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Unbiased analysis of spatial 
learning strategies in a modified 
Barnes maze using convolutional 
neural networks
Tomer Illouz 1,3, Lyn Alice Becker Ascher 1,3, Ravit Madar 1,2,3 & Eitan Okun 1,2,3,4*

Assessment of spatial learning abilities is central to behavioral neuroscience and a useful tool for 
animal model validation and drug development. However, biases introduced by the apparatus, 
environment, or experimentalist represent a critical challenge to the test validity. We have recently 
developed the Modified Barnes Maze (MBM) task, a spatial learning paradigm that overcomes 
inherent behavioral biases of animals in the classical Barnes maze. The specific combination of spatial 
strategies employed by mice is often considered representative of the level of cognitive resources 
used. Herein, we have developed a convolutional neural network-based classifier of exploration 
strategies in the MBM that can effectively provide researchers with enhanced insights into cognitive 
traits in mice. Following validation, we compared the learning performance of female and male 
C57BL/6J mice, as well as that of Ts65Dn mice, a model of Down syndrome, and 5xFAD mice, a model 
of Alzheimer’s disease. Male mice exhibited more effective navigation abilities than female mice, 
reflected in higher utilization of effective spatial search strategies. Compared to wildtype controls, 
Ts65Dn mice exhibited delayed usage of spatial strategies despite similar success rates in completing 
this spatial task. 5xFAD mice showed increased usage of non-spatial strategies such as Circling that 
corresponded to higher latency to reach the target and lower success rate. These data exemplify the 
need for deeper strategy classification tools in dissecting complex cognitive traits. In sum, we provide 
a machine-learning-based strategy classifier that extends our understanding of mice’s spatial learning 
capabilities while enabling a more accurate cognitive assessment.

Spatial learning is an essential cognitive function that enables organisms to navigate and learn about their 
 surroundings1. Indeed, the ability to acquire, store, and use spatial information is crucial for survival in many 
species, including mice and humans. Further, studying spatial learning in mice is vital for understanding mecha-
nisms that underlie neurodegenerative diseases such as Alzheimer’s disease (AD) and Down syndrome (DS)-
related  AD2,3, as well as potential  treatments4. Spatial learning depends significantly on various types of hip-
pocampal and para-hippocampal cells, including place cells, grid cells, head direction cells, and conjunction 
 cells5–7. Engagement of place cells in spatial encoding relies on using distal extramaze visuals cues as inputs for 
triangulation procedure that dictates excitation in their preferred spatial  fields6,8,9. Therefore, when designed cor-
rectly, these spatial learning tasks can be used to measure the integrity and function of hippocampal-associated 
networks. To fully assess the spatial cognitive abilities of mice in these pathologies, it is important to consider the 
complexities of their behavior. Mice utilize different spatial strategies to navigate their  environment10. It is crucial 
to understand the specific spatial strategies employed by mice under different physiological and pathological 
conditions, as different strategies can indicate cognitive abilities or  deficits11,12. Various highly effective tasks that 
assess spatial learning and memory in rodents have been described, including the Morris water maze (MWM)13, 
radial arm maze (RAM)14, radial arm water maze (RAWM)15, and the Barnes maze (BM)16. For two of the most 
widely-used tasks, the MWM and the BM, we have previously developed online tools for classifying behavioral 
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spatial strategies in the  MWM12 and the  BM11 using supervised machine-learning algorithms. Additionally, 
tools for characterization and classification of general and specific rodent exploratory behaviors were previously 
introduced by several groups, utilizing different computational  approaches17–21. These classifiers are superior to 
human manual classification, which tends to be biased, labor intensive, and depends on the degree of expertise 
of the human  classifier11. However, since each spatial learning tasks exhibits inherent specific disadvantages, 
we previously developed a modified variant of the classical BM (MBM)22. Specifically, the MBM combines the 
continuous nature of the MWM while avoiding water-related  stress22. The MBM enables high flexibility in task 
difficulty, along with overcoming inherent biases towards non-spatial strategies that are typical of the traditional 
BM task. In the present study, we describe the development of an unsupervised machine learning algorithm 
used to classify behavioral strategies in the MBM. We demonstrate the efficacy of this algorithm in classifying 
spatial strategies in four experimental settings: changing task difficulty, comparing male and female mice, and 
comparing two neurodegenerative mouse models, namely, AD and DS to wildtype (WT) controls. These four 
experimental settings represent physiological conditions in which subtle differences are expected, as well as 
pathological conditions in which significant cognitive impairments are observed, showcasing the dynamic range 
of strategy classification described herein.

Methods
Animals
8-weeks-old Female and male C57BL/6J WT mice (n = 10) were purchased from Jackson Laboratories (stock 
#000664). Ts(1716)65Dn (Ts65Dn), a widely used mouse model for DS that encompasses a partial trisomy of 
Mmu16 and Mmu17, thus containing 92 genes orthologous to Hsa21, including mouse amyloid precursor protein 
(APP) and dual-specificity tyrosine phosphorylation-regulated kinase (DYRK1A)23,24, and their background strain 
(B6EiC3Sn.BLiAF1/J) were purchased from the Jackson Laboratories (stocks #005252, #003647). Mice were 
tested at the age of 8 months (n = 14). 5xFAD mice on a C57BL/6 genetic background, expressing mutant human 
APP and presenilin-1 (PSEN1) genes (B6.Cg-Tg; APPSwFILon, PSEN1*M146L*L286V), were purchased from 
Jackson Laboratories (stock #034848) and were tested at the age of 8 months (n = 9 for 5xFAD and 10 for WT). 
Animals were housed in a reversed 12:12 h cycle. All tests were conducted during the dark phase. Proper control 
groups were chosen based on genetic background of the experimental group in accordance with the Jackson 
Laboratories strain-specific recommendation. Animals that presented signs of pain or severe stress, including 
immobility, weight loss and reduced social interaction were excluded from the experiments, in accordance with 
the Bar Ilan University Animal Care and Use Committee.

Animal care and experimental procedures followed Bar Ilan University’s guidelines and were approved by 
the Bar Ilan University Animal Care and Use Committee. All experiments were done in accordance with the 
recommendations of the ARRIVE guidelines.

Modified Barnes maze
The MBM consisted of a circular, 110 cm-high, 122 cm-wide white Perspex table with 40 randomly placed 
holes, each with a diameter of 5 cm, located at least 7 cm from each other and at least 5 cm from the perimeter. 
Six holes were fabricated to function as an optional escape chamber. Lighting was measured at the center of the 
table and maintained at > 900 lx to motivate the animals to search a target hole that leads to a hidden escape 
chamber. During a 1-day habituation, animals were placed in a cylinder located 10 cm from the edge of the 
maze, farthest from the target hole location. of the maze. Five seconds later, the cylinder was removed, and the 
mice were allowed to explore the environment for 2 min. Mice that found the target hole could enter the escape 
chamber, while mice that did not find it within this period were placed back in the cylinder, now located above 
the target hole. Visual cues were presented on the walls surrounding the apparatus. In the spatial acquisition 
phase, mice were given 2 min per trial to find the target hole. Mice that did not find it were confined to the 
target hole area until they located it. In this task, each animal was given 3 trials with a 30-s inter-trial interval. 
The maze was cleaned with 40% EtOH between trials. This procedure was repeated daily until no significant 
improvement in performance was identified. Performance parameters in this task were automatically calculated 
by the ANY-maze video tracking system (Stoelting Co.). Specifically, we recorded the latency to reach the target 
(in seconds), distance travelled (in meters), average speed (m/s), path efficiency, calculated as the ratio between 
the animal’s trajectory the distance between the start and target points, number of entries to non-target holes 
(count), time in non-target holes (s), reference memory errors, indicated by the number of entries to non-target 
holes (count), working memory errors, defined as the number of entries to non-target holes minus the number 
of reference memory errors (count), absolute angles, calculated as the sum of the absolute angle between each 
movement vector of the animal, number of rotations (count), calculated as an unbroken sequence of turns in 
the same direction. All experiment were conducted in a blind manner such as the experimenter was agnostic of 
animal allocation to experimental group.

Image processing
X, Y coordinates of the animals’ location throughout each trial were extracted from ANY-maze. All further 
processing was done in MATLAB (Mathworks). Trajectories were plotted as a black line on a white background, 
and the target location was indicated by a red dot. MBM table boundaries and holes were not plotted. A set of 
randomly selected images representing ~ 10% of the of total number of samples was used for initial identification 
of strategies characteristic of the MBM. This data set also served for hyperparameter optimization. The remain-
ing MBM trials were randomly divided into train (80%) and test sets such that the test set contained 20% of the 
samples from each label. Test set samples were only used once. For train set samples, images were augmented 
ten times by five 72° rotations and an additional horizontal flip.
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Convolutional neural networks
Convolutional neural networks (CNN) were trained to classify exploration strategies using the MATLAB Deep 
Learning Toolbox (Mathworks). A hierarchical classification architecture was implemented as described in the 
results section. The architecture of each CNN consists of an input layer and multiple repetitions of convolution, 
batch normalization, ReLU, and max pooling layers followed by fully connected, soft-max and classification 
output layers. At testing, accuracy rate per strategy was calculated as the fraction of correctly classified strategy 
out of the total number of samples in that class.

Statistical analysis
The data presented as mean ± SEM were tested for significance in repeated measures (RM) two-way ANOVA or 
one-way ANOVA using Tukey’s test for multiple comparisons. All error bars presented are SEM calculated as 
std(x)
√
n

 for all numerical variables, and as 
√

p(1−p)
n  for all binomial variables. Animal tracking errors and outliers 

were removed using the Robust Regression and Outlier Removal (ROUT) method with coefficient Q = 1%25. 
Significant results were marked according to conventional critical P values: *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001.

Results
Identification of distinct spatial learning strategies in the MBM
The MBM combines the spatial continuity of the MWM with the advantages of a dry test environment, a key 
virtue of the BM (Fig. 1a)22. Since the MWM and the BM share some exploration  strategies11,12,22, we hypoth-
esized that the strategies that characterize mice’s performance in the MBM would reflect the combined nature 
of this apparatus. To investigate this, we tested whether distinct exploration patterns can be identified using 
unsupervised learning methods. First, principal component analysis (PCA) was conducted on ten commonly 
used variables that were extracted from a data set of 1508 trials of C57BL/6J tested in the MBM (Fig. S1a). This 
set of variables includes latency, distance, average speed path efficiency, number of entries and time spent in 
non-target holes, absolute angles, number of rotations, mean and standard deviation of the animals’ distance 
from the center of the maze. Variables were calculated as described in the methods section. PCA revealed that 
linear combinations of variables could reflect different exploration patterns (Fig. S1b,c). For example, principal 
component (PC) 1, which explains 61.4% (Fig. S1b) of the variance in our dataset, negatively correlated with 
mice’s path efficiency, calculated as the ratio between the animal’s trajectory the distance between the start and 
target points, and positively correlated with all other variables (Fig. S1c). This finding indicates that a significant 
fraction of the variance in this dataset originates from differences between long-insufficient and short-efficient 
performances (Fig. S1d). PC3 positively correlated with the average distance of the mice from the maze center 
and negatively correlated with the standard deviation of that distance, indicating that PC3 is a good indicator for 
distinguishing between focal/random and circular searches. Next, we assessed the number of potential explora-
tion strategies using the elbow method: The average distance of each datapoint from its nearest k-means cluster 
centroid and the variance explained by clustering were calculated on the same ten-dimensional dataset, with 
the increasing number of clusters (k). Both the distance from the nearest centroid (Fig. 1b) and the variance 
explained (Fig. 1c) were reduced when the data was clustered using k = 2to6 clusters, while only minor changes 
in these metrics were measured using k > 6 . Two-dimensional tSNE projection following k-means clustering 
confirmed that the data is indeed under-classified when using k < 6 , as major clusters were identified as belong-
ing to the same class, and over-classified when using k > 6 , as major clusters were divided into different classes 
(Figs. 1d, S1e). Collectively, these data suggests that six clusters are an accurate number of exploration strategies 
found in the MBM.

Next, trajectory plots of 211 randomly sampled MBM trials were presented to seven human classifiers expe-
rienced in conducting spatial learning tasks for human labeling. Individuals were allowed to classify each trial to 
one of the previously defined sets of strategies characteristic of the  MWM12 (Fig. S2a) and the  BM22 (Fig. S2b). 
The final label of each trial was determined as the mode of human classifications (Fig. S3a). Interestingly, the 
classification of some strategies was more consistent between human classifiers (e.g., Direct, 0.78 agreement level, 
Fig. S3a), while others were less decisive (e.g., Long correction, 0.68 agreement level, Fig. S3a). Since no trial was 
classified as a Serial search by any human classifiers, this strategy was removed from downstream analysis. Next, 
to meet the optimal number of exploration strategies (Fig. 1b–d), the six most prevalent exploration strategies 
were selected for full dataset labeling (Figs. 1e,f, S3b). These strategies consist of the Direct, in which animals 
use a relatively straight path from the start point to the target. This strategy reflects optimal acquisition of the 
environment; Corrected, which represent trials that include one turn; Long Correction, in which the animal 
chose exploring the opposite direction from the target, then re-angulated went directly to the target; Circling, 
a non-spatial strategy to enhance the chance of finding the target by exploring the environment in a circular 
manner; Accidental circling, represent circular searches in which the target was found before the first full circle 
was completed; and Random search (Fig. 2e)11,12. As hypothesized, some MBM exploration strategies overlapped 
with MWM strategies (Circling, Accidental circling). Long correction was shared between the BM and the MBM, 
and three MBM strategies overlapped with both MWM and BM (Direct, Corrected, Random, Fig. S3c).

Using the same methodology, a set of 2035 MBM trials, obtained from testing C57BL/6J mice using a non-
central target location, was classified by 7 individuals to one of the six predetermined exploration strategies. 
The final label per each sample was determined using the winner-takes-all approach. Agreement rate between 
human classifiers, defined as the frequency of the mode label per trial, ranged between 62% for Accidental circling 
and 88% for Random search (Fig. 2a,b), indicating that some strategies are more easily identified than others. 
Interestingly, Random search was the most prevalent strategy in this dataset (31.67%), while Accidental circling 
was the least prevalent strategy (6.77%, Fig. 2b). A two-dimensional tSNE projection of this dataset reveals that 
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Figure 1.  Identification of distinct spatial learning strategies in the MBM. The number of learning strategies 
used by mice in the MBM was estimated using unbiased techniques. 1508 MBM trials were subjected to 
k-means clustering (k = 2:18). (A) Scheme of the MBM table. The elbow method was utilized by evaluating the 
elbow point of (B) the distance to the centroid and (C) the percentage of variance explained by clustering. (D) 
tSNE projection of 1508 MBM trials clustered increasing k. (E) Pseudo-trajectories typical of the six identified 
learning strategies. (F) Averaged Z-score of the variables used to differentiate learning strategies. STD Standard 
deviation.
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Figure 2.  Classification of exploration strategies in the MBM using convolutional neural networks. 2035 
MWM trials were subjected to manual labeling by seven individuals to train and test the performance of a 
neural-network classifier. (A) Confusion matrix of all manual labeling versus their mode reveals that Direct and 
Random are the most coherently identified strategies. (B) Prevalence of different learning strategies obtained 
from human labeling, averaged between-judge agreement levels, are indicated in purple. (C) Pairwise Jaccard 
similarity coefficients were used to identify pan-categories. Direct and Corrected, Long correction and accidental 
circling, and Circling and Random were paired into three pan-categories based on a high Jaccard similarity 
coefficient (indicated within the confusion matrix). These pan categories were defined as (D) short, intermediate, 
and long trajectories and were then divided into individual strategies on the (E) classification dendrogram. (F) 
Accuracy level of the hierarchical neural-network classifier. (G) tSNE projection of the test set; human (left) and 
neural-network model (right) show high similarity. One-way ANOVA, ***P < 0.001, Dir Direct, Cor Corrected, 
LC Long correction, AcC Accidental circling, Rnd Random.
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strategies are ordered between two poles: Direct at the upper-left corner and Random search at the lower-right 
corner (Fig. S3d). This suggest that exploration strategies in the MWM can be seen as a spectrum, ranging from 
the highly spatial strategies (Direct, Corrected, Long correction) to the non-spatial strategies (Circling, Accidental 
circling and Random, Fig. 2e). In agreement with this idea, the lower-right pole populates trials obtained at early 
stages of animal training, in which Random search is more prevalent, and the upper-left pole populates trials 
obtained at later stages of animal training, in which Direct and Corrected searches are more common (Fig. S3e).

Classification of exploration strategies in the MBM using convolutional neural networks
To obtain a generalized classifier independent of feature selection, variable calculation, and apparatus size, we 
chose to use CNNs with images of animals’ trajectories as inputs. CNNs are a deep learning neural network com-
monly used in computer vision tasks. CNNs are designed to automatically detect and learn spatial hierarchies of 
features from input images or data. They consist of multiple layers of filters that convolve with the input image 
to extract relevant features such as edges, textures, and shapes. With their ability to automatically learn and 
extract features from images, CNNs are particularly effective in object recognition and classification  tasks19,26.

In multi-category classifications, it is often preferable to use hierarchical rather than flat architectures, in 
which highly similar categories are first treated as pan-categories (https:// ieeex plore. ieee. org/ docum ent/ 74106 
71). In the next level in the classification dendrogram, such pan-categories can be treated separately to deal with 
highly similar categories. Indeed, we observed strong similarities between some of the MBM strategies. Using 
pairwise Jaccard similarity indices (JSI), we found strong similarities between Circling and Random (JSI = 0.8, 
Fig. 2c), Long correction and Accidental circling (JSI = 0.74, Fig. 2c), and Direct and Corrected strategies (JSI = 0.5, 
Fig. 2c). These pairs were pooled into pan-categories that corresponded to trajectory length (in meters): Direct 
and Corrected were pooled into a pan-category of short trajectories, (0.73 ± 0.01, 1.17 ± 0.01 m, respectively, 
P = 0.07, Fig. 2d), Long correction and Accidental circling were pooled into an intermediate-length pan-category 
(2.1 ± 0.02, 2.2 ± 0.06 m, respectively, P = 0.97, Fig. 2d), and Circling and Random were pooled into a long tra-
jectory pan-category (6.19 ± 0.2, 5.51 ± 0.1, P = 0.0002, Fig. 2d). Path length significantly differed between pan 
categories (Fig. S4a). Based on these similarities, we devised a two-level hierarchical architecture in which clas-
sification into pan-groups is followed by classification into individual categories (Fig. 2e).

Next, a dataset of 2035 MBM trials was randomly divided into train and test sets (80% and 20%, respectively). 
For the training set, data augmentation was performed by 72° image rotations and a horizontal flip, yielding 
10 images per each original sample. Next, we trained a neural network for each classification junctions in the 
dendrogram (Fig. 2e). Classification accuracy, measured by comparing the model results with the human-labeled 
test set, reached 91.86% by averaging the percentages of true positive classifications (Fig. 2f–g, S4b,c). Balanced 
accuracy, calculated as the mean of recalls, reached 91.99%. No significant difference was found in classification-
explained variance between human and machine classification (Fig. S4d). As a reference, we trained a Random 
Forest classifier on the same datasets and obtained a classification accuracy of 76.38% (Fig. S4e), indicating that 
the CNN was superior to a random forest classifier when tested against human observers.

Target hole location affects task difficulty and alters the usage of spatial strategies
We previously observed that the difficulty of the MBM task could be manipulated by using central targets for 
a more difficult task and distal/peripheral targets for an easier task, allowing the experimenter to adjust task 
difficulty according to experimental  needs22. To validate this finding using the strategy classifier, we trained 
eight-week-old WT male mice (n = 10 per group) in the MBM using a central and an off-center (distal) target 
(Fig. 3a). As expected, mice that were trained to find the distal target used the Direct and Corrected strategies at 
a higher prevalence on the sixth day of training compared with mice trained to find the central, more difficult 
target (56.67%, 27.77%, respectively, P < 0.0001, Fisher’s exact test, Fig. 3b). Interestingly, mice that were trained 
to find the central target used mostly long correction by the last day of training, suggesting that conversion to the 
higher Correction strategy was beyond the cognitive capacity of mice under this task difficulty level. To further 
quantify these differences, we established a scoring system for spatial cognition that localizes the animals’ per-
formance on a scale relative to the averaged direct performance (ADP) in the MBM. To define this non-arbitrary 
scale, we calculated the Euclidean distance between each trial in the training set to the ADP. The distance of 
each strategy was defined as the mean of distances to the ADP per strategy. These results were rescaled to fit the 
0–1 range and yielded the following cognitive scores: Circling = 0, Random = 0.1, Accidental circling = 0.32, Long 
correction = 0.61, Corrected = 0.77, and Direct = 1. The cognitive score did not significantly differ between groups 
(P = 0.058, Fig. 3c) due to similar scores at the early stages of training. These results reflect a slower learning curve 
of mice when using the central target. Consistently, latency to target entry, exploration distance, and path effi-
ciency were higher in mice trained to find the central target than in mice trained to find the distal target (P < 0.01, 
P < 0.05, P < 0.001, respectively, Fig. 3d–f), whereas exploration speed was mildly lower for mice trained to find 
the central target (P < 0.05, Fig. 3g). Additionally, mice trained to find the central target exhibited elevated time in 
non-target holes (P < 0.01, Fig. 3h) and an increase in reference and working memory errors (P < 0.001, P < 0.05, 
Fig. 3i–j). Accordingly, the trajectories of mice trained to find the central location covered a higher percentage of 
the surface of the MBM table (P < 0.05, Fig. S5a–d). However, success rate did not differ between groups (P = 0.08, 
Fig. 3k). In sum, we provided evidence that manipulation of target location in the MBM can be used to control 
task difficulty while affecting the combination of the spatial strategies utilized by mice. This feature of the MBM 
enables the experimenter to adjust task difficulty to comply with the experiment’s requirements.

Male C57BL/6J mice exhibit a more effective navigation ability than females in the MBM
With respect to spatial abilities, males outperform females in both murine and in humans, with the underlying 
mechanisms not entirely  clear27–29. To assess whether sex-related changes in mice performance in the MBM can 

https://ieeexplore.ieee.org/document/7410671
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be identified using our classifier, female and male C57BL/6J mice (n = 10 per group) were trained for nine days 
in the MBM. Since no significant deficit in spatial learning abilities was expected in these experimental groups 
and to enable the identification of subtle differences, we used the most difficult MBM setting in which the target 
is located at the central hole of the MBM  table22 (Fig. 4a). On days 1–4 of the training, Circling was the most 
prevalent strategy used by female mice (40.74% at day 4, Fig. 4b), while long correction was the most prevalent 
strategy used by male mice at this timepoint (29.16% at day 4, Fig. 4b). By the seventh day, 91.67% of male trials 
were classified as strategies that reflect efficient acquisition of the target location (i.e., Direct, Corrected, Long 
correction) while these strategies represented 51.85% of the female trials (P < 0.0001, Fisher exact test, Fig. 4b). 
Random search represented 33.33% of the trials at this timepoint among females and only 4.16% among males 
(P < 0.0001, Fisher exact test, Fig. 4b). These changes were also reflected in higher spatial cognitive scores in 
males than in females (P < 0.0001, Fig. 4c).

Earlier conversion from non-spatial to highly spatial strategy in males than is females was associated with 
reduced latency to target entry (P < 0.01, Fig. 4d), reduced exploration distance (P < 0.0001, Fig. 4e), and higher 
path efficiency (P < 0.0001, Fig. 4f). Intriguingly, females exhibited elevated exploration speed (P < 0.001, Fig. 4g). 
Exploration accuracy, indicated by the number of entries to non-target holes, or reference memory errors, 
and working memory errors, defined as the number of entries to non-target holes minus the number of ref-
erence memory errors, was also reduced in females compared with males (P < 0.0001, P < 0.0001, P < 0.001, 

Figure 3.  Target hole location affects task difficulty and alters the usage of spatial strategies. (A) Male C57BL/6J 
mice (aged 8 weeks, n = 10) were trained in the MBM using a central and a more distal target location. (B) 
Strategy usage throughout the training was assessed using a neural-network classifier and (C) was quantified 
by the cognitive score scaling. Between-group differences were measured for (D) latency to reach the target, 
(E) exploration distance, (F) path efficiency, (G) walking speed, (H) time in non-target holes, (I) reference and 
(J) working memory errors, and (K) success rate. Repeated-measures two-way ANOVA, *P < 0.05, **P < 0.01, 
****P < 0.0001. GE Group effect.
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Figure 4.  Male C57BL/6J mice exhibit a more effective navigation ability compared with females in the MBM. 
(A) Female and male C57BL/6J mice (aged 8 weeks, n = 10 per group) were trained in the MBM with the hidden 
escape box placed at the center of the arena. (B) Strategy usage throughout the training was assessed using 
a neural-network classifier and (C) was quantified by the cognitive score scaling. Inter-sex differences were 
observed for (D) latency to reach the target, (E) exploration distance, (F) path efficiency, (G) walking speed, 
(H) number of entries to non-target holes, (I) reference memory errors, and (J) working memory errors but not 
for (K) success rate. (L) Statistical occupancy map for all (left), first (middle), and last (right) days of training. 
Bin-wise change in occupancy of male compared with female mice is indicated in blue (positive fold-change) or 
red (negative fold-change). P value is coded by the colors’ darkness. Non-significant differences are not shown. 
Repeated-measures two-way ANOVA, *P < 0.05, **P < 0.01, ***P < 0.001, GE Group effect.
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respectively, Fig. 4h–j). Consistently, the area covered by exploration trajectories was higher in females than 
in males (P < 0.0001, Fig. S6a–d), indicating more scattered searches by females. Success rate, however, did not 
differ between male and female mice (P = 0.51, Fig. 4k), implying that the usage of less efficient strategies is 
compensated by increased speed in female mice (Fig. 4g).

To further compare exploration patterns between male and female mice, we segmented the MBM environ-
ment into 3 × 3 mm bins and calculated the fold-change (and P values) in occupancy of male versus female mice 
in a bin-wise manner. These data may be represented as statistical occupancy maps and volcano plots (Figs. 4l, 
S6e). Stronger spatial learning performance in males was reflected by a shorter and more focused exploration 
pattern, while females exhibited a more scattered exploration pattern (Figs. 4l, left panel, S5e left panel). While 
no significant difference was observed on the first day of training (Figs. 4l, middle panel, S6e middle panel), 
females continued to explore the periphery of the MBM surface by the last day of training (Figs. 4l, right panel, 
S6e right panel). Altogether, we identified higher spatial learning accuracy in male compared with female mice 
tested in the MBM.

Characterization of spatial learning deficits in the Ts65Dn mouse model of DS in the MBM
DS, caused by a trisomy in human chromosome 21 (Hsa-21), is the most common chromosomal abnormal-
ity in humans and the most prevalent genetic cause of intellectual  disability30. Hsa-21 contains approximately 
233 protein-coding genes, 423 non-protein coding genes, and numerous other functional genomic  elements30. 
The Amyloid precursor protein (APP) gene, located within Hsa-21, is triplicated in DS, such that APP is over-
expressed in affected individuals with DS compared with euploid  individuals31. This heightened expression 
results in APP-dependent Alzheimer-like neuropathology in ~ 88% of all individuals with DS by the age of  6531. 
The Ts65Dn mouse model of DS encompasses a partial trisomy of mouse chromosome 16, which includes 92 
genes orthologous to Hsa21. As a result, this model recapitulates many of the cognitive, behavioral, structural, 
and physiological abnormalities of  DS23.

To characterize the cognitive deficits of Ts65Dn mice, we investigated their performance in the MBM using 
our trained classifier. Eight-month-old male Ts65Dn and their respective genetic background control strain 
(n = 14 per group) were trained in the MBM for 10 days using a medium difficulty level achieved by placing the 
escape hole between the periphery and the center of the apparatus (Fig. 5a). Although learning was observed 
throughout training in both groups, Ts65Dn mice exhibited a profound spatial learning deficit compared to 
WT controls, reflected in reduced usage of the highly spatial strategies: Direct, Corrected, and Long correction 
(Fig. 5b). By the fifth day, these strategies represented 95.2% of the WT trials and 61.9% of the Ts65Dn mice 
trials (P < 0.0001, Fisher’s exact testm, Fig. 5b) By the last day, 9.52% of Ts65Dn trials were classified as Random, 
compared with 2.38% Random searches in WT controls (P < 0.05, Fisher’s exact test, Fig. 5b). Accordingly, the 
cognitive scores of Ts65Dn mice were lower than those of WT mice throughout training (P < 0.0001, Fig. 5c). 
Importantly, latency to reach the target hole entry did not differ between groups (P = 0.76, Fig. 5d), which cor-
responded with higher distance (P < 0.0001, Fig. 5e), higher speed (P < 0.0001, Fig. 5f), and lower path efficiency 
(P < 0.0001, Fig. 5g) in Ts65Dn mice compared with WT controls. These findings provide an example of the 
need for comprehensive analysis of mice performance in spatial learning tasks beyond comparison of latencies. 
Ts65Dn mice also exhibited reduced spatial accuracy, indicated by a higher number of entries to non-target holes 
(P < 0.0001, Fig. 5h), a profound reference memory deficit (P < 0.0001, Fig. 5i), and a milder working memory 
impairment (P < 0.01, Fig. 5j). Additionally, the exploration trajectories of Ts65Dn mice covered a higher per-
centage of the MBM table (P < 0.0001, Fig. S7a–d). However, success rate did not differ between groups (P = 0.77, 
Fig. 5k), indicating compensation of less efficient exploration strategies by higher exploration speed. Using 
statistical occupancy maps, we found that Ts65Dn mice spent significantly less time in the vicinity of the target 
location throughout training (Figs. 5l, left panel, S7e, left panel). Accordingly, they spent more time near the 
periphery of the table on the first day (Figs. 5l, middle panel, S7e, middle panel), and exhibited less target-oriented 
exploration on the last day of training (Figs. 5l, right panel, S7e, right panel). In sum, our findings indicate a clear 
spatial learning impairment in the Ts65Dn mouse model of DS due to a deficit in reference memory capacity 
associated with using less-efficient exploration strategies and increased exploration speed.

Association of spatial working memory impairment and circular explorations in the 5xFAD 
mouse model of Alzheimer disease
Spatial learning ability heavily relies on the integrity of hippocampal and para-hippocampal brain  regions32. The 
hippocampus is also specifically vulnerable to Alzheimer disease (AD)  pathology33. Therefore, we investigated 
the impact of Amyloid-β (Aβ) pathology on the spatial strategy utilization of transgenic AD mice in the MBM. 
The 5xFAD mouse strain, which models early-onset AD, encompasses five early-onset AD-related mutations: the 
Swedish (K670N, M671L), London (V717I), and Florida (I716V) mutations in APP and the M146L and L286V 
mutations in Presenilin 1 (PS1)34. As a result, 5xFAD mice exhibit early and profound Aβ pathology in the brain. 
Eight-month-old 5xFAD (n = 9) and their respective WT control male mice (n = 10) were trained to find the cen-
tral (most difficult) target of the MBM for 6 days (Fig. 6a). 5xFAD mice exhibited reduced usage of highly spatial 
strategies (i.e., Direct, Corrected, and long correction) by the third day of training compared with WT controls 
(40.74%, 83.33%, respectively, P < 0.0001, Fisher’s exact test, Fig. 6b). The most prevalent strategies in 5xFAD 
mice were Circling and Accidental circling, represent together 55.55% of strategies used. The performance of WT 
mice reached an a plateau on day 5, with 80% of WT trials classified as highly spatial. In comparison, 5xFAD mice 
used these strategies at a prevalence of 44.44% (P < 0.0001, Fisher’s exact test, Fig. 6b). Accordingly, the overall 
cognitive score of 5xFAD mice was lower compared to WT controls (P < 0.05, Fig. 6c). Unlike the performance 
of Ts65Dn mice, 5xFAD mice exhibited increased latency to target entry (P < 0.05, Figs. 5d and 6d, respectively), 
while only mild difference in exploration distance (P < 0.05, Fig. 6e) and no difference in speed was observed 



10

Vol:.(1234567890)

Scientific Reports |        (2024) 14:15944  | https://doi.org/10.1038/s41598-024-66855-8

www.nature.com/scientificreports/

Figure 5.  Characterization of spatial learning deficits in the Ts65Dn mouse model of DS in the MBM. (A) Male 
Ts65Dn and WT mice (aged 8 months, n = 14 per group) were trained in the MBM with the hidden escape box 
placed mid-way between the center and the periphery of the arena. (B) Strategy usage throughout the training 
was assessed using a neural-network classifier and (C) was quantified by the cognitive score scaling. Inter-strain 
differences were measured for (D) latency to reach the target, (E) exploration distance, (F) walking speed, (G) 
path efficiency, (H) number of entries to non-target holes, (I) reference and (J) working memory errors, and 
(K) success rate. (L) Statistical occupancy map for all (left), first (middle), and last (right) days of training. 
Bin-wise change in occupancy of Ts65dn compared with WT mice is indicated in blue (positive fold-change) or 
red (negative fold-change). P value is coded by the colors’ darkness. Non-significant differences are not shown. 
Repeated-measures two-way ANOVA, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. GE Group effect.
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Figure 6.  Association of spatial working memory impairment and circular explorations in the 5xFAD mouse 
model of Alzheimer disease. (A) Male 5xFAD and WT mice (aged 8 months, n = 9 per group) were trained 
in the MBM with the hidden escape box placed at the center of the arena. (B) Strategy usage throughout the 
training was assessed using a neural-network classifier and (C) was quantified by the cognitive score scaling. 
Inter-strain differences were measured for (D) latency to reach the target, (E) exploration distance, (G) walking 
speed, (G) path efficiency, (H) time in non-target holes, (I) reference and (J) working memory errors, and (K) 
success rate. (L) Statistical occupancy map for all (left), first (middle) and last (right) days of training. Bin-wise 
change in occupancy of 5xFAD compared with WT mice is indicated in blue (positive fold-change) or red 
(negative fold-change). P value is coded by the colors’ darkness. Non-significant differences are not shown. 
Repeated-measures two-way ANOVA, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. GE Group effect.
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(P = 0.19, Fig. 6f). Path efficiency was also reduced in 5xFAD mice compared with controls (P < 0.01, Fig. 6g), 
but was only associated with early stages of training. Importantly, lower accuracy was observed in 5xFAD mice, 
indicated by elevated time in non-target holes (P < 0.01, Fig. 6h). Interestingly, reference memory capacity of 
5xFAD mice did not differ from WT controls (P = 0.53, Fig. 6i), but working memory capacity was significantly 
reduced in these mice (P < 0.01, Fig. 6j), which resulted in lower success rate compared with WT mice (P < 0.0001, 
Fig. 6k). Accordingly, statistical occupancy maps analysis revealed that exploration trajectories of 5xFAD mice 
covered a higher percentage of the MBM table surface (P < 0.05, Fig. S8a–d), with a clear tendency to explore 
the periphery of the surface (Fig. 6l, S8e). Overall, we report a working memory impairment in 5xFAD mice 
trained in the MBM, which is associated with a higher prevalence of the Circling and Accidental circling strategies.

Discussion
The MBM is a novel modified variant of the traditional BM task for spatial  learning22. It combines the advantages 
of the MWM and the BM while avoiding their  disadvantages22. As a result, the MBM avoids water stress and its 
related technical complications, including lengthy operation times characteristic of the MWM. It also avoids 
non-spatial strategies, such as circling, that are characteristic of the BM. As with more traditional spatial learning 
tasks such as the MWM and the BM, in which spatial strategy classifiers provide additional layers of information 
to be  extracted11,12, we set out to generate an unbiased classifier that effectively classifies cognitive strategies in 
the MBM, as a tool for the research community.

The algorithm presented herein can effectively analyze MBM data obtained from different transgenic mice 
with and without cognitive impairments in an unbiased manner while providing a cognitive score scale that 
assesses memory acquisition.

Traditionally, performance in spatial learning tasks is analyzed according to one-dimensional parameters 
such as path efficiency, working and reference errors, and latency to reach the target. However, focusing solely 
on these parameters fails to fully capture the animal’s spatial cognitive capacity. We argue that utilizing a spatial 
learning paradigm superior to traditionally used paradigms (e.g., the MWM or the BM), combined with an added 
layer of information on the spatial strategies utilized by the rodents, is advantageous to optimizing experimental 
efficacy and promoting research output.

In humans and rodents, most sex-difference studies suggest that males outperform females in spatial learn-
ing tasks like the MWM and  BM27,35–38 with no clear understanding of the underlying mechanisms. In rodents, 
males exhibit lowered escape latency, shorter exploration distance and reduced number of memory and refer-
ence  errors27,35,38. However, male- or female-advantaged experimental environment and protocols may bias such 
reports. Indeed, sex-related tendency for spatial learning strategy is one proposed mechanism that explains these 
differences. Males show a tendency to use geometric cues, a place strategy, while females exhibit tendency towards 
relying on visual landmarks such as a visible  platform39,40. Intriguingly, these behaviors are highly dependent on 
sex hormones. Our finding supports the hypothesis that males and females utilize different exploration strategies. 
However, to test whether these strategies correspond to place and cued strategies, extinction of a familiar target 
location and acquisition of a new target using landmarks should be tested. Interestingly, our data also suggests 
that despite clear differences in path length, number of errors and averaged speed, male and female mice do not 
differ in their success rate to find the MBM target.

In addition, the approach can sensitively identify behavioral nuances in pathologically relevant conditions, 
such as spatial learning deficits found in DS and AD mouse models. Various transgenic, knock-in and injection 
mouse models of AD have been extensively used in research as a tool of understanding disease mechanisms, 
biomarkers and for testing novel therapeutics  paths41,42. In many of these studies, cognitive ability, and specifi-
cally hippocampus-dependent spatial learning and memory abilities serve as major redouts. Spatial learning task 
such as the MBM and BM has been extensively used to this end. However, correctly modeling and evaluating 
cognitive deficits in mouse models of AD may be challenging. Sex-differences in AD pathology are considered 
central in understanding the great heterogeneity seen in patients. These differences in neural anatomy, disease 
prevalence and progression as well as cognitive manifestation, suggest that different disease promoting mecha-
nism operate in men and  women43,44. Given that in rodents, males and females may exhibit a tendency towards 
using a different sets of exploration strategies, these differences should be taken under consideration in testing 
cognitive deficits in the context of mouse models of AD. Similarly, motor co-morbidities22, age differences at 
testing, the combination of physiological cognitive aging and cognitive decline in AD, as well as different disease 
mechanism that operate in the different  models41 call for deeper evaluation of the cognitive phenotype that goes 
beyond one-dimensional variables as latency or path length.

Here we compared two models of cognitive deficits, the Ts65Dn mouse model of DS and 5xFAD model of 
AD to their genetic background WT strains. In Ts65Dn mice, our data provide evidence for slower acquisition 
of the target location, reflected in milder and delayed conversion from ‘lower’ to ‘higher’ navigation strategies 
as compared to WT mice. Interestingly, no differences in latency, as well as success rate were observed in these 
mice, while exploration speed was elevated, suggesting that different navigation strategies are used in the by the 
two groups. It is therefore possible that the reported motor hyperactivity in this  strain45 interacts with cogni-
tive deficit to yield this distinct behavioral phenotype. It is, however, unclear whether the observed increased 
exploration speed in Ts65Dn mice acts negatively on spatial encoding functions or serves as a compensation 
mechanism for the reduced ability to encode the target location. As the ‘high’ spatial strategies emerged in later 
days of the test, we hypothesize that the inherent motor hyperactivity act as a confounding effect on evaluating 
cognitive deficits in this mouse model.

In the 5xFAD mouse model of AD we observed increased prevalence of trials that were classified as ‘Circling’ 
and ‘Accidental circling’, alongside with increased latency and reduced success rate. These data suggest that in 
contrast to the Ts65Dn model, 5xFAD mice compensate for their reduced ability to encode the environment by 
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using non-spatial, chance-increasing strategies. Therefore, we suggest that conversion from non-spatial to spatial 
strategies, and specifically the prevalence of using the ‘Circling’ strategy is a relevant readout when evaluating 
this strain.

The limitation of this study include lack of assessment of the estrous  cycle46, limited sample size, and inter- but 
not intra-experimental condition differences, such as the gender of the experimenter, the season, table orientation 
within the testing room. Additionally, no assessment of anxiety or exploratory behavior was conducted. Due 
to limited number of trials of the less frequent classes, strategies were not balanced in our data set. Therefore, 
balanced accuracy was reported alongside the percentage of true positive classification.

In summary, the algorithm presented herein offers the research community an improved, powerful, and 
precise tool for assessing spatial learning in rodents.

Data availability
All data including a user interface will be available upon request. Requests should be addressed to Prof. Eitan 
Okun, PH.D., (Eitan.okun@biu.ac.il) or Tomer Illouz, Ph.D., tomerillouz@gmail.com).
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