of immune cell types in different pediatric tumors, but without
detailed clinical or pathologic correlation.

Given the need to characterize the TIME to stratify pediatric brain
tumor subgroups, provide prognostic tools, and enable therapeutic
decisions, we developed a functional transcriptomic assay that would
(1) provide insights into the immune activation in pediatric CNS
tumors, (2) integrate well with the routine pathology workflow and
work with our extensive tissue archives, and (3) include markers that
would represent the breadth of upcoming immunotherapy agents26,27.
In this study, we analyze 1382 pediatric brain tumors representing a
broad range of histologies and genotypes. This provides the most
comprehensive evaluation to date of the pediatric-specific CNS TIME,
which encompasses a diverse range of tumor types with detailed
clinical and treatment outcomes. We identify important therapeutic
and prognostic implications that confirm the importance of assessing
the TIME routinely in these tumors as part of their diagnostic workup
and pathologic reporting.

Results
Development of a clinical assay for immuno-oncologic profiling
of pediatric brain tumors
To develop a clinically-validated functional genomic assay we
designed a 103-gene immuno-oncology transcriptomic panel using the
NanoString nCounter system, which can be applied to both fresh-
frozen and FFPE tissue up to approximately 20 years old. To broadly
characterize the immune response beyond our prior studies7,8,28 we
included genes for specific cell types (e.g. CD3E, CD8A, CD68, CD163,
FOXP3, NKG7), immune checkpoints (PD-1/PDCD1, PD-L1/CD274, B7-H3/
CD276, TIGIT, LAG3, HAVCR2/TIM3), additional therapeutic targets
(IDO1, CSF1R, CD47, NT5E/CD73) and inflammatory pathways (cyto-
toxic T cell activity, JAK-STAT pathway, IFN-γ signaling, antigen pre-
sentation). We also incorporated the 18-gene tumor inflammation
signature (TIS; see Methods for further details and Supplementary
Data 4), a well-validated biomarker for immune checkpoint inhibitor
(ICI) response that summarizes several components of the TIME in a
single quantitative metric (Fig. 1a, b)3,29,30. The performance of the
NanoString assay was rigorously validated through comparison with
immunohistochemistry (IHC) on brain tumors and non-CNS validation
tissue samples (Fig. 1c, d, S1; Supplementary Data 2). This analysis
demonstrated excellent correlation between gene counts and the
percentage of positive cells by IHC for CD3 (Spearman’s rank corre-
lation=0.84, p = 1.5 × 10−15) and CD68 (Spearman correlation=0.77,

p = 4.9× 10−12), aswell as gooddifferentiationbetween gene expression
levels for samples with PD-L1 IHC expression scored as high (>5%
positive cells), low (1–5% positive), or none (<1%) (p = 0.003, Welch’s
ANOVA; see Methods for more details regarding immunohistochem-
ical quantification).

We tested 571 samples from our pathologically and clinically
annotated institutional cohort (Supplementary Data 3) that repre-
sented the most common pediatric brain tumor types, including
224 low-grade gliomas (LGG), 170 high-grade gliomas (HGG), 16
ependymomas, 66 medulloblastomas (MB), and 12 non-tumor
control brain samples (Fig. 1e; S2), plus an additional 83 mismatch
repair deficient HGGs from the International Replication Repair
Deficiency Consortium (IRRDC). To confirm our findings of the
range of TIS scores across brain tumor subtypes, we used an
external cohort of RNA sequencing for 811 samples from the
Pediatric Brain Tumor Atlas (PBTA; Fig. 1e), which demonstrated
similar findings overall.

Both LGG (median TIS = 8.86; p = 8.2 × 10−6) and HGG (median
TIS = 8.52; p =0.0006) had overall significantly more inflammation
than non-tumor brain controls (median TIS = 7.66) (Fig. 1c). Ependy-
momas had lower levels of inflammation than LGG and HGG (median
TIS = 8.09, p = 0.1), and had similar TIS score regardless of ZFTA-RELA
fusion status (Fig S3a; p =0.27 for fusion positive vs. negative). MB had
less inflammation than other tumor types (median TIS = 6.58;
p =0.0002 vs. normal brain; Fig. 1c), although SHH-subgroup MB had
higher inflammation than other MB subtypes (Fig S3b; median TIS =
7.72; p = 0.01 vs WNT, p =0.007 vs Group 3, p =0.004 vs. Group 4),
which is consistent with several prior reports25,31. Importantly, in the
PBTA dataset (Fig S3c), atypical teratoid/rhabdoid tumors (ATRT) had
significantly higher TIS score (median TIS = 6.70) than non-tumor
brain (median TIS = 5.75, p =0.013), underscoring the potential for
immunotherapy in these tumors, as has been previously reported25,32.
While only a small number of cases were available, longitudinal ana-
lysis of 7 LGG and 6 HGG that were not treated with immunotherapy
(Fig S3d) revealed that most (5/6) HGG had increases in their TIS over
time (p =0.044, paired Wilcoxon test) while this was not true for
LGG (p = 0.76).

Correlations of anti-tumor and pro-tumor components of
immune response
To further investigate the patterns of immune response in pediatric
brain tumors in conjunction with other cellular processes, we lever-
aged the matched WGS and RNA sequencing from the PBTA dataset
(Supplementary Data 5). To evaluate the different components of the
pro- and anti-tumor immune response, we applied previously descri-
bed pan-cancer immune gene signatures (Supplementary Data 6)5. We
found that pediatric brain tumors formed two clusters corresponding
to immune-enriched and immune-desert phenotypes, with the former
having high proportions of LGG andHGG, and the latter consisting of a
greater number of ependymomas and embryonal tumors (Fig. 2a).
Rather than discrete immunologic modules being independently
regulated, as we had initially hypothesized, we observed a complex
pattern in which anti-tumor and pro-tumor components of the
immune response are broadly correlated and rise in unison (Fig. 2b).
The finding that pro-tumor and anti-tumor aspects of the micro-
environment are highly interrelated further supports the use of the TIS
as a robust and clinically useful measure of multiple processes in
immune regulation, encompassing T-cell activation, immune check-
points, and antigen presentation.

We next applied the PROGENy33 cellular pathway scores to RNA-
seq data (Fig. 2c, S4a; Supplementary Data 7)) and found the TIS is
most correlated with the JAK-STAT (Pearson correlation = 0.77,
0p < 2.2 × 10−16), TNFα (Pearson correlation = 0.61, p < 2.2 × 10−16), and
NFkB signaling pathways (Pearson correlation=0.61, p < 2.2 × 10−16).
Strikingly, TIS had an inverse correlation with the PI3K pathway
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activation (Pearson correlation = −0.36, p < 2.2 × 10−16), which is con-
sistent with prior evidence implicating PTEN loss with immune evasion
and immunotherapy resistance in multiple tumor types34–36. We also
investigated associations between the TIS and COSMIC Single Base
Substitution (SBS) signatures (Fig. 2d, S4b; Supplementary Data 8) and
found that TIS is largely independent of mutational signatures in
pediatric brain tumors, with the most notable finding being a weakly
negative correlation with SBS3 (defective homologous recombination
repair; Pearson correlation = −0.17, p = 1.5 × 10−5) and SBS5 (clock-like
signature, Pearson correlation = −0.19, p = 8.6 × 10−7).

High inflammation has prognostic significance in pediatric low-
grade glioma
To study the TIME in LGGs, we profiled 224 tumors, covering the
spectrum of driver alterations observed in childhood tumors, includ-
ing BRAF fusions (n = 79), BRAF SNVs (n = 38; 35 with BRAF p.V600E, 1
eachwithV600ins, T599dup, andD594N; hereafter referred to asBRAF
V600E samples for brevity), and FGFR alterations (29), as well as iso-
citrate dehydrogenase (IDH) 1/2-mutated LGG (n = 35; see Methods for
more detail and Supplementary Data 9). Overall, the IDH-mutant LGG
were immunologically cold (Fig. 3a; median TIS = 7.45, p =0.54 vs.
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Fig. 1 | Overview of workflow, assay validation, and immune-oncologic profil-
ing of pediatric brain tumors. a Schematic of immune-oncology profiling work-
flow using clinical tumor samples. Created with BioRender.com. (APC: antigen-
presenting cell). b Diagram of 18 genes included in tumor inflammation signature
(TIS) in relation to immune activation (red text denotes genes that increase
immune activity and blue denotes genes that decrease immune activation). Cre-
ated with BioRender.com. c Images of digital quantification of CD3 IHC. Repre-
sentative areas of whole slide images were selected for visualization, with the
percentage of positive cells in the entire slide indicated. Scale bar (bottom left) is

100μm. Images takenat 100xmagnification.d Scatter plotsof correlation between
gene expressionbyNanoString andpercentageof positive cells by IHC for CD3 and
CD8 inmatched tissue sections. Correlation and p-valueswere calculated using the
Spearman correlation. (e) Violin plots of TIS scores across major pediatric tumor
types from SickKids and PBTA datasets, compared to non-tumor brain controls.
Boxes show the median and interquartile range (IQR) of the data with whiskers
extending to ±1.5 IQR. p-values calculated using two-tailed T test with Holm
adjustment. (HGG: high-grade glioma; LGG: low-grade glioma).

Article https://doi.org/10.1038/s41467-024-49595-1

Nature Communications |         (2024) 15:5790 3



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Tu
m

or
 p

ro
life

ra
tio

n 
ra

te

Tr
eg

Ant
itu

m
or

 cy
to

kin
es

M
HCI

M
HCII

M
1 

sig
na

tu
re

M
ye

loi
d 

ce
lls

 tr
af

fic

M
ac

ro
ph

ag
e 

an
d 

DC tr
af

fic

Im
m

un
e 

Sup
pr

es
sio

n 
by

 M
ye

loi
d 

Cell
s

Co−
ac

tiv
at

ion
 m

ole
cu

les

Tu
m

or
−a

ss
oc

iat
ed

 M
ac

ro
ph

ag
es

Gra
nu

loc
yte

 tr
af

fic

B ce
lls

Neu
tro

ph
il s

ign
at

ur
e

Th1
 si

gn
at

ur
e

Th2
 si

gn
at

ur
e

Tr
eg

 a
nd

 T
h2

 tr
af

fic

Effe
cto

r c
ell

s

T ce
lls

NK ce
lls

Effe
cto

r c
ell

 tr
af

fic

Che
ck

po
int

 m
ole

cu
les

EM
T si

gn
at

ur
e

Ang
iog

en
es

is

End
ot

he
liu

m

Pro
tu

m
or

 cy
to

kin
es

M
at

rix
 re

m
od

eli
ng

Can
ce

r−
as

so
cia

te
d 

fib
ro

bla
sts

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

TIS

SBS1

SBS2

SBS3

SBS4

SBS5

SBS6

SBS7

SBS8

SBS9

SBS10

SBS11

SBS12

SBS13

SBS14

SBS15

SBS16

SBS17

SBS18

SBS19

SBS20

SBS21

SBS22

SBS23

SBS24

SBS25

SBS26

SBS27

SBS28

SBS29

SBS1
SBS2
SBS3
SBS4
SBS5
SBS6
SBS7
SBS8
SBS9

SBS10
SBS11
SBS12
SBS13
SBS14
SBS15
SBS16
SBS17
SBS18
SBS19
SBS20
SBS21
SBS22
SBS23
SBS24
SBS25
SBS26
SBS27
SBS28
SBS29
SBS30

a

b

c

d

Progeny scores

Pearson correlation

COSMIC mutational signatures

Gene signature category
Anti−tumor microenvironment
Pro−tumor microenvironment

Angiogenesis and fibrosis
Malignant cell properties

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

TIS

EGFR

Hyp
ox

ia

JA
KSTA

T

M
APK

NFkB

p5
3

PI3
K

TGFb

TNFa

Tra
il

VEGF

EGFR

Hypoxia

JAKSTAT

MAPK

NFkB

p53

PI3K

TGFb

TNFa

Trail

VEGF

WNT

MHCI

MHCII

Co−activation molecules

Effector cells

Effector cell traffic

NK cells

T cells

B cells

M1 signature

Th1 signature

Antitumor cytokines

Checkpoint molecules

Treg

Treg and Th2 traffic

Neutrophil signature

Granulocyte traffic

Immune Suppression by Myeloid Cells

Myeloid cells traffic

Tumor−associated Macrophages

Macrophage and DC traffic

Th2 signature

Protumor cytokines

Cluster
Cancer_Type Cancer_Type

HGG
LGG
Ependymoma
Embryonal tumor
Non−tumor

Cluster
1
2

Category
Anti−tumor
Pro−tumor

−0.5

0

0.5

Pearson correlation

Pearson correlation

z-
sc

or
e

Fig. 2 | Patterns of immune regulationacrosspediatric brain tumors. aHeatmap
of pan-cancer gene signatures of anti-tumor and pro-tumor immune processes
from Bagaev et al. across 811 pediatric brain tumors from the PBTA. (HGG: high-
grade glioma; LGG: low-grade glioma). b Pearson correlation matrix of pan-cancer

immune gene expression signatures from Bagaev et al. c, d Pearson correlation
matrix of TIS with (c) PROGENy cellular pathway activation scores and (d) COSMIC
Single Base Substitution (SBS) mutational signatures.

Article https://doi.org/10.1038/s41467-024-49595-1

Nature Communications |         (2024) 15:5790 4



normal brain), which is consistent with prior studies on IDH-mutant
gliomas37,38 and recent evidence demonstrating a mechanistic impact
of the D-2-hydroxyglutarate oncometabolite on T-cell function39.

In contrast,many gliomas andglioneuronal tumorswithpediatric-
type LGG mutations had high levels of inflammation (Fig. 3a, S5a, b).
Both BRAF-fused (median TIS 9.28, p = 8 × 10−8) and BRAF V600E
(median TIS 8.88, p = 8 × 10−7) LGG, the two most common genomic
alterations in pediatric-type LGG, had increased TIS vs non-tumor
brain tissue, but did not have significant differences between each
other (p =0.09). FGFR altered LGG40, which activates the MAPK
(mitogen-associated protein kinase) pathway upstream of BRAF, also
had elevated inflammation (median TIS = 8.53, p =0.0003 vs. normal
brain). A similar trend was observed in the PBTA RNAseq cohort
(Fig S5a), inwhich tumorswithBRAF fusions (medianTIS = 6.98; p = 3 ×
10−4), BRAF V600E (median TIS = 7.34; p = 4.2 × 10−6), and non-
canonical MAPK pathway alterations (median TIS = 7.18; p =0.0024)
had significantly higher inflammation than non-tumor brain (median
TIS = 5.75). Although interestingly, in this dataset the BRAF V600E
tumors had slightly more inflammation than BRAF fused
tumors (p =0.013).

While PLGG from all locations had higher TIS than normal brain,
there were no major differences between tumor locations (Fig. 3b).

Tumors in the suprasellar region (median TIS =9.49; p=0.003) and
cerebellum (median TIS =9.12; p=0.04) had slightly higher inflamma-
tion than those in the cerebral hemispheres (medianTIS =8.73), however
these differences were relatively small. Overall, this indicates that the
inflammatory response is not driven by tumor location. When split by
histologic diagnosis, circumscribed gliomas including pilocytic astro-
cytomas (median TIS =9.26; p=0.00013) and gangliogliomas (median
TIS =9.38; p=2 × 10−5) both had substantially higher inflammation than
diffuse gliomas (medianTIS =8.29). Overall,many LGGhadupregulation
of immune checkpoints, suggesting that ICI may be an effective strategy
in tumors that are incompletely resected or recur (Fig S5c).

Differential expression analysis was performed comparing BRAF
V600E with BRAF fused tumors (Fig. 3c; Supplementary Data 10) This
demonstrated substantially higher expression of IL12 (a pro-
inflammatory cytokine) in BRAF V600E samples (log2FC = 1.3, adjus-
ted p-value = 9 × 10−14), suggesting that these tumors may have a
greater degree of T-cell activation, while in BRAF fused tumors CD163
(a marker of anti-inflammatory or M2 macrophages) was higher
(log2FC = −1.7, adjusted p-value = 4 × 10−5), indicating greater compo-
nent of immunosuppressive macrophages. Interestingly, in some LGG
groups, the level of inflammation had prognostic significance, which is
consistent with prior studies from our group using methylome-based

�

Fig. 3 | Overview and prognostic impact of TIME profiling in pediatric LGG.
a Boxplot of TIS across genomic subtypes of LGGs. Boxes show the median and
interquartile range (IQR) of the data with whiskers extending to ±1.5 IQR. P-values
by two-tailed T test with Holm adjustment. b Boxplots of TIS scores for PLGG split
by location and by histologic type. Boxes show the median and IQR with whiskers
extending to ±1.5 IQR. P-values by two-tailed T test with Holm adjustment. (Diffuse

glioma category includes diffuse astrocytomas and oligodendrogliomas; PXA:
pleomorphic xantho-astrocytoma; DNT: dysembryoplastic neuroepithelial tumor).
c Volcano plot of differentially expressed genes between PLGG with BRAF SNV
(single nucleotide variant) and BRAF fusion. P-values by two-tailed T test with BH
adjustment. d Kaplan–Meier curves of high vs low TIS scores in BRAF-mutant and
BRAF-fused PLGG. P-values by log-rank test.
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estimates of inflammation28. In BRAF V600E LGG, high TIS was asso-
ciated with poorer progression-free survival (Fig. 3d; p =0.047), while
in BRAF fused LGG a similar trend was observed but did not reach
statistical significance (p = 0.072).

BRAF p.V600E mutant low-grade gliomas form distinct immu-
nologic clusters
Given the wide variability in TIS scores between tumors with the same
genetic drivers, we were interested in further investigating the het-
erogeneity in immunologic responses to LGG. Unsupervised hier-
archical clustering of LGGwith BRAF V600E and other rare BRAF SNVs
using 103 genes on the NanoString panel demonstrated three well-
defined clusters corresponding to distinct patterns of immune
response (Fig. 4a; Supplementary Data 11). Cluster 1 had a high level of
inflammation with upregulation of virtually all the genes on the panel,
including genes pertaining to both lymphocyte and myeloid cell reg-
ulation. Cluster 2 had an intermediate level of immune activation, with
greater expression of APC-related compared to T-cell genes. Finally,
cluster 3 had a near-normal level of immune activation, similar to non-
tumor brain. The tumor content (TC; Fig S6a; Supplementary Data 12)
as assessed by a neuropathologist was higher in cluster 1 (median
TC = 60%; p = 0.01 vs cluster 2, p =0.028 vs cluster 3) but not different
between clusters 2 (median TC = 35%) and 3 (median TC = 40%;
p =0.52). Analogous analysis using BRAF fused PLGG did not yield well
defined clusters, indicating that this is likely a more immunologically
homogeneous group of tumors.

PCA projection of the three clusters further demonstrated that
cluster 3 is the most similar to normal brain and cluster 1 is the least
similar (Fig. 4b). There were significant differences in TIS scores
between all three groups, with cluster 1 having the highest scores
(median TIS = 9.93, p = 5.3 × 10−9 vs. normal brain; Fig. 4c), cluster 3 the
lowest (median TIS = 8.15, p =0.015 vs. normal brain), and cluster 2 an
intermediate level (median TIS = 8.69, p= 7.9 × 10−5 vs. normal brain).
For comparison, BRAF V600E mutant PHGG were mainly distributed
near LGG cluster 1 on the UMAP plot and had intermediate TIS scores
between cluster 1 andcluster 2 (medianTIS = 9.17,p =9× 10−6 vs. normal
brain; Fig. 4c). There was a prognostic difference between the clusters,
with cluster 1 having substantially worse PFS than the other two clusters
(Fig. 4d; p =0.015 for 3-way comparison and p =0.0047 for cluster 1 vs
cluster 2 + 3). This remained significant when patients with gross total
resections (GTR) were excluded (Fig S6b, p=0.015) and in multivariate
analysis (p =0.041, Cox regression) correcting for other known prog-
nostic factors, including CDKN2A deletion, age, histology, and location
(Fig S6c, d; note that due to lack of progression events in patients with a
GTR this variable could not be included in the Cox regression). This
further reinforces the survival stratification by TIS score that we found
in these tumors and the role of high inflammatory infiltrates as an
important negative prognostic marker in BRAF mutant LGG.

Pediatric high-grade gliomas have high immune activation and
potential immunotherapeutic targets
To investigate the TIME of HGGs across ages and locations we studied
diffuse midline gliomas (DMG, n = 59), non-midline pediatric high-
grade gliomas (PHGG, n = 73), and adolescent and young adult (AYA)
HGG (patients aged 15–40 years), which included IDH-mutant (n = 22)
and IDH-wildtype (n = 16) tumors (Supplementary Data 13). Both mid-
line and hemispheric pediatric-type HGGs had a range of TIMEs, with
high inflammation inmany tumors (Fig. 5a), and elevated expressionof
targetable immune checkpoints (Fig. 5b, c, S6a). Interestingly, the
expression levels of several immune checkpoints that are targetable
with antibodies (CTLA, PD-1/PCDC1, PD-L1/CD274, TIGIT, LAG3) were
highly correlated with each other (Fig. 5c), while CD276/B7-H3, a pro-
mising chimeric antigen receptor (CAR)-T cell target32,41 was complete
uncorrelated, suggesting that distinct populations of patients may
benefit from these two approaches.

In particular, DMGs (median TIS = 8.88; p = 3.6 × 10−6 vs. normal
brain, p =0.00063 vs. PHGG; Fig. 5a) had substantially higher inflam-
mation than both the non-tumor brain (median TIS = 7.66) and groups
of hemispheric HGG (median TIS = 8.19; p = 0.02 vs normal brain).
Several tumors (5/58 in SickKids cohort; 9%) had very high TIS > 10
(Fig S7b), indicating that these tumors are not exclusively immunolo-
gically cold, as has been previously reported19–21,42. A similar trend was
observed in the PBTA RNAseq dataset (Fig S7c), in which both DMG
(median TIS = 6.27, p =0.08 vs. non-tumor brain) and PHGG (median
TIS = 6.51, p = 0.03) had elevated inflammation compared to non-
tumor brain (median TIS = 5.75), and no significant difference between
each other (p = 0.3). The AYA HGGs had a clear distinction by IDH
mutational status (Fig. 5a). IDH-wildtypeHGGshadsimilarTIS scores to
the pediatric HGGs (median TIS = 8.71; p =0.027 vs. normal brain,
p =0.46 vs. hemispheric PHGG), while the IDH-mutant HGG had
inflammation that was comparable to normal brain (median TIS = 7.83;
p =0.49 vs. normal brain, p =0.033 vs. IDH-wildtype HGG).

Given that significant inflammation has not been previously
described in DMG, we verified the presence of inflammatory infiltrates
with IHC for CD8, PD-L1, CD3, and CD68 (Fig. 5d, S8). As has been
described, some tumors (DIPG127, DIPG005) have an immunologically
cold TIME, however other samples demonstrate extensive T-cell infil-
trates and even strong PD-L1 positivity (DIPG004, DIPG008). One
explanation for this is that our study included substantially more DMG
samples than prior ones (59 in-house and 99 PBTA compared to
13 samples in ref. 21 and 9 in ref. 20), which potentially allowed us to
capture a broader range of immunologic states in these tumors than
had previously been appreciated. To study the impact of treatment
course on the DMG TIME, using the PBTA RNAseq dataset we com-
pared TIS scores for DMGs from primary tumor samples (n = 65,
median TIS = 6.38) with those from tumor progression/recurrence
(n = 34,medianTIS = 6.58), and found no difference in scores (p =0.85;
Fig S7d; Supplementary Data 14).

While DMGs are predominantly driven byH3K27Mmutations, the
non-midline PHGGs had a more diverse range of alterations. These
tumors had highly variable inflammation, with some patients having
among the highest TIS scores in our entire cohort (>10), while others
were immune cold, with lower TIS than the non-tumor brain. To fur-
ther understand this variability, we studied the relationship of TIS with
driver mutations and other genomic features (Fig. 5e, f). BRAF V600E
mutant HGG had the highest inflammation levels among PHGG
(median TIS = 9.17; p = 1.2 × 10−5 vs. normal brain), which is consistent
with the known immunogenicity of the BRAF V600E neoantigen in
other cancers43,44. RTK-altered HGG, which mainly consisted of EGFR
and PDGFRA alterations (median TIS = 7.98, p =0.4) had similar
inflammation levels to normal brain (median TIS = 7.66), and a small
number of H3.3 G34R mutant tumors had significantly lower inflam-
mation (median TIS = 6.84, p =0.002 vs. normal brain). Using PBTA
WGS data (Supplementary Data 15, 16), we found a weak correlation
between TIS and total number of missense (Fig S9; R =0.24, p = 0.016)
and nonsense (R =0.24, p =0.013) mutations, and no relationship
between number of frameshift indels and copy number alterations
(including overall number, gains, and losses).

There were 24 PHGGs where the only identified driver mutation
was in TP53, which had highly variable TIS scores (Fig. 5e, f; median
TIS = 8.39, p =0.037 vs. normal brain). We identified a relationship
related to the protein-coding effect of the TP53 mutation, consistent
with evidence suggesting higher neoantigenicity of frameshift com-
pared to missense mutations45. Tumors with frameshift or nonsense
mutations in TP53 (median TIS = 8.90; p = 0.049 vs. normal brain,
p =0.38 vs TP53 missense, Wilcoxon test) had higher TIS than those
with missense TP53 mutations (median TIS = 8.27, p =0.08 vs. normal
brain). Interestingly tumors from 3 Li-Fraumeni syndrome (LFS)
patients (medianTIS = 9.24;p = 0.009 vs. normal brain,Wilcoxon test),
had higher inflammation than most somatic TP53-mutant HGG
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Fig. 4 | Clusters of immunologic response in BRAF V600E mutant LGG.
a Heatmap of three distinct immunologic clusters of BRAF mutant LGG showing
expression of selected genes of interest. (DIA/DIG: desmoplastic infantile astro-
cytoma/ganglioglioma; PXA: pleomorphic xantho-astrocytoma; LGG/GNT NOS:
low-grade glioma/glioneuronal tumor, not otherwise specified; NB: normal brain).
b PCA plot of three LGG clusters and BRAF V600E mutant PHGG compared to

normal brain. c Boxplot of TIS scores for three LGG clusters and BRAF V600E
mutant PHGG compared to normal brain. Boxes show themedian and interquartile
range (IQR) of the datawithwhiskers extending to ±1.5 IQR. P-values by two-tailed T
test with Holm adjustment. d Kaplan-Meier curves of progression-free survival for
the three LGG immune clusters and of cluster 1 compared to cluster 2 + 3. P-values
by log-rank test.
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(median TIS = 8.3, p =0.05 vs. normal brain, p =0.26 vs LFS patients).
While this requires further investigation in a larger number of patients,
this finding potentially expands the range of cancer predisposition
syndromes with an impact on the TIME in CNS tumors.

High TIS predicts immunotherapy response in mismatch repair
deficient HGGs
Expanding on our previous work demonstrating excellent response to
ICI in mismatch repair deficient (MMRD) HGG7,8, we profiled 83 tissue
samples fromMMRD pediatric HGGs, 73 of which had matched whole

exome sequencing (median TMB= 254 SNV/Mb; range 2-834; Supple-
mentaryData 17–20).TIS andoverall tumormutationburden (TMB), as
well as total numbers of different mutation types (Fig S10a), were
completely uncorrelated in these patients (Fig. 6a; Spearman correla-
tion = −0.051, p = 0.67), indicating that they provide complementary
information for clinical decision making. Furthermore, when TMBwas
separated into ultra-hypermutant (TMB> 100 SNV/Mb), hypermutant
(TMB 10-100), and non-hypermutant cases, there was no difference in
TIS between the three groups (Fig. 6b). This finding, in addition to the
weak correlation between totalmissense and nonsensemutationswith
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TIS in non-MMRD PHGG (Fig S9), is in line with prior studies that have
not found a consistent correlation between these features in other
cancer types4,46. This demonstrates that, despite its utility in predicting
ICI response47,48, TMB cannot be viewed as a surrogate for tumor
inflammation.

Interestingly, a comparison of MMRD tumors with their MMR-
proficient (MMRP) counterparts did not reveal an overall difference
in their inflammation levels (Fig S10b). MMRD HGG (median TIS =
8.16; p = 0.0037 vs. normal brain, p = 0.76 vs. MMRP PHGG) had
similar TIS scores to the cohort of pediatric hemispheric HGGs
(median TIS = 8.19), which were both elevated compared with nor-
mal brain (median TIS = 7.66). Similar to what was observed in non-
MMRD pediatric HGG, tumors with a truncating or frameshift TP53
mutation (median TIS = 8.67; Fig S10c) had higher TIS than those

with a missense mutation (median TIS = 7.88; p = 0.008, Wil-
coxon test).

Of theMMRDHGGsamplesweprofiled, there 40patients that had
been treated with ICI (either nivolumab or ipilimumab) and had pre-
treatment tissue available (Supplementary Data 18). While to date our
patient selection of pediatricHGG for immunotherapyhasbeen largely
based on elevated tumormutation burden (TMB), not all patients with
very elevated TMB (i.e. >100) respond to ICI. We hypothesized that, in
addition to high TMB, patients also required an inflammatory TIME,
and accordingly were interested in developing multimodal bio-
markers. Strikingly, MMRDHGG receiving PD-1 blockade with high TIS
had significantly greater overall survival (OS) than low TIS tumors
(p = 0.039; Fig. 6c, S11a), as did ultra-hypermutant tumors (TMB> 100
SNV/Mb) (Fig S11b; p =0.03). Combining TIS and TMB revealed a
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subgroup of TIS-high/TMB-high tumors with OS of 86% at 3 years
compared to 34% for tumors with TIS-low/TMB-low (p = 0.03; Fig. 6d,
S11c). This dramatically illustrates the potential for the incorporation
of multiple metrics to better predict immunotherapy response and
optimize the selection of immune-based treatments versus conven-
tional chemotherapy and radiation.

Furthermore, despite the excellent clinical response of many
MMRD HGGs to immune checkpoint inhibitors7,8, these tumors in fact
overall demonstrated only modest elevations of PD-1 and CTLA4 gene
counts compared to normal brain, and no significant difference in PD-
L1 (Fig S12). There were more dramatic increases in the levels of LAG3
and CD276 (B7-H3), suggesting these alternate immune checkpoints
may warrant further investigation as therapeutic targets26,32,41.

Comparison of matched pre- and post-ICI treatment samples in
four patients withmultiple surgeries demonstrated that all four had an
increase in TIS following treatment (Fig. 7a), which confirms the
expected effect of ICI in stimulating interferon-γ -related signaling and
resulting immune activation49,50. Given the complexity of the immune
response to these therapies and the small number of patients, it was
not possible to identify a consistent well-defined pattern of TIME
alterations following therapy (Fig. 7b). However, in general MMRD-
HGG demonstrated an upregulation of one or more immunosuppres-
sive factors, such as IDO1 or alternate immune checkpoints (LAG3 and/
orTIGIT). In contrast, B7-H3 (CD276) gene levels declined in all patients.

IHC for CD8 and PD-L1 confirmed increases in inflammatory
infiltrates in post-treatment samples (Fig. 7c, S13)—in some cases dra-
matically so, as in the example of a patient who had an excellent
response to ICI and was alive at last follow up 16 months after the

initiation of treatment (Fig. 7c). In this example, the patient remained
on single agent immune checkpoint inhibition after repeat surgery,
based on our profiling demonstrating dramatic increases inmarkers of
immune activation in response to treatment. This illustrates the
potential for longitudinal immunologic assessments to guide perso-
nalized treatment strategies, particularly whether the TIME is sup-
portive enough to continuemonotherapy for a given patient (as it was
in this case), and if not, which combination therapy (e.g. anti-PD-1/PD-
L1 in combination with anti-CTL4, anti-TIGIT, or anti-LAG3) is most
likely to be effective.

Discussion
In this study we have presented the immune-oncologic profiling of
1382 pediatric brain tumors through a clinical-grade gene expression
assay and RNA-sequencing from the PBTA. Given the breadth of this
dataset, we focused on the tumor inflammation signature (TIS)3,29,30,51

as a marker that integrates 18 genes comprising several aspects of the
immune response into a single numerical value, providing a summary
of the overall degree of immune activation in a sample. Within given
tumor subtypes there is a wide range of immunologic states; our data
shows this inflammatory environment to be clinically relevant to
characterize across a spectrum of brain tumors and that this can be
done in a flexible and clinically pragmatic workflow.

A key strength of our dataset is the inclusion of a wide range of
tumor types, both histologically and genetically defined, extensive
clinical and molecular annotation, and long-term follow up in most
patients. In particular, our MMRD HGG dataset is the largest cohort of
ICI-treated pediatric brain tumors published to date8 and the success
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in this group was a major advance in the use of immunotherapy for
CNS tumors. Through the analysis of PBTA patients, we confirm that
the overall findings fromour in-house cases are broadly applicable and
consistent in an external dataset using a different gene expression
platform.

One limitation of this study is the use of gene expression as the
primary modality for immune profiling, although this was validated
through extensivematched IHC. Amotivating factor for this study was
our desire to makemaximal use of our extensive FFPE archives of well
annotated tissue samples frommany rare tumor types, as well as to use
this as a clinical tool, for which cost and integration within the
pathology workflow are important factors. Currently high throughput
protein expression assays are not sufficiently developed for clinical
implementation, while multiplexed IHC is limited by high cost and the
time requirements for analysis, making gene expression the most
reliable and pragmatic platform for comprehensively evaluating the
various processes in the TIME currently.

Our results in both LGG and HGG indicate that many pediatric
gliomas have evidence of high immune activation, although to a
greater degree and more consistently in low-grade compared to high-
grade tumors, and in circumscribed over diffuse LGGs. In contrast,
IDH-mutant tumors (both LGG and HGG) from our adolescent and
young adult cohort have similar TIS scores to normal brain. Many
DMGs and hemispheric PHGGs have high expression of several
immune checkpoints, including those with currently available drugs
(PD-1, PD-L1) and drugs under development (LAG3, TIGIT), which
suggests that this is an unexplored treatment strategy that could
benefit some of these patients. We anticipate that with further clinical
experience, and the translationof novel immunotherapies, the number
of pediatric LGG and HGG patients who can benefit from immune-
based treatment (potentially in combination with other targeted
agents) will expand in the future. In particular, BRAF p.V600E-mutant
HGGs have significantly elevated TIS scores compared to other
pediatric HGG, as well as a prior study showing increased T-cell infil-
tration in these tumors52, identifying this group of patients as of par-
ticular interest for immunotherapy.

In pediatric LGG, we have previously shown that BRAF mutant
cases have worse outcomes than those with BRAF fusions, and that
these patients benefit from targeted BRAF andMEK inhibition53–56. Our
finding that a high TIS score is a negative prognostic marker in BRAF
mutant tumors provides compelling evidence to further investigate
treating these patients with ICI, potentially in combination with tar-
geted therapies, as has been used in BRAF-mutant melanoma57—with
the important caveat that further functional and pre-clinical studies
are necessary before considering a trial in human patients. Prior stu-
dies have reported that elevated MAPK pathway activity is predictive
of responses to ICI in adult glioblastomas, possibly relating to the
influence of the MAPK pathway on myeloid cell populations34,58. Given
that the BRAF mutation strongly drives MAPK pathway activity, there
maybe synergisticbenefits between genomic drivers andhigh levels of
inflammation when using immunotherapy to treat this group of
patients that is at high risk of progression from their tumor.

Our analysis ofMMRDHGGs treatedwith ICI supports usingTIS as
a biomarker in thesepatients for predicting immunotherapy treatment
response in conjunction with TMB. These two metrics provide com-
plementary information, as TIS is a measure of immune activation,
while TMB is an indicator of neo-antigenicity. The best outcomes were
observed in patientswith both elevatedTIS andTMB, including several
patients with recurrent high-grade gliomas who had progression free
survival of 3 years or longer with ICI treatment. Conversely, patients
with low TIS levels had worse outcomes, even for those with very
elevated TMB. An important clinical implication of this finding is that
patients with both high TMB and high TIS may be candidates for
radiation-free and chemotherapy-free treatment, given their excellent
response to immunotherapy59.

In summary, characterization of the TIME across pediatric brain
tumors provides potential prognostic clues and suggests treatment
strategies for further investigation. While evidence to date has not
shown success of current immunotherapeutic strategies in most adult
glioma patients13,60, our findings indicate profound differences
between the immune response in pediatric brain tumors compared to
adult tumors. Our priorwork hasdemonstrated unprecedented results
in treating germline MMRD brain tumors with ICI7,8. The current study
strongly suggests that other subgroups of patients may benefit from
this treatment.

This study illustrates that characterization of the TIME is a critical
pieceof information alongsidedrivermutation andTMB for predicting
response to immunotherapy, and should be routinely evaluated in the
diagnostic workup of pediatric brain tumors and likely many other
cancers. While we have largely presented our results in the context of
histologically and genetically defined tumor subgroups, there is sub-
stantial variation within each of these groups. This underscores that
despite the clear relationships between TIME and tumor histology/
genetics, knowledge of these is not sufficient to predict the inflam-
matory response, and it is necessary to evaluate the TIME in each
individual tumor, including at multiple time points if available. With
numerous novel immunotherapeutic agents in clinical trials, there will
be an increasing ability to customize the treatment strategy to the
individual patient, which requires accurate characterization of the
immune landscape in each tumor61.

The diagnostic framework used by pathologists for CNS tumors
has undergone aparadigm shift over the past decade,with tumorsnow
reported using an integrated-framework that reports both histology
and genomics62. In other cancers, such as colorectal cancer, the TIME
has prognostic significance that can exceed the standard pathologic
risk stratification methods (stage and grade)1,2. We envision that in the
next decade this will expand to other cancers including CNS tumors, in
which the tumor-immunemicroenvironment is established as another
diagnostic “axis” that forms an essential component of personalized
medicine.

Methods
Study approval and design
This study was approved by the Research Ethics Board (1000055059)
at the Hospital for Sick Children (SickKids), and complied with all
relevant ethical regulations and Declaration of Helsinki principles.
Informed consent from legal guardians was obtained for everyone
accrued after 2009, and patient samples from before 2009 were used
following REB-approved waiver of consent. Participants were not
compensated as no additional costs were incurred for their partici-
pation. Sex and gender were not considered in the study design, as the
focus of this study was on the TIME as it relates to tumor type, his-
tology, location, and genetics.

Tumor material and patient characteristics
Study materials profiled at SickKids (referred to as “SickKids cohort”)
included frozen or formalin-fixed paraffin-embedded (FFPE) tissue
from 571 patient samples from Toronto (SickKids and other hospitals;
491 samples from 475 patients) and the International Replication
Repair Deficiency Consortium (IRRDC; 80 samples from 59 patients).
The specific source for each individual patient is provided in Supple-
mentary Data 3 (“SickKids cohort info”) under the “Source” column.
Genetic characterization of pediatric LGG53, DMG, and hemispheric
HGG63–65 has previously been published (see data availability below).
For the adult and young adolescent (AYA) patient cohort, IDH muta-
tional status was extracted from our clinical database (manuscript
under review) basedon the clinical testing results. Clinical data for LGG
(all Toronto patients) are provided in Supplementary Data 9, for non-
MMRDHGG/DMG(all Torontopatients) in SupplementaryData 13, and
for MMRD HGG (mainly IRRDC patients) in Supplementary Data 17.
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Sample types were categorized based on a combination of his-
tology, genomic, and clinical features (patient age and location). The
pediatric-type HGGs were classified as DMGs for tumors that were
located in the brainstem or thalamus/basal ganglia and PHGG for
hemispheric tumors (Supplementary Data 13). The adult and young
adolescent (AYA) patient cohort consisted of IDH-mutant and IDH-
wildtype diffuse gliomas frompatients aged 15–40. IDH-mutant diffuse
astrocytomas (WHOgrade 2–3,n = 25) and oligodendrogliomas (grade
2, n = 10) were considered LGG. IDH-wildtype glioblastomas (grade 4,
n = 16), IDH-mutant astrocytomas (grade 4, n = 17), and IDH-mutant
anaplastic oligodendrogliomas (grade 3, n = 5) were classified as HGG.
The distinction between PHGG and AYA HGG was based pre-
dominantly on age, with patients who were below 15 years at diagnosis
considered PHGG.

The pediatric-type LGGs included all low grade-gliomas/glio-
neuronal tumors in patients <age 18 at diagnosis, except for a small
number of samples with an IDHmutation (Supplementary Data 9). The
most common molecular alterations in the pediatric LGG were BRAF
fusions (n = 79; 77 with KIAA1549-BRAF, 1 each CLCN6-BRAF, TAX1BP1-
BRAF) and BRAF SNVs (n = 38; 35 with BRAF V600E, 1 each with
V600ins, T599dup, and D594N), The most common histologic diag-
noses were pilocytic astrocytoma (n = 83), ganglioglioma (n = 29), and
diffuse astrocytoma/low-grade astrocytoma NOS (n = 26), while many
rare diagnoses were represented in lesser numbers. Importantly, the
BRAF-fused tumors were selected to enrich for recurrent and other-
wise atypical cases and therefore are not representative of the
population-level survival outcomes that we have previously
published53.

The MMRD HGG tumor cohort included 83 samples from 62
patients (3 samples from Toronto, 80 from IRRDC). For survival ana-
lysis, we used 40 patients from the IRRDC who were treated with
immune checkpoint inhibitors, and had (1) pre-treatment tissue avail-
able for NanoString profiling, (2) tumor mutation burden data, and (3)
sufficient follow-up on treatment for analysis. Several of these patients
had multiple resections prior to ICI treatment initiation, and for these
the most recent pre-treatment tissue (i.e. closest to the time that
treatment began) was used for analysis. See below (“International
replication repair consortium clinical trials” section) for more detail
regarding the clinical management of these patients, including clinical
trial enrollment.

Outside of the MMRD cohort, the patients included in this study
were treated with standard of care according to best practices/guide-
lines at the time of treatment—although recognizing that this study
includes samples from a twenty-year period and treatment protocols
have shifted over time. The majority of samples were pre-treatment,
except where multiple longitudinal samples existed for the same
patient (see Fig S3d; samples denoted as T1, T2, etc in the Study ID in
Supplementary Data). Some sample types, particularly post-mortem
samples of diffuse midline gliomas, have a greater proportion of post-
treatment samples, however it was not found that treatment impacts
the variables studied in this paper (see Fig S7d, SupplementaryData 14).
Importantly, all survival-based analysis (for LGG in Figs. 3, 4 andMMRD
HGG in Fig. 6) was performed only using pre-treatment samples.

Given the fact the gene expression testing, regardless of the
platform, provides values that can only be interpreted in relation to a
reference dataset, it was critical to select a reliable control dataset—
however this was challenging given that truly normal brain tissue is
never surgically resected. While tissue from epilepsy resections is not
entirely normal due to the effects of refractory seizures, this was the
best reference set that could be obtained, and all slides were reviewed
by two neuropathologists (CH, AL) to exclude tissue with inflamma-
tion. The alternative would have been to use post-mortem tissue,
however most cases that have the brain examined at our site have
some degree of abnormal neuropathologic findings and hence are not
suitable for this use.

International replication repair consortium (IRRDC)
clinical trials
The International ReplicationRepair DeficiencyConsortium (IRRDC) is
based at SickKids, Toronto. The IRRDChas enrolled >200patientswith
confirmed /suspected replication repair deficiency from 45 countries
since 2007 (see ref. 8 for more detail). This study included 59 IRRDC
patients with 80 RRD tumors, among whom 1 was treated with chemo-
radiation alone, and the remaining 58 received additional therapy with
immune checkpoint inhibitors (ICI) following progression on their
standard-of-care treatment (Supplementary Data 17, 18). Among
patients treated using ICI, 4 were treated on a recently published
international, prospective clinical trial (NCT02992964; https://
clinicaltrials.gov/study/NCT02992964)66. Their clinical outcomes
were reported as per the trial’s objectives (radiological objective
response, PFS, adverse events). The current manuscript includes
longer follow-up and OS data since they came off-study, which have
never been published before as well as the TIME and TIS data.
Important, analyses performed here represent non-prespecified
exploratory outcomes for NCT02992964.

The remainder were treated on a global registry study conducted
by the International RRD Consortium, either off-label or through
compassionate drug access, as per NCT02992964 clinical trial proto-
col guidelines (including for monitoring safety and stopping rules for
toxicity) and as previously reported by our group8,67. Specifically, ICI
treatment for patients with RRD-HGG involved treatment using anti-
PD1, either nivolumab 3mg/kg q2-weeks, (maximum = 240mg/dose)
in the majority, and rest using pembrolizumab 2mg/kg q3-week
(maximum=200mg/dose), dependent on local logistics and physician
choice. For patients receiving non-standard of care therapy, drugs
were obtained either off-label or through compassionate drug access,
as described in refs. 8,67. Monthly meetings (and additional ones as
needed) were coordinated to track progress, address any safety con-
cerns, and collect data in real-time. The immune TME and TIS data and
correlation with OS are being presented for the first time for the entire
cohort, including for patients whose radiological response and PFS
were previously reported.

NanoString gene expression profiling
Gene expression profiling was carried out using the NanoString
nCounter system68, with a customized CodeSet composed of a total of
103 genes (see Supplementary Data 4 for panel details and Supple-
mentary Data 1 for normalized counts matrix). A major advantage of
the NanoString platform (compared to RNA sequencing, for example)
is its robust results on formalin-fixed paraffin-embedded tissue (FFPE),
which allowed us to use archival tissue samples up to 20 years old.
Total RNA was extracted from FFPE and snap-frozen tissue using
RNAstorm FFPE and fresh frozen kits, respectively, as per the manu-
facturer’s instructions (CellData). RNA concentration was measured
(Nanodrop) and RNA integrity assessed using the Agilent 2100 bioa-
nalyzer. Using a minimum of 100ng of extracted RNA, gene quantifi-
cation was performed on the NanoString nCounter platform per the
manufacturer protocols. During assay development, intra-run (3
replicates in the same run) and inter-run (3 replicates in different runs)
reproducibility was evaluated using 4 samples. All attempts at repli-
cation were successful.

NanoString quality control, data processing, and analysis
All data analysis used Bioconductor version 3.14 or 3.16 packages in R
version 4.1 or 4.2, respectively, unless otherwise stated. Raw Nano-
String data (RCC files) was processed using the NanoStringQCPro
package (v1.26.0). For quality control (QC), the geometricmean of the
five housekeeping (HK) genes (DDX50, EIF2B4, MRPS5, SAP130, TLK2)
was used as a metric of overall RNA quality and quantity, and samples
with a value of <100 were excluded. Out of a total of 688 samples (age
range 0-32 years) that were run during test development and data
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generation, 52 (7.5%) failed QC and were excluded from further ana-
lysis (see Fig S14a, Supplementary Data 21). There was a strong inverse
correlation in years between sample age and HK gene levels (Fig S14b;
R = −0.68) and accordingly the ageofQC fails (median= 14.4 years)was
substantially higher thanQC passes (median = 6.6 years, p = 2.3 × 10−10;
Fig S14c). That said, sample quality cannot be predicted solely by
sample age; there were samples up to 20 years of age with excellent
quality and resulting NanoString data, while samples <5 years old
occasionally failedQC.NanoStringdatawasvalidated in comparison to
IHC for selected genes (see “Immunohistochemistry staining and
scoring” below), as well as matched RNA sequencing for 15 samples
(Fig S14d, Supplementary Data 22).

The data from all samples was normalized together using house-
keeping genes and positive control genes as recommended in the
NanoString data analysis guidelines. Briefly, for each sample a nor-
malizationwas performed sequentially using first the positive controls
and then the housekeeping genes. For each sample the geometric
mean of the positive controls was calculated (geomeancontrol). The
geometric mean of all the geometric means was then calculated
(geomeangeomeans) and this was used to calculate a sample specific
normalization factor (geomeangeomeans /geomeancontrol), which was
multiplied by the gene counts for each sample. The same steps were
then taken using the housekeeping genes instead of the positive
controls, to provide the final normalized gene counts.

To provide an overall assessment of the immune microenviron-
ment, we used the tumor inflammation signature (TIS), which is also
referred to in literature as “T-cell inflamed gene expression profile”.
This is a well-validated 18 gene score that includes probes involved in
antigen presenting cell abundance (PSMB10, HLA-DQA1, HLA-DRB1,
CMKLR1), T cell/NK cell abundance (HLA-E, NKG7, CD8A), interferon
activity (CCL5, CXCL9, CD27, CXCR6, IDO1, STAT1), and T-cell exhaus-
tion (TIGIT, LAG3, PD-L1/CD274, PD-L2/PDCD1LG2, B7-H3/CD276). The
individual gene weightings for the TIS score were not disclosed in the
original publication51; we obtained them, upon correspondence with
the authors, from their patient filing WO2016094377 in claim 21c
(available at https://patents.google.com/patent/WO2016094377A1).
The scores for each sample were calculated as described in the refer-
ence papers29,51, using matrix multiplication of the log2 transformed
gene counts by the corresponding weights for each gene. Histologic
assessment of samples with high, medium, and low TIS scores,
respectively demonstrated morphologic correspondence to the pre-
sence of inflammatory infiltrates in the tissue sections (Fig S2b), while
TIS expands upon morphologic assessment by incorporating markers
of antigen presenting cells (APC) and T-cell exhaustion.

Heatmaps were created using ComplexHeatmap (v2.10.1)69.
Unsupervised hierarchical clustering was performed using Consensu-
sClusterPlus (v1.58.0) with the Pearson correlation as the distance70. A
wide range of cluster numbers was evaluated (2-10), which were eval-
uated using consensus matrices, consensus cumulative distribution
function plots, delta area plots, tracking plots, and item-consensus
plots. Differential expression analysis was performed using row-wise t-
tests through the genefilter (v1.76.0) package, with the p-values cor-
rected using the Benjamini & Hochberg method.

Immunohistochemistry staining and scoring
IHC was performed in the CLIA approved pathology laboratory at the
Hospital for SickChildren. Four-micron thick sections of formalin-fixed
paraffin-embedded (FFPE) surgical specimens were stained using the
Dako Omnis automated stainer with the EnVision Flex detection kit.
The following primary antibodies were used: PD-L1 (clone:28-8, Rabbit
monoclonal Abcam, 1:500 cat no:ab205921), CD68 (clone:PG-M1,
Dako-Omnis, ready to use, cat no:GA613), CD8 (clone:c8/144B, Dako-
Omnis, ready to use, cat no:GA623), CD3 (polyclonal rabbit, Dako-
Omnis, ready to use, cat no:GA503).

Slides were scanned at minimum 200x magnification using an
Aperio AT2 scanner. Subsequent visualization and analysis of whole
slide images (WSIs) was done with QuPath (version 4.3.0). For com-
parison of IHC to NanoString gene counts, matched tissue sections
from the same blocks were used. All assessment of the results of
immunohistochemical staining and tumor contentwas performedby a
board-certified neuropathologist (AL), who was blinded to NanoString
data at the time of assessment (Supplementary Data 2). CD3and CD68
were scored using the QuPath “Positive cell detection” function.
Regions of interest were selected by a neuropathologist to include the
maximum possible tissue area, while excluding areas of artifact and
non-interpretable tissue. Slides were scored as the percentage of
immunohistochemically positive cells among all detected cells for the
full slide area. Given the well-recognized challenges in assessing PD-L1
IHC71 it was not feasible to quantify digitally. Instead, PD-L1 was
assessed semi-quantitatively over the entire tissue area on the slide,
excluding areas of artifact and otherwise poor-quality histology.
Tumors were categorized as having high (>5% PD-L1 positive tumor
and immune cells), low (≥1% to <5% PD-L1-positive tumor cells and
immune infiltrates) or no staining (<1% PD-L1 positive tumor and
immune cells).

Whole exome sequencing (WES)
MMRD tumors had matched tumor and blood whole exome sequen-
cing (WES) performed at the Centre for Applied Genomics (TCAG) at
SickKids and aligned to hg38, as previously reported by our group8.
Somatic variants were called using Mutect272, filtered for quality, a
minimum 0.05 VAF cutoff, and common SNPs (dbSNP b15173), and
annotated with Funcotator (both from GATK v4.2.3.074). TMB was
calculated by counting a total number of somatic single nucleotide
variants divided by a total number of callable bases in megabases
(~50Mb). To filter for impactful variants, we then selected those with
impacts on coding sequences (missense, truncating, frameshift, etc.)
or at splice site junctions. Variants which had benign or likely-benign
annotations inClinVar (2018-04-29)75 were excluded, aswell as variants
without an annotation in the COSMIC Cancer Gene Census76 (v97;
Funcotator Data Source v1.7.20200521g). (See Supplementary Data 18,
19 for summaries of variants).

NGS panel sequencing
DNA was extracted from FFPE blocks using DNAstorm (CellData).
Libraries were generated using custom hybrid capture probes (Twist
Bioscience) targeting commonly altered glioma driver genes (LN, CH,
in preparation) and sequenced on NextSeq instruments (Illumina).
Samples were aligned to genome build hg19 and analyzed using the
DRAGEN pipeline with default settings in BaseSpace (Illumina) to
identify small nucleotide variants (SNVs), insertions and deletions.
Fusions were identified using Illumina DRAGEN and Arriba (v2.4.0)77.

Pediatric Brain Tumor Atlas (PBTA) data analysis
810 samples from the PBTA23 were analyzed (see Supplementary
Data 5 and 14). Clinical annotations were downloaded from PedcBio-
Portal (https://pedcbioportal.kidsfirstdrc.org/study/clinicalData?id=
openpbta) and tumors were grouped to best correspond to the Sick-
Kids tumor types based on the “cancer type” and “cancer type
detailed” columns. The cancer types “Low-grade astrocytic tumor” and
“Neuronal and mixed neuronal-glial tumor” were grouped as LGG,
“Diffuse astrocytic and oligodendroglial tumor” as HGG, and “Pre-
cancerous lesion” as non-tumor control tissue. For HGGs, the subtypes
“Brainstem glioma- Diffuse intrinsic pontine glioma” and “Diffuse
midline glioma, H3 K28-mutant” were grouped as DMG, while PHGG
included “High-grade glioma/astrocytoma (WHO grade III/IV)”, “High-
grade glioma/astrocytoma, H3 wildtype”, and “High-grade glioma/
astrocytoma, H3 G35-mutant”. Ependymomas were grouped as “RELA-
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fused” and “non-RELA” for all other types.Otherwise,weused the PBTA
provided labels for specific cancer types.

Harmonized gene expression data was downloaded from Cava-
tica. The RSEM gene-level quantification data (rsem.genes.results.gz
files) were loaded with the Bioconductor tximport (v1.22.0) package.
To enable comparison between samples with poly-A and total RNA-seq
libraries, the total RNA-seq samples were filtered only for protein-
coding genes and rescaled to TPMs. The TPMnormalized counts (from
the RSEM abundance column) were multiplied by 10 to put them in a
more similar range to the NanoString gene counts, and then log2
transformed. TIS calculation and other downstream analyses were
then performed as previously described for the NanoString data.
Importantly, given the difference in platform and normalization
between theNanoString data andPBTAdata, the absolute values ofTIS
scores are not directly comparable with each other, and instead are
interpreted in relation to each dataset’s respective non-tumor brain
reference samples. Pathway scores were calculated using the Bio-
conductor progeny package (v1.20.0)33. Immunologic signature gene
sets from Bagaev et al5. were calculated using gene set variation ana-
lysis with the Bioconductor GSVA package (v1.46.0)78.

ForDNAsequencingdata analysis, processeddata fromrelease v22-
20220505 was downloaded fromCavatica (https://cavatica.sbgenomics.
com/u/cavatica/openpbta). Consensus SNV (pbta-snv-consensus-muta-
tion.maf.tsv.gz) and CNV (consensus_seg_annotated_cn.tsv) calls were
used for correlation of genomic features with inflammation levels in
high-grade gliomas, with 4 ultra-hypermutant samples removed to
avoid skewing the results. SNVswerefiltered forprotein-altering variants
and categorized as missense, frameshift indels, nonsense, or splice
region. For quantification of total numbers of copy number alterations,
adjacent segments with the same copy number were merged,
and alterations were categorized as gains, amplifications (5 or more
copies in a diploid sample), losses, or deep deletions (0 copies in
a diploid sample). For correlation of TIS with COSMIC mutational
signatures, we used the signatures calculated with deconstructSigs
(cosmic_signatures_results.tsv) through the Open-PBTA (https://github.
com/AlexsLemonade/OpenPBTA-analysis) workflow.

Statistics
Pairwise comparisons of continuous variables (gene expression counts
and the TIS) was performed with the R ggpubr (v0.4.0) package using
two-tailed T-tests with Holm adjustment reported on the boxplots,
unless otherwise stated in figure legends. Αll boxplots show the med-
ian and interquartile range (IQR) of the underlying data with whiskers
extending to ±1.5 IQR from boxes. Correlation values for correlation
matrices with scaled values were calculated using the Pearson corre-
lation and for scatter plots with unscaled values using the Spearman
coefficient (to decrease the impact of outliers). Other statistical tests
were performed as indicated in the text.

Survival analysis was performed with the R survival (v3.4-0),
survminer (v0.4.9), and survivalAnalysis (v0.3.0) packages, using
Kaplan Meier curves, the log-rank test for univariate analysis, and Cox
proportional hazards test for multivariate analysis. For PLGG, the
endpoint used was progression-free survival, defined as the time from
initial surgery tofirst clinical or radiographicprogression,withpatients
who did not progress censored at the latest follow-up time. The opti-
mal cutoff for dichotomizing groups as high/low TIS were determined
using the surv_cutoff function in the R survminer package and p-values
were calculated through bootstrapping with 1000 iterations, each
sampling 90% of the dataset. For multivariate survival analysis of the
three BRAF V600E tumor clusters, extent of resection could not be
included in theCox regressiondue to anabsenceof progression events
in patients with gross total resections; instead patients with incom-
plete resection only were analyzed as a separate subgroup.

For MMRD samples treated with immunotherapy the endpoint
used was overall survival, defined as the time of initiation of

immunotherapy to date of death from any cause, with patients cen-
sored who were still alive at the most recent follow-up date. Survival
analysis separating into 3 groups by quartile (high > 75th percentile,
medium 25–75th percentile, low <25th percentile) indicated that only
the top quartile had improved response to ICI, therefore the 75th
percentile cutoff TIS = 9.13 was rounded to 9 for dichotomizing sam-
ples as high/low TIS.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The NanoString data newly generated on our cohort is available at GEO
underGSE227756.Newly generatedpanel sequencingdata of high-grade
gliomas is available at EGA under study EGAS50000000221 and dataset
EGAD50000000326. The data are available under controlled access to
comply with data protection regulations, and can be accessed
by application to the data access committee via C.H. (cynthia.-
hawkins@sickkids.ca). The remaining data, including normalized
NanoString gene counts (Supplementary Data 1), are available within
the Supplementary Data file with the paper; all figures can be repro-
duced from the Supplementary Data. Previously published WES
data from tumors with matched germline blood for MMRD patients
treated with immune checkpoint inhibition8 is available on EGA
(EGAD00001008036).This can accessed by application to the data
access committee via U.T. (uri.tabori@sickkids.ca). Previously published
RNA and targeted DNA sequencing data for PLGG53 is available on EGA
(EGAD00001005987), and can be accessed by application to the data
access committee via C.H. (cynthia.hawkins@sickkids.ca). Additional
clinical data and molecular characterization (using IHC, FISH, Nano-
String gene fusion panels, SNP array) are available as source data at
the manuscript website https://doi.org/10.1016/j.ccell.2020.03.011. Pre-
viously published sequencing data for DMG and hemispheric PHGG63–65

is available on EGA forWGS (EGAD00001000814, EGAD00001003305),
WES (EGAD00001006450, EGAD00001008279, EGAD00001003305),
and RNA-seq (EGAD00001006450, EGAD00001008278). These can be
can be accessed by application to the data access committee via C.H.
(cynthia.hawkins@sickkids.ca). The publicly available PBTA raw data is
available through KidsFirstPortal (https://portal.kidsfirstdrc.org/login)
accession codes PBTA-CBTN and PBTA-PNOC. and Cavatica (https://
cavatica.sbgenomics.com/u/cavatica/openpbta) upon request to CBTN,
and processed summary files are accessible at https://github.com/
AlexsLemonade/OpenPBTA-analysis.

Code availability
Example scripts for processing NanoString data, including
normalization and TIS score calculation, are available on GitHub at:
https://github.com/adrianblevine/Immuno-oncology_nanostring. DOI:
10.5281/zenodo.10739152.
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